Earth’s Gold Came From Colliding Stars

Collisions of neutron stars produce powerful gamma-ray bursts – and heavy elements like gold (Credit: Dana Berry, SkyWorks Digital, Inc.)

Are you wearing a gold ring? Or perhaps gold-plated earrings? Maybe you have some gold fillings in your teeth… for that matter, the human body itself naturally contains gold — 0.000014%, to be exact! But regardless of where and how much of the precious yellow metal you may have with you at this very moment, it all ultimately came from the same place.

And no, I don’t mean Fort Knox, the jewelry store, or even under the ground — all the gold on Earth likely originated from violent collisions between neutron stars, billions of years in the past.

Recent research by scientists at the Harvard-Smithsonian Center for Astrophysics (CfA) in Cambridge, Massachusetts has revealed that considerable amounts of gold — along with other heavy elements — are produced during impacts between neutron stars, the super-dense remains of stars originally 1.4 to 9 times the mass of our Sun.

The team’s investigation of a short-duration gamma-ray outburst that occurred in June (GRB 130603B) showed a surprising residual near-infrared glow, possibly from a cloud of material created during the stellar merger. This cloud is thought to contain a considerable amount of freshly-minted heavy elements, including gold.

“We estimate that the amount of gold produced and ejected during the merger of the two neutron stars may be as large as 10 moon masses – quite a lot of bling!” said lead author Edo Berger.

"With this remnant of a dead neutron star, I thee wed." (FreeDigitalPhotos.net/bigjom)
“With this remnant of a dead neutron star, I thee wed.” (FreeDigitalPhotos.net/bigjom)

The mass of the Moon is 7.347 x 1022 kg… about 1.2% the mass of Earth. The collision between these neutron stars then, 3.9 billion light-years away, produced 10 times that much gold based on the team’s estimates.

Quite a lot of bling, indeed.

Gamma-ray bursts come in two varieties – long and short – depending on the duration of the gamma-ray flash. GRB 130603B, detected by NASA’s Swift satellite on June 3rd, lasted for less than two-tenths of a second.

Although the gamma rays disappeared quickly, GRB 130603B also displayed a slowly fading glow dominated by infrared light. Its brightness and behavior didn’t match the typical “afterglow” created when a high-speed jet of particles slams into the surrounding environment.

Instead, the glow behaved like it came from exotic radioactive elements. The neutron-rich material ejected by colliding neutron stars can generate such elements, which then undergo radioactive decay, emitting a glow that’s dominated by infrared light – exactly what the team observed.

“We’ve been looking for a ‘smoking gun’ to link a short gamma-ray burst with a neutron star collision,” said Wen-fai Fong, a graduate student at CfA and a co-author of the paper. “The radioactive glow from GRB 130603B may be that smoking gun.”

The team calculates that about one-hundredth of a solar mass of material was ejected by the gamma-ray burst, some of which was gold. By combining the estimated gold produced by a single short GRB with the number of such explosions that have likely occurred over the entire age of the Universe, all the gold in the cosmos – and thus on Earth – may very well have come from such gamma-ray bursts.

Watch an animation of two colliding neutron stars along with the resulting GRB below (Credit: Dana Berry, SkyWorks Digital, Inc.):

How much gold is there on Earth, by the way? Since most of it lies deep inside Earth’s core and is thus unreachable, the total amount ever retrieved by humans over the course of history is surprisingly small: about 172,000 tonnes, or enough to make a cube 20.7 meters (68 feet) per side (based on the Thomson Reuters GFMS annual survey.) Some other estimates put this amount at slightly more or less, but the bottom line is that there really isn’t all that much gold available in Earth’s crust… which is partly what makes it (and other “precious” metals) so valuable.

And perhaps the knowledge that every single ounce of that gold was created by dead stars smashing together billions of years ago in some distant part of the Universe would add to that value.

“To paraphrase Carl Sagan, we are all star stuff, and our jewelry is colliding-star stuff,” Berger said.

The team’s findings were presented today in a press conference at the CfA in Cambridge. (See the paper here.)

Source: Harvard-Smithsonian CfA

Earthlike Exoplanets Are All Around Us

Artist's impression of a Jupiter-sized exoplanet orbiting an M-dwarf star

Artist’s impression of a rocky planet orbiting a red dwarf. Credit: David A. Aguilar (CfA)

We may literally be surrounded by potentially habitable exoplanets, according to new research by a team from the Harvard-Smithsonian Center for Astrophysics.

Using data gathered by NASA’s exoplanet-hunting Kepler spacecraft, the CfA researchers discovered that many red dwarf stars harbor planets, and some of those planets are rocky, Earth-sized worlds. Considering that red dwarfs, albeit optically dim, are the most abundant type of stars in our galaxy, this means that even a small percentage of them being host to Earthlike exoplanets puts the total number of potentially habitable worlds very high — and some of them could be right next door.

“We thought we would have to search vast distances to find an Earth-like planet,” said CfA astronomer and the paper’s lead author Courtney Dressing. “Now we realize another Earth is probably in our own backyard, waiting to be spotted.”

And our own backyard, in cosmic terms, could mean a mere 13 light-years away.

Our solar system is surrounded by red dwarfs. You can’t see them in the night sky because they are much too dim — less than a thousandth the brightness of the Sun. But they make up 75% of the stars in the local neighborhood, and based on the Kepler data the CfA team estimates that 6% of those red dwarfs likely have an Earth-sized planet in orbit around them.

And with at least 75 billion red dwarfs scattered across the galaxy… well, you do the math.*

“We now know the rate of occurrence of habitable planets around the most common stars in our galaxy,” said co-author David Charbonneau (CfA). “That rate implies that it will be significantly easier to search for life beyond the solar system than we previously thought.”

Red-Dwarfs

A visualization of the “unseen” red dwarfs in the night sky. Credit: D. Aguilar & C. Pulliam (CfA) See original here.

The conditions on a planet orbiting a red dwarf wouldn’t be exactly like Earth, of course. The planet would have to orbit rather closely to its star to be within its habitable zone, and would have to have a reasonably thick atmosphere to regulate heat and protect it from stellar outbursts. But one benefit to orbiting a red dwarf is that they have very long life spans — potentially longer than the current age of the Universe! So a habitable world around a red dwarf would literally have billions of years for life to evolve, thrive and develop on it.

“We might find an Earth that’s 10 billion years old,” Charbonneau said.

The team’s findings were presented today, Feb. 6, by Dressing during a press conference at the Harvard-Smithsonian Center for Astrophysics in Cambridge, MA. The results will be published in The Astrophysical Journal. (Added 2/7/13: here’s the video of the press conference.)

press_conference_d+c2013.pptxCfA astronomers identified 95 planetary candidates circling red dwarf stars. Of those, three orbit within the habitable zone (marked in green) – the distance at which they should be warm enough to host liquid water on the surface. Those three planetary candidates (marked with blue dots) are 0.9, 1.4, and 1.7 times the size of Earth. Credit: C. Dressing (CfA)

Read more on the CfA news release here.

*Ok, I did the math. That’s 4,500,000,000 Earth-like exoplanets around red dwarfs alone!

Shedding Some Light on a Dark Discovery

Artist's rendering of TrES-2b, an extremely dark gas giant. Credit: David Aguilar (CfA)

[/caption]

Earlier this month astronomers released news of the darkest exoplanet ever seen: discovered in 2006, the gas giant TrES-2b reflects less than 1% of the visible light from its parent star… it’s literally darker than coal! Universe Today posted an article about this intriguing announcement on August 11, and now Dr. David Kipping of the Harvard-Smithsonian Center for Astrophysics is featuring a podcast on 365 Days of Astronomy in which he gives more detail about the dark nature of this discovery.

Listen to the podcast here.

The 365 Days of Astronomy Podcast is a project that will publish one podcast per day, for all 365 days of 2011. The podcast episodes are written, recorded and produced by people around the world.

“TrES-2b is similar in mass and radius to Jupiter but Jupiter reflects some 50% of the incident light. TrES-2b has a reflectivity less than that of any other planet or moon in the Solar System or beyond. The reflectivity is significantly less than even black acrylic paint, which makes the mind boggle as to what a clump of this planet would look like in your hand. Perhaps an appropriate nickname for the world would be Erebus, the Greek God of Darkness and Shadow. But what really is causing this planet to be so dark?”

– Dr. David Kipping

David Kipping obtained a PhD in Astrophysics from University College London earlier this year. His thesis was entitled ‘The Transits of Extrasolar Planets with Moons’ and David’s main research interest revolves around exomoons. He is just starting a Carl Sagan Fellowship at the Harvard-Smithsonian Center for Astrophysics.

The paper on which the the podcast is based can be found here.

_________________________

Jason Major is a graphic designer, photo enthusiast and space blogger. Visit his website Lights in the Dark and follow him on Twitter @JPMajor and on Facebook for more astronomy news and images!