China’s Super-Heavy Lift Rocket Will Carry 100 Tons to the Moon

China’s proposed next-generation rocket reached the final stage of feasibility studies this month. The planned launch vehicle, known as the Long March-9, will be capable of sending 100 tons to the Moon, and could see its first launch as early as 2030.

Announced in 2018, the Long March-9 will play a key role in China’s long-term space ambitions. If all goes as planned, its first payload is likely to be a Martian sample return mission, and it would support China’s Lunar ambitions as well. Another proposed use for the super-heavy lift vehicle is to build an experimental space-based solar power station, although plans for that project are still very tentative.

Continue reading “China’s Super-Heavy Lift Rocket Will Carry 100 Tons to the Moon”

China’s New Reusable Spaceplane Lands After 2 Days in Space

On Friday, Sept. 4th, China launched a new and mysterious spacecraft from the Jiuquan Satellite Launch Center. The nature (and even appearance) of the spacecraft remains unknown, but according to statements made by Chinese authorities, it’s a reusable spaceplane. This vehicle is essentially China’s answer to the USAF/USSF X-37B Orbital Test Vehicle (OTV), which made its sixth launch to space (OTV-6) back in late-May.

Continue reading “China’s New Reusable Spaceplane Lands After 2 Days in Space”

China is Building a Floating Spaceport for Rocket Launches

In the near future, launch facilities located at sea are expected to be a lot more common. SpaceX announced that it is hoping to create offshore facilities in the near future for the sake of launching the Starship away from populated areas. And China, the latest member of the superpowers-in-space club, is currently building the “Eastern Aerospace Port” off the coast of Haiyang city in the eastern province of Shandong.

This mobile launch facility is being developed by the China Aerospace Science and Technology Corporation (CASC), the country’s largest aerospace and defense contractor. Once fully operational, it will be used to launch light vehicles, as well as for building and maintaining rockets, satellites, and related space applications. As China’s fifth launch facility, it will give the country’s space program a new degree of flexibility.

Continue reading “China is Building a Floating Spaceport for Rocket Launches”

China’s New Crew Capsule Just Landed, and so Did Parts of their New Rocket!

China’s next-generation crewed spacecraft, which will replace the venerable Shenzou spacecraft in the coming years, recently returned to Earth after spending almost three days in space. The purpose of this mission was to test the deep space capabilities of the spacecraft that will be sending Chinese astronauts (taikonauts) to orbit, to the Moon, and beyond in the coming years.

In addition, this mission also saw China’s new Long March 5B (CZ-5B) heavy-lift rocket launch a payload to space for the first time. This rocket is the latest installment in the Long March family and will be vital to the creation of the third and largest Chinese space station. These two milestones have brought China a step closer to becoming a full-fledged superpower in space.

Continue reading “China’s New Crew Capsule Just Landed, and so Did Parts of their New Rocket!”

The Impact Site of China’s Longjiang-2 Spacecraft has Been Found on the Moon

On May 20th, 2018, the China National Space Agency (CNSA) launched the Queqiao spacecraft, the vehicle that would deliver the Chang’e-4 mission to the Moon. This vehicle was also responsible for transporting a lesser-known mission to the Moon, known as the Longjiang twin spacecraft. This package consisted of two satellites designed to fly in formation and validate technologies for low-frequency radio astronomy.

While Queqiao flew beyond the Moon to act as a communications relay for the Chang’e-4 lander, the Longjiang satellites were to enter orbit around the moon. On July 31st, 2019, after more than a year in operation, the Longjiang-2 satellite deorbited crashed on the lunar surface. And thanks to efforts spacecraft tracker Daniel Estévez and his colleagues, the Lunar Reconnaissance Orbiter (LRO) was able to photograph the impact site.

Continue reading “The Impact Site of China’s Longjiang-2 Spacecraft has Been Found on the Moon”

China’s Tiangong 2 was Destroyed Last Week, Burning up in the Atmosphere Over the South Pacific Ocean

On Friday, July 19th, China’s Tiangong-2 (“Heavenly Palace”) space laboratory successfully entered Earth’s atmosphere under controlled conditions and burned up above the South Pacific Ocean. This marked the successful completion of all of Tiangong-2’s tasks, which constituted China’s second attempt at testing their capability to conduct research and human operations in Low Earth Orbit (LEO).

Continue reading “China’s Tiangong 2 was Destroyed Last Week, Burning up in the Atmosphere Over the South Pacific Ocean”

There’s Life on the Moon! China’s Lander Just Sprouted the First Plants

China's Chang'e-4 lander on the lunar surface. Image Credit: CNSA/CLEP

It’s official, for the first time ever, scientists have found a living organism on the Moon! Well, not so much found, we put it there. But the implications are immense nonetheless! According to photos and a statement released by the China National Space Administration this week (Mon. Jan. 14th), the Chang’e-4 mission’s Lunar Micro Ecosystem (LME) experiment has produced its first sprouted plant.

Continue reading “There’s Life on the Moon! China’s Lander Just Sprouted the First Plants”

Here’s How to Follow the De-Orbit of Tiangong-1, now Estimated to Happen Between March 30 and April 2

China’s Tiangong-1 space station has been the focus of a lot of international attention lately. In 2016, after four and half years in orbit, this prototype space station officially ended its mission. By September of 2017, the Agency acknowledged that the station’s orbit was decaying and that it would fall to Earth later in the year. Since then, estimates on when it will enter out atmosphere have been extended a few times.

According to satellite trackers, it was predicted that the station would fall to Earth in mid-March. But in a recent statement (which is no joke) the Chinese National Space Agency (CNSA) has indicated that Tiangong-1 will fall to Earth around April 1st – aka. April Fool’s Day. While the agency and others insists that it is very unlikely, there is a small chance that the re-entry could lead to some debris falling to Earth.

For the sake of ensuring public safety, the European Space Agency’s (ESA) Space Debris Office (SDO) has been providing regular updates on the station’s decay. According to the SDO, the reentry window is highly variable and spans from the morning of March 31st to the afternoon of April 1st (in UTC time). This works out to the evening of March 30th or March 31st for people living on the West Coast.

The possible re-entry region of the Tiangong-1 space station, indicated in green. Credit: ESA/SDO

As the ESA stated on their rocket science blog:

“Reentry will take place anywhere between 43ºN and 43ºS. Areas above or below these latitudes can be excluded. At no time will a precise time/location prediction from ESA be possible. This forecast was updated approximately weekly through to mid-March, and is now being updated every 1~2 days.”

In other words, if any debris does fall to the surface, it could happen anywhere from the Northern US, Southern Europe, Central Asia or China to the tip of Argentina/Chile, South Africa, or Australia. Basically, it could land just about anywhere on the planet. On the other hand, back in January, the US-based Aerospace Corporation released a comprehensive analysis on Tiangong-1s orbital decay.

Their analysis included a map (shown below) which illustrated the zones of highest risk. Whereas the blue areas (that make up one-third of the Earth’s surface) indicate zones of zero probability, the green area indicates a zone of lower probability. The yellow areas, meanwhile, indicates zones that have a higher probability, which extend a few degrees south of 42.7° N and north of 42.7° S latitude, respectively.

The Aerospace Corporations predicted reentry for Tiangong-1. Credit: aerospace.org

The Aerospace Corporation has also created a dashboard for tracking Tiangong-1 (which is refreshed every few minutes) and has come to similar conclusions about the station’s orbital decay. Their latest prediction is that the station will descend into our atmosphere on April 1st, at 04:35 UTC (March 30th 08:35 PST), with a margin of error of about 24 hours – in other words, between March 30th to April 2nd.

And they are hardly alone when it comes to monitoring Tiangong-1’s orbit and predicting its descent. The China Human Spaceflight Agency (CMSA) recently began providing daily updates on the orbital status of Tiangong-1. As they reported on March 28th: “Tiangong-1 stayed at an average altitude of about 202.3 km. The estimated reentry window is between 31 March and 2 April, Beijing time.”

The US Space Surveillance Network, which is responsible for tracking artificial objects in Earth’s orbit, has also been monitoring Tiangong-1 and providing daily updates. Based on their latest tracking data, they estimate that the station will enter our atmosphere no later than midnight on April 3rd.

Naturally, one cannot help but notice that these predictions vary and are subject to a margin of error. In addition, trackers cannot say with any accuracy where debris – if any – will land on the planet. As Max Fagin – an aerospace engineer and space camp alumni – explained in a recent Youtube video (posted below), all of this arises from two factors: the station’s flight path and the Earth’s atmosphere.

Basically, the station is still moving at a velocity of 7.8 km/sec (4.8 mi/s) horizontally while it is descending by about 3 cm/sec. In addition, the Earth’s atmosphere shrinks and expands throughout the day in response to the Sun’s heating, which results in changes in air resistance. This makes the process of knowing where the station’s will make its descent difficult to predict, not to mention where debris could fall.

However, as Fagin goes on to explain, once the station reaches an altitude of 150 km (93 mi) – i.e. within the Thermosphere – it will begin falling much faster. At that point, it be much easier to determine where debris (if any) will fall. However, as the ESA, CNSA, and other trackers have emphasized repeatedly, the odds of any debris making it to the surface is highly unlikely.

If any debris does survive re-entry, it is also statistically likely to fall into the ocean or in a remote area – far away from any population centers. But in all likelihood, the station will break up completely in our atmosphere and produce a beautiful streaking effect across the sky. So if you’re checking the updates regularly and are in a part of the world where it can be seen, be sure to get outside and see it!

Further Reading: GB Times

China is Working on a Rocket as Powerful as the Saturn V, Could Launch by 2030

In the past decade, China’s space program has advanced by leaps and bounds. In recent years, the Chinese National Space Agency (CNSA) has overseen the development of a modern rocket family (the Long March series), the deployment of a space station (Tiangong-1) and the development of the Chinese Lunar Exploration Program (CLEP) –  otherwise known as the Chang’e Program.

Looking to the future, China plans to create new classes of heavy rockets in order to conduct more ambitious missions. These include the Long March 9 rocket (aka. the Changzheng 9), a three-stage, super-heavy rocket that would allow for crewed missions to the Moon. According to a recent story from Aviation Weekly, China hopes to conduct an engine demonstration of this rocket, and could do so as early as later this year.

This demonstration is part of a research effort intended to create engines for the first stage of the Long March 9. According to statements made by the Academy of Aerospace Propulsion Technology (AAPT) – part of the China Aerospace and Technology Corporation (CASC) and the one’s responsible for developing the hardware – these engines would be capable of delivering 3,500 to 4,000 metric tons (3,858 to 4,409 US tons) of thrust.

Launch of the modified Saturn V rocket carrying the Skylab space station. Credit: NASA

AAPT also indicated that work on a second-stage and third-stage engine – which would be capable of generating about 200 metric tons (440,000 lbs) and 25 metric tons (55,000 lbs) thrust, respectively – is also in progress. All told, this is roughly six times the thrust that China’s heaviest rocket (the Long March 5) can generate and would make it comparable to the Saturn V – the Apollo-era rocket that took the NASA astronauts to the Moon.

For starters, the Saturn V‘s engines delivered roughly 3,400 metric tons of thrust, and the rocket was capable of delivering 140 metric tons (310,000 lbs) to Low Earth Orbit (LEO) and about 48 metric tons (107,100 lbs) to a Lunar Transfer Orbit (LTO). By comparison, the Long March 9 will reportedly have the ability to 140 metric tons to LEO and at least 50 metric tons (110,000 lbs) to LTO.

According to Li Hong, the head of the China Academy of Launch Vehicle Technology (the CASC unit responsible for overall development and production of most Chinese space launchers), a massive turbopump has also been built for the main engine. A pump of this size is necessary, since the engine will generate four time the thrust of the largest Chinese rocket engine to date – AAPT’s YF-100, which generates 120 metric tons (265,000 lbs) of thrust.

While the full specifications of the rocket are not yet available, the China News Service has indicated that the rocket will measure 10 meters (33 ft.) in diameter. According to statements made by both Li and Lui, the first-stage engine will burn kerosene and achieve a thrust of 480 metric tons (529 US tons) – comparable to the Saturn V F-1 engine’s 680 metric tons (750 US tons) of thrust – while the second and third stage engines will likely burn hydrogen fuel.

At their current rate of progress, an engine demonstration could be taking place later this year. As AAPT President Liu Zhirang stated in an interview with Science and Technology Daily (part of the state-owned China News Service):

“A complete prototype for the engine in the 500-metric-ton class can be built and assembled this year… Because of the great parameter changes that come with rises in thrust, the current test and verification equipment cannot satisfy requirements [of the Moon rocket propulsion program]. We cannot always do 1:1 scale tests. As a result, only simulations and scaled-down tests can be done for some technology and hardware. This increases the degree of difficulty for the program.”

If successful, the Long March 9 will join the ranks of super heavy-lift launch vehicles, such as the SpaceX Falcon Heavy, the KRK rocket (currently under development in Russia), and the Space Launch System being developed by NASA. These and other rockets are being built for the purpose of bringing astronauts to the Moon, Mars, and even beyond in the coming decades.

Beyond a possible demonstration of the Long March 9′s engine technology, the CNSA has many other ambitious plans for 2018. These include a planned 35 launches involving the Long March series, fourteen of which will be carried out by the Long March-3A and six by the Long March-3C rockets. Most of these missions will involve the deployment of Beidou satellites, but will also include the launch of the Chang’e-4 lunar probe later this year.

Old Glory
Buzz Aldrin salutes the first American flag erected on the Moon, July 21, 1969. Credit: NASA/Neil A. Armstrong

This year is also when China hopes to conduct mission using its newest rocket – the Long March 5 –  in preparation for China’s lunar probe and Mars probe missions. This year is also expected to see a lot of developments in the Long March 7 series, which is likely to become the main carrier when China begins construction of its new space station (Tiangong-2, which is scheduled for completion in 2022).

Between all of these developments, it is clear that the age of renewed space exploration is upon us. Whereas the Space Race was characterized by two superpowers competing for dominance and “getting their first”, the current one is defined by both competition and cooperation between multiple space agencies and lucrative partnerships between the public sector and private industry.

And while the specter of renewed competition by space powers has a tendency to make many people nervous (especially those who are concerned about military applications), it is a testament to how humanity is growing as a space-faring species. By the time 2050 rolls around, we may just see many flags being planted on the Moon and Mars, and not just Old Glory.

Further Reading: Aviation Week, Popular Mechanics, Chinese Academy of Sciences

Upcoming Chinese Lander Will Carry Insects and Plants to the Surface of the Moon

It would be no exaggeration to say that we live in an age of renewed space exploration. In particular, the Moon has become the focal point of increasing attention in recent years. In addition to President Trump’s recent directive to NASA to return to the Moon, many other space agencies and private aerospace companies are planning their own missions to the lunar surface.

A good example is the Chinese Lunar Exploration Program (CLEP), otherwise known as the Chang’e Program. Named in honor of the ancient Chinese lunar goddess, this program has sent two orbiters and one lander to the Moon already. And later this year, the Chang’e 4 mission will begin departing for the far side of the Moon, where it will study the local geology and test the effects of lunar gravity on insects and plants.

The mission will consist of a relay orbiter being launched aboard a Long March 5 rocket in June of 2018. This relay will assume orbit around the Earth-Moon L2 Lagrange Point, followed by the launch of the lander and rover about six months later. In addition to an advanced suite of instruments for studying the lunar surface, the lander will also be carrying an aluminum alloy container filled with seeds and insects.

The Chinese Yutu rover, part of the Chang’e 3 mission, on the Moon. Credit: CNSA

As Zhang Yuanxun – chief designer of the container – told the Chongqing Morning Post (according to China Daily):

“The container will send potatoes, arabidopsis seeds and silkworm eggs to the surface of the Moon. The eggs will hatch into silkworms, which can produce carbon dioxide, while the potatoes and seeds emit oxygen through photosynthesis. Together, they can establish a simple ecosystem on the Moon.”

The mission will also be the first time that a mission is sent to an unexplored region on the far side of the Moon. This region is none other than the South Pole-Aitken Basin, a vast impact region in the southern hemisphere. Measuring roughly 2,500 km (1,600 mi) in diameter and 13 kilometers (8.1 mi) deep, it is the single-largest impact basin on the Moon and one of the largest in the Solar System.

This basin is also source of great interest to scientists, and not just because of its size. In recent years, it has been discovered that the region also contains vast amounts of water ice. These are thought to be the results of impacts by meteors and asteroids which left water ice that survived because of how the region is permanently shadowed. Without direct sunlight, water ice in these craters has not been subject to sublimation and chemical dissociation.

Since the 1960s, several missions have explored this region from orbit, including the Apollo 15, 16 and 17 missions, the Lunar Reconnaissance Orbiter (LRO) and India’s Chandrayaan-1 orbiter. This last mission (which was mounted in 2008) also involved sending the Moon Impact Probe to the surface to trigger the release of material, which was then analyzed by the orbiter.

Elevation data of the Moon, highlighting the low-lying regions of the South Pole-Aitken Basin. Credit: NASA/GSFC/University of Arizona

The mission confirmed the presence of water ice in the Aitken Crater, a discovery which was confirmed about a year later by NASA’s LRO. Thanks to this discovery, there have been several in the space exploration community who have stated that the South Pole-Aitken Basin would be the ideal location for a lunar base. In this respect, the Chang’e 4 mission is investigating the very possibility of humans living and working on the Moon.

Aside from telling us more about the local terrain, it will also assess whether or not terrestrial organisms can grow and thrive in lunar gravity – which is about 16% that of Earths (or 0.1654 g). Previous studies conducted aboard the ISS have shown that long-term exposure to microgravity can have considerable health effects, but little is known about the long-term effects of lower gravity.

The European Space Agency has also been vocal about the possibility of building an International Lunar Village in the southern polar region by the 2030s. Intrinsic to this is the proposed Lunar Polar Sample Return mission, a joint effort between the ESA and Roscosmos that will involve sending a robotic probe to the Moon’s South Pole-Aitken Basin by 2020 to retrieve samples of ice.

In the past, NASA has also discussed ideas for building a lunar base in the southern polar region. Back in 2014, NASA scientists met with Harvard geneticist George Church, Peter Diamandis (creator of the X Prize Foundation) and other parties to discuss low-cost options. According to the papers that resulted from the meeting, this base would exist at one of the poles and would be modeled on the U.S. Antarctic Station at the South Pole.

Artist’s concept of a possible “International Lunar Village” on the Moon, assembled using inflated domes and 3D printing. Credits: ESA/Foster + Partners

If all goes well for the Chang’e 4 mission, China intends to follow it up with more robotic missions, and an attempted crewed mission in about 15 years. There has also been talk about including a radio telescope as part of the mission. This RF instrument would be deployed to the far side of the Moon where it would be undistributed by radio signals coming from Earth (which is a common headache when it comes to radio astronomy).

And depending on what the mission can tell us about the South Pole-Aitken Basin (i.e. whether the water ice is plentiful and the radiation tolerable), it is possible that space agencies will be sending more missions there in the coming years. Some of them might even be carrying robots and building materials!

Further Reading: Sputnik News, Planetary Society