Even Though Red Dwarfs Have Long Lasting Habitable Zones, They’d be Brutal to Life

Artist's concept of the TRAPPIST-1 star system, an ultra-cool dwarf that has seven Earth-size planets orbiting it. We're going to keep finding more and more solar systemsl like this, but we need observatories like WFIRST, with starshades, to understand the planets better. Credits: NASA/JPL-Caltech

Ever since scientists confirmed the existence of seven terrestrial planets orbiting TRAPPIST-1, this system has been a focal point of interest for astronomers. Given its proximity to Earth (just 39.5 light-years light-years away), and the fact that three of its planets orbit within the star’s “Goldilocks Zone“, this system has been an ideal location for learning more about the potential habitability of red dwarf stars systems.

This is especially important since the majority of stars in our galaxy are red dwarfs (aka. M-type dwarf stars). Unfortunately, not all of the research has been reassuring. For example, two recent studies performed by two separate teams from Harvard-Smithsonian Center for Astrophysics (CfA) indicate that the odds finding life in this system are less likely than generally thought.

The first study, titled “Physical Constraints on the Likelihood of Life on Exoplanets“, sought to address how radiation and stellar wind would affect any planets located within TRAPPIST-1s habitable zone. Towards this end, the study’s authors – Professors Manasvi Lingam and Avi Loeb – constructed a model that considered how certain factors would affect conditions on the surface of these planets.

This artist’s concept shows what each of the TRAPPIST-1 planets may look like, based on available data about their sizes, masses and orbital distances. Credits: NASA/JPL-Caltech

This model took into account how the planets distance from their star would affect surface temperatures and atmospheric loss, and how this might affect the changes life would have to emerge over time. As Dr. Loeb told Universe Today via email:

“We considered the erosion of the atmosphere of the planets due to the stellar wind and the role of temperature on ecological and evolutionary processes. The habitable zone around the faint dwarf star TRAPPIST-1 is several tens of times closer in than for the Sun, hence the pressure of the stellar wind is several orders of magnitude higher than on Earth. Since life as we know it requires liquid water and liquid water requires an atmosphere, it is less likely that life exists around TRAPPIST-1 than in the solar system.”

Essentially, Dr. Lingam and Dr, Loeb found that planets in the TRAPPIST-1 system would be barraged by UV radiation with an intensity far greater than that experienced by Earth. This is a well-known hazard when it comes to red dwarf stars, which are variable and unstable when compared to our own Sun. They concluded that compared to Earth, the chances of complex life existing on planets within TRAPPIST-1’s habitable zone were less than 1%.

“We showed that Earth-sized exoplanets in the habitable zone around M-dwarfs display much lower prospects of being habitable relative to Earth, owing to the higher incident ultraviolet fluxes and closer distances to the host star,” said Loeb. “This applies to the recently discovered exoplanets in the vicinity of the Sun, Proxima b (the nearest star four light years away) and TRAPPIST-1 (ten times farther), which we find to be several orders of magnitude smaller than that of Earth.”

Three of the TRAPPIST-1 planets – TRAPPIST-1e, f and g – dwell in their star’s so-called “habitable zone. CreditL NASA/JPL

The second study – “The Threatening Environment of the TRAPPIST-1 Planets“, which was recently published in The Astrophysical Journal Letters – was produced by a team from the CfA and the Lowell Center for Space Science and Technology at the University of Massachusetts. Led by Dr. Cecilia Garraffo of the CfA, the team considered another potential threat to life in this system.

Essentially, the team found that TRAPPIST-1, like our Sun, sends streams of charged particles outwards into space – i.e. stellar wind. Within the Solar System, this wind exerts force on the planets and can have the effect of stripping away their atmospheres. Whereas Earth’s atmosphere is protected by its magnetic field, planets like Mars are not – hence why it lost the majority of its atmosphere to space over the course of hundreds of million of years.

As the research team found, when it comes to TRAPPIST-1, this stream exerts a force on its planets that is between 1,000 to 100,000 times greater than what Earth experiences from solar wind. Furthermore, they argue that TRAPPIST-1’s magnetic field is likely connected to the magnetic fields of the planets that orbit around it, which would allow particles from the star to directly flow onto the planet’s atmosphere.

Illustration showing the possible surface of TRAPPIST-1f, one of the newly discovered planets in the TRAPPIST-1 system. Credits: NASA/JPL-Caltech
Illustration showing the possible surface of TRAPPIST-1f, one of the newly discovered planets in the TRAPPIST-1 system. Credits: NASA/JPL-Caltech

In other words, if TRAPPIST-1’s planets do have magnetic fields, they will not afford them any protection. So if the flow of charged particles is strong enough, it could strip these planets’ atmospheres away, thus rendering them uninhabitable. As Garraffo put it:

“The Earth’s magnetic field acts like a shield against the potentially damaging effects of the solar wind. If Earth were much closer to the Sun and subjected to the onslaught of particles like the TRAPPIST-1 star delivers, our planetary shield would fail pretty quickly.”

As you can imagine, this is not exactly good news for those who were hoping that the TRAPPIST-1 system would hold the first evidence of life beyond our Solar System. Between the fact that its planets orbit a star that emits varying degrees of intense radiation, and the proximity its seven planets have to the star itself, the odds of life emerging on any planet within it’s “habitable zone” are not significant.

The findings of the second study are particularly significant in light of other recent studies. In the past, Prof. Loeb and a team from the University of Chicago have both addressed the possibility that the TRAPPIST-1 system’s seven planets – which are relatively close together – are well-suited to lithopanspermia. In short, they determined that given their close proximity to each other, bacteria could be transferred from one planet to the next via asteroids.

An artist’s depiction of planets transiting a red dwarf star in the TRAPPIST-1 System. Credit: NASA/ESA/STScl

But if the proximity of these planets also means that they are unlikely to retain their atmospheres in the face of stellar wind, the likelihood of lithopanspermia may be a moot point. However, before anyone gets to thinking that this is bad news as far as the hunt for life goes, it is important to note that this study does not rule out the possibility of life emerging in all red dwarf star systems.

As Dr. Jeremy Drake – a senior astrophysicist from the CfA and one of Garraffo’s co-authors – indicated, the results of their study simply mean that we need to cast a wide net when searching for life in the Universe.  “We’re definitely not saying people should give up searching for life around red dwarf stars,” he said. “But our work and the work of our colleagues shows we should also target as many stars as possible that are more like the Sun.”

And as Dr. Loeb himself has indicated in the past, red dwarf stars are still the most statistically-likely place to find habitable worlds:

“By surveying the habitability of the Universe throughout cosmic history from the birth of the first stars 30 million years after the Big Bang to the death of the last stars in 10 trillion years, one reaches the conclusion that unless habitability around low-mass stars is suppressed, life is most likely to exist near red dwarf stars like Proxima Centauri or TRAPPIST-1 trillions of years from now.”

If there is one takeaway from these studies, it is that the existence of life within a star system does not simply require planets orbiting within the circumstellar habitable zones. The nature of the stars themselves and the role played by solar wind and magnetic fields also have to be taken into account, since they can mean the difference between a life-bearing planet and a sterile ball of rock!

Further Reading: CfA, International Journal of Astrobiology, The Astrophysical Journal Letters.

The Sun Probably Lost a Binary Twin Billions of Years Ago

For us Earthlings, life under a single Sun is just the way it is. But with the development of modern astronomy, we’ve become aware of the fact that the Universe is filled with binary and even triple star systems. Hence, if life does exist on planets beyond our Solar System, much of it could be accustomed to growing up under two or even three suns. For centuries, astronomers have wondered why this difference exists and how star systems came to be.

Whereas some astronomers argue that individual stars formed and acquired companions over time, others have suggested that systems began with multiple stars and lost their companions over time. According to a new study by a team from UC Berkeley and the Harvard-Smithsonian Center for Astrophysics (CfA), it appears that the Solar System (and other Sun-like stars) may have started out as binary system billions of years ago.

This study, titled “Embedded Binaries and Their Dense Cores“, was recently accepted for publication in the Monthly Notices of the Royal Astronomical Society. In it, Sarah I. Sadavoy – a radio astronomer from the Max Planck Institute for Astronomy and the CfA – and Steven W. Stahler (a theoretical physicist from UC Berkeley) explain how a radio surveys of a star nursery led them to conclude that most Sun-like stars began as binaries.

The dark molecular cloud, Barnard 68, is a stellar nursery that can only be studied using radio astronomy. Credit: FORS Team, 8.2-meter VLT Antu, ESO

They began by examining the results of the first radio survey of the giant molecular cloud located about 600 light-years from Earth in the Perseus constellation – aka. the Perseus Molecular Cloud. This survey, known as the VLA/ALMA Nascent Disk and Multiplicity (VANDAM) survey, relied the Very Large Array in New Mexico and the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile to conduct the first survey of the young stars (<4 million years old) in this star-forming region.

For several decades, astronomers have known that stars are born inside “stellar nurseries”, which are the dense cores that exist within immense clouds of dust and cold, molecular hydrogen. These clouds look like holes in the star field when viewed through an optical telescope, thanks to all the dust grains that obscure light coming from the stars forming within them and from background stars.

Radio surveys are the only way to probe these star-forming regions, since the dust grains emit radio transmissions and also do not block them. For years, Stahler has been attempting to get radio astronomers to examine molecular clouds in the hope of gathering information on the formation of young stars inside them. To this end, he approached Sarah Sadavoy – a member of the VANDAM team – and proposed a collaboration.

The two began their work together by conducting new observations of both single and binary stars within the dense core regions of the Perseus cloud. As Sadavoy explained in a Berkeley News press release, the duo were looking for clues as to whether young stars formed as individuals or in pairs:

“The idea that many stars form with a companion has been suggested before, but the question is: how many? Based on our simple model, we say that nearly all stars form with a companion. The Perseus cloud is generally considered a typical low-mass star-forming region, but our model needs to be checked in other clouds.”

Infrared image from the Hubble Space Telescope, showing a bright, fan-shaped object (lower right quadrant) thought to be a binary star that emits light pulses as the two stars interact. Credit: NASA/ESA/ J. Muzerolle (STScI)

Their observations of the Perseus cloud revealed a series of Class 0 and Class I stars – those that are <500,000 old and 500,000 to 1 million years old, respectively – that were surrounded by egg-shaped cocoons. These observations were then combined with the results from VANDAM and other surveys of star forming regions – including the Gould Belt Survey and data gathered by SCUBA-2 instrument on the James Clerk Maxwell Telescope in Hawaii.

From this, they created a census of stars within the Perseus cloud, which included 55 young stars in 24 multiple-star systems (all but five of them binary) and 45 single-star systems. What they observed was that all of the widely separated binary systems – separated by more than 500 AU – were very young systems containing two Class 0 stars  that tended to be aligned with the long axis of their egg-shaped dense cores.

Meanwhile, the slightly older Class I binary stars were closer together (separated by about 200 AU) and did not have the same tendency as far as their alignment was concerned. From this, the study’s authors began mathematically modelling multiple scenarios to explain this distribution, and concluded that all stars with masses comparable to our Sun start off as wide Class 0 binaries. They further concluded that 60% of these split up over time while the rest shrink to form tight binaries.

“As the egg contracts, the densest part of the egg will be toward the middle, and that forms two concentrations of density along the middle axis,” said Stahler. “These centers of higher density at some point collapse in on themselves because of their self-gravity to form Class 0 stars. “Within our picture, single low-mass, sunlike stars are not primordial. They are the result of the breakup of binaries. ”

The two brightest stars of the Centaurus constellation, the binary star system of Alpha Centauri. Credit: Wikipedia Commons/Skatebiker

Findings of this nature have never before been seen or tested. They also imply that each dense core within a stellar nursery (i.e. the egg-shaped cocoons, which typically comprise a few solar masses) converts twice as much material into stars as was previously thought. As Stahler remarked:

“The key here is that no one looked before in a systematic way at the relation of real young stars to the clouds that spawn them. Our work is a step forward in understanding both how binaries form and also the role that binaries play in early stellar evolution. We now believe that most stars, which are quite similar to our own sun, form as binaries. I think we have the strongest evidence to date for such an assertion.”

This new data could also be the start of a new trend, where astronomers rely on radio telescopes to examine dense star-forming regions with the hopes of witnessing more in the way of stellar formations. With the recent upgrades to the VLA and the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile, and the ongoing data provided by the SCUBA-2 survey in Hawaii, these studies may be coming sooner other than later.

Another interesting implication of the study has to do with something known as the “Nemesis hypothesis”. In the past, astronomers have conjectured that a companion star named “Nemesis” existed within our Solar System. This star was so-named because the theory held that it was responsible for kicking the asteroid which caused the extinction of the dinosaurs into Earth’s orbit. Alas, all attempts to find Nemesis ended in failure.

Artist’s impression of the binary star system of Sirius, a white dwarf star in orbit around Sirius (a white supergiant). Credit: NASA, ESA and G. Bacon (STScI)

As Steven Stahler indicated, these findings could be interpreted as a new take on the Nemesis theory:

“We are saying, yes, there probably was a Nemesis, a long time ago. We ran a series of statistical models to see if we could account for the relative populations of young single stars and binaries of all separations in the Perseus molecular cloud, and the only model that could reproduce the data was one in which all stars form initially as wide binaries. These systems then either shrink or break apart within a million years.”

So while their results do not point towards a star being around for the extinction of the dinosaurs, it is possible (and even highly plausible) that billions of years ago, the Solar planets orbited around two stars. One can only imagine what implications this could have for the early history of the Solar System and how it might have affected planetary formation. But that will be the subject of future studies, no doubt!

Further Reading: Berkeley News, arXiv

Solar Probe Plus Will ‘Touch’ The Sun

Coronal Mass Ejections (aka. solar flares) are a seriously hazardous thing. Whenever the Sun emits a burst of these charged particles, it can play havoc with electrical systems, aircraft and satellites here on Earth. Worse yet is the harm it can inflict on astronauts stationed aboard the ISS, who do not have the protection of Earth’s atmosphere. As such, it is obvious why scientists want to be able to predict these events better.

For this reason, the Smithsonian Astrophysical Observatory and the Charles Stark Draper Laboratory – a Cambridge, Massachusetts-based non-profit engineering organization – are working to develop specialized sensors for NASA’s proposed solar spacecraft. Launching in 2018, this spacecraft will fly into the Sun atmosphere and “touch” the face of the Sun to learn more about its behavior.

This spacecraft – known as the Solar Probe Plus (SPP) – is currently being designed and built by the Johns Hopkins University Applied Physics Laboratory. Once it is launched, the SPP will use seven Venus flybys over nearly seven years to gradually shrink its orbit around the Sun. During this time, it will conduct 24 flybys of the Sun and pass into the Sun’s upper atmosphere (corona), passing within 6.4 million km (4 million mi) of its surface.

At this distance, it will have traveled 37.6 million km (23.36 million mi) closer to the Sun than any spacecraft in history. At the same time, it will set a new record for the fastest moving object ever built by human beings – traveling at speeds of up to 200 km/sec (124.27 mi/s). And last but not least, it will be exposed to heat and radiation that no spacecraft has ever faced, which will include temperatures in excess of 1371 °C (2500 °F).

As Seamus Tuohy, the Director of the Space Systems Program Office at Draper, said in a CfA press release:

“Such a mission would require a spacecraft and instrumentation capable of withstanding extremes of radiation, high velocity travel and the harsh solar condition—and that is the kind of program deeply familiar to Draper and the Smithsonian Astrophysical Observatory.”

In addition to being an historic first, this probe will provide new data on solar activity and help scientists develop ways of forecasting major space-weather events – which impact life on Earth. This is especially important in an age when people are increasingly reliant on technology that can be negatively impacted by solar flares – ranging from aircraft and satellites to appliances and electrical devices.

According to a recent study by the National Academy of Sciences, it is estimated that a huge solar event today could cause two trillion dollars in damage in the US alone – and places like the eastern seaboard would be without power for up to a year. Without electricity to provide heating, utilities, light, and air-conditioning, the death toll from such an event would be significant.

As such, developing advanced warning systems that could reliably predict when a coronal mass ejection is coming is not just a matter of preventing damage, but saving lives. As Justin C. Kasper, the principal investigator at the Smithsonian Astrophysical Observatory and a professor in space science at the University of Michigan, said:

“[I]n addition to answering fundamental science questions, the intent is to better understand the risks space weather poses to the modern communication, aviation and energy systems we all rely on. Many of the systems we in the modern world rely on—our telecommunications, GPS, satellites and power grids—could be disrupted for an extended period of time if a large solar storm were to happen today. Solar Probe Plus will help us predict and manage the impact of space weather on society.”

To this end, the SPP has three major scientific objectives. First, it will seek to trace the flow of energy that heats and accelerates the solar corona and solar wind. Second, its investigators will attempt to determine the structure and dynamics of plasma and magnetic fields as the source of solar wind. And last, it will explore the mechanisms that accelerate and transport energetic particles – specifically electrons, protons, and helium ions.

To do this, the SPP will be equipped with an advanced suite of instruments. One of the most important of these is the one built by the Smithsonian Astrophysical Observatory with technical support from Draper. Known as the Faraday Cup – and named after famous electromagnetic scientists Michael Faraday – this device will be operated by SAO and the University of Michigan in Ann Arbor.

Designed to withstand interference from electromagnetic radiation, the Farady Cup will measure the velocity and direction of the Sun’s charged particles, and will be only two positioned outside of the SPP’s protective sun shield – another crucial component. Measuring 11.43 cm (4.5 inches) thick, this carbon composition shield will ensure that the probe can withstand the extreme conditions as it conducts its many flybys through the Sun’s corona.

Naturally, the mission presents several challenges, not the least of which will be capturing data while operating within an extreme environment, and while traveling at extreme speeds. But the payoff is sure to be worth it. For years, astronomers have studied the Sun, but never from inside the Sun’s atmosphere.

By flying through the birthplace of the highest-energy solar particles, the SPP is set to advance our understanding of the Sun and the origin and evolution of the solar wind. This knowledge could not only help us avoid a natural catastrophe here on Earth, but help advance our long-term goal of exploring (and even colonizing) the Solar System.

Further Reading: CfA

Stars at the Edge of our Galaxy May Have Been Stolen

Our Milky Way is a pretty vast and highly-populated space. All told, its stars number between 100 and 400 billion, with some estimates saying that it may have as many as 1 trillion. But just where did all these stars come from? Well, as it turns out, in addition to forming many of its own and merging with other galaxies, the Milky Way may have stolen some of its stars from other galaxies.

Such is the argument made by two astronomers from Harvard-Smithsonian Center for Astrophysics. According to their study, which has been accepted for publication in the The Astrophysical Journal, they claim that roughly half of the stars that orbit at the extreme outer edge of the Milky Way were actually stolen from the nearby Sagittarius dwarf galaxy.

At one time, the Sagittarius Dwarf Elliptical Galaxy was thought to be the closest galaxy to our own (a position now held by the Canis Major dwarf galaxy). As one of several dozen dwarf galaxies that surround the Milky Way, it has orbited our galaxy several times in the past. With each passing orbit, it becomes subject to our galaxy’s strong gravity, which has the effect of pulling it apart.

A model of the tidally shredded Sagittarius dwarf galaxy wrapping around a 3-D representation of the Milky Way disk. Credit: UCLA/D.R. Law

The long-term effects of this can be seen by looking to the farthest stars in our galaxy, which consist of the eleven stars that are at a distance of about 300,000 light-years from Earth (well beyond the Milky Way’s spiral disk). According the study produced by Marion Dierickx, a graduate student at Harvard University’s Department of Astronomy, half of these stars were taken from the Sagittarius dwarf galaxy in the past.

Professor Avi Loeb, the Frank B. Baird, Jr. Professor of Science at Harvard and Marion Dierickx PhD advisor, co-authored the study – titled, “Predicted Extension of the Sagittarius Stream to the Milky Way Virial Radius“. As he told Universe Today via email:

“We see evidence for streams of stars connected to the core of the galaxy, and indicating that this dwarf galaxy passed multiple times around the Milky Way center and was ripped apart by the tidal gravitational field of the Milky Way. We are all familiar with the tide in the ocean caused by the gravitational pull of the moon, but if the moon was a much more massive object – it would have pulled the oceans apart from the Earth and we would see a stream of vapor stretched away from the Earth.”

For the sake of their study, Dierickx and Loeb ran computer models to simulate the movements of the Sagittarius dwarf over the past 8 billion years. These simulations reproduced the streams of stars stretching away from the Sagittarius dwarf galaxy to the center of our galaxy. They also varied Sagittarius’ velocity and angle of approach to see if the resulting exchanges would match current observations.

Computer-generated image showing the disc of the Milky Way (red oval) and the Sagittarius dwarf galaxy (red dot). The yellow circles represent stars that have been ripped from the Sagittarius dwarf and flung far across space. Credit: Marion Dierickx / CfA

“We attempted to match the distance and velocity data for the core of the Sagitarrius galaxy, and then compared the resulting prediction for the position and velocity of the streams of stars,” said Loeb. “The results were very encouraging for some particular set of initial conditions regarding the start of the Sagittarius galaxy journey when the universe was roughly half its present age.”

What they found was that over time, the Sagittarius dwarf lost about one-third of its stars and nine-tenths of its dark matter to the Milky Way. The end result of this was the creation of three distinct streams of stars that reach one million light-years from galactic center to the very edge of the Milky Way’s halo. Interestingly enough, one of these streams has been predicted by simulations conducted by projects like the Sloan Digital Survey.

The simulations also showed that five of Sagittarius’ stars would end becoming part of the Milky Way. What’s more,  the positions and velocities of these stars coincided with five of the most distant stars in our galaxy. The other six do not appear to be from Sagittarius dwarf, and may be the result of gravitational interactions with another dwarf galaxy in the past.

“The dynamics of stars in the extended arms we predict (which is the largest Galactic structure on the sky ever predicted) can be used to measure the mass and structure of the Milky Way,” said Loeb. “The outer envelope of the Milky Way was never probed directly, because no other stream was known to extend that far.”

Computer model of the Milky Way, the Sagittarius dwarf galaxy, and the looping stream of material between the two. Credit: Tollerud, Purcell and Bullock/UC Irvine

Given the way the simulations match up with current observations, Dierickx is confident that more Sagittarius dwarf interlopers are out there, just waiting to be found. For instance, future instruments – like the Large Synoptic Survey Telescope (LSST), which is expected to begin full-survey operations by 2022 – may be able to detect the two remaining streams of stars which were predicted by the survey.

Given the time scales and the distances involved, it is rather difficult to probe our galaxy (and by extension, the Universe) to see exactly how it evolved over time. Pairing observational data with computer models, however, has been proven to test our best theories of how things came to be. In the future, thanks to improved instruments and more detailed surveys, we just might know for certain!

And sure to check out this animation of the computer simulation, which shows the effects on the Milky Way’s gravity on the Sagittarius dwarf galaxy’s stars and dark matter.

Further Reading: CfA

Turns out Proxima Centauri is Strikingly Similar to our Sun

In August of 2016, the European Southern Observatory announced that the nearest star to our own – Proxima Centauri – had an exoplanet. Since that time, considerable attention has been focused on this world (Proxima b) in the hopes of determining just how “Earth-like” it really is. Despite all indications of it being terrestrial and similar in mass to Earth, there are some lingering doubts about its ability to support life.

This is largely due to the fact that Proxima b orbits a red dwarf. Typically, these low mass, low temperature, slow fusion stars are not known for being as bright and warm as our Sun. However, a new study produced by researchers at the Harvard Smithsonian Center for Astrophysics (CfA) has indicated that Proxima Centauri might be more like our star than we thought.

For instance, our Sun has what is known as a “Solar Cycle“, an 11-year period in which it experiences changes in the levels of radiation it emits. This cycle is driven by changes in the Sun’s own magnetic field, and corresponds to the appearance of Sunspots on its surface. During a “solar minimum”, the Sun’s surface is clear of spots, while at a solar maximum, one hundred sunspots can appear on an area the size of 1% the Sun’s surface area.

This image is a composite of 25 separate images spanning the period of April 16, 2012, to April 15, 2013. It uses the SDO AIA wavelength of 171 angstroms and reveals the zones on the sun where active regions are most common during this part of the solar cycle. Credit: NASA/SDO/AIA/S. Wiessinger
Composite of 25 separate images spanning the period of April 16, 2012, to April 15, 2013, revealing active regions during this part of the Solar Cycle. Credit: NASA/SDO/AIA/S. Wiessinger

For the sake of their research, the Harvard Smithsonian team examined Proxima Centauri over the course of several years to see if it too had a cycle. As they explain in their research paper, titled “Optical, UV, and X-Ray Evidence for a 7-Year Stellar Cycle in Proxima Centauri” they relied on several years worth optical, UV, and X-ray observations made of the star.

This included 15 years of visual data and 3 years of infrared data from the All Sky Automated Survey (ASAS), 4 years of x-ray and UV data from the Swift x-ray telescope (XRT), and 22 years worth of x-ray observations taken by the Advanced Satellite for Cosmology and Astrophysics (ASCA), the XXM-Newton mission and the Chandra X-ray Observatory.

What they found was that Proxima Centauri does indeed have a cycle that involves changes in its minimum and maximum amount of emitting radiation, which corresponds to “starspots” on its surface. As Dr. Wargelin told Universe Today via email:

“The optical/ASAS data showed a nice 7-year cycle, as well as an 83-day rotation period. When we broke down that data by year we saw the period vary from around 77 to 90 days. We interpret that as ‘differential rotation’ like that found on the Sun. The rotation rate differs at different latitudes; on the Sun it’s around 35 days at the poles and 24.5 at the equator. The “average” rotation is usually given as 27.3 days.”

In essence, Proxima Centauri has its own cycle, but one that is a lot more dramatic than our Sun’s. Besides lasting 7 years from peak to peak, it involves spots covering over 20% of its surface at one time. These spots are apparently much bigger than the ones we regularly observe on our Sun as well.

X-Ray image of Proxima Centauri. Image credit: Chandra
An X-Ray image of Proxima Centauri. Credit: Chandra/Harvard/NASA

This was surprising, given that Proxima’s interior is very different from our Sun’s. Because of its low mass, the interior of Proxima Centauri is convective, where material in the core is transferred outward. In contrast, only the outer layer of our Sun undergoes convection while the core remains relatively still. This means that, unlike our Sun, energy is transferred to the surface through physical movement, and not radiative processes.

While these findings cannot tell us anything directly about whether or not Proxima b might be habitable, the existence of this solar cycle is an interesting find that might be leading in that general direction. As Dr. Wargelin explained:

“Magnetic fields are what drive high energy emission (UV and X rays) and stellar winds (like the solar wind) in solar-type and smaller stars, AND a stellar cycle (if it has one). That X-ray/UV emission and stellar wind can ionize/evaporate/strip the atmosphere of close-in planets, particularly if the planet doesn’t have a protective magnetic field of its own.

“Therefore….. a necessary but not sufficient requirement for understanding (i.e., modeling) the evolution of a planet’s atmosphere is understanding the magnetic field of the host star.  If you don’t understand why a star has a cycle (and standard theory says fully convective stars like Proxima can NOT have cycles) then you don’t understand its magnetic field.”

As always, further observations and research will be necessary before we can fully understand Proxima Centauri, and whether or not any planets that orbit it could support life. But then again, we’ve only known about Proxima b for a short time, and the rate at which we are learning new things about it is quite impressive!

Further Reading: CfA, arXiv

Venus-like Exoplanet 39 Light Years Distant Is Probably Baked & Sterile

Last year, astronomers discovered a terrestrial exoplanet orbiting GJ 1132, a red dwarf star located just 12 parsecs (39 light years) away from Earth. Though too close to its parent star to be anything other than extremely hot, astronomers were intrigued to note that it appeared to still be cool enough to have an atmosphere. This was quite exciting, as it represented numerous opportunities for research.

In essence, the planet appeared to be “Venus-like” – i.e. very hot, but still in possession of an atmosphere. What’s more, it was close enough to our Solar System that its atmosphere could be studied in detail. However, a debate began over whether its atmosphere would be hot and wet, or thin and tenuous. And after a year of study, a team of astronomers from the CfA believe they have unlocked that mystery.

In addition to being relatively close to our own Solar System in astronomical terms, the Venus-like exoplanet GJ 1132b also has a relatively small orbital period around its star. This means that opportunities to spot it as it passes in front of its star (i.e. the Transit Method), occur quite often.

Artist's concept of exoplanets orbiting a young, red dwarf star. Credit: NASA/JPL-Caltec
Artist’s concept of exoplanets orbiting a young, red dwarf star. Credit: NASA/JPL-Caltech

This makes it an excellent target for detailed observation and study, which in turn will help astronomers to learn more about terrestrial exoplanets that orbit close to red dwarf stars. But as noted already, astronomers were divided on the issue of GJ 1132b’s atmosphere.

Thanks to the research efforts of Laura Schaefer and her colleagues from the Harvard-Smithsonian Center for Astrophysics (CfA), it now appears that the case for a thin atmosphere is the far more likely. Interestingly enough, this was confirmed by determining just how much oxygen the planet has in its atmosphere.

For the sake of their study, which was outlined in a paper that approved for publication in The Astrophysical Journal – titled “Predictions of the atmospheric composition of GJ 1132b” – they explain how they used a “magma ocean-atmosphere” model to determine what would happen to GJ 1132b over time if it began with a water-rich atmosphere.

They began with the knowledge that a planet like GJ 1132b – which orbits its star at a distance of 2.25 million km (1.4 million mi) – would be subjected to intense amounts of ultraviolet light. This would result in any water vapor in the atmosphere being broken down into hydrogen and oxygen (a process known as photolysis), with the hydrogen escaping into space and the oxygen being retained.

Comparison of best-fit size of the exoplanet GJ 1132 b with the Solar System planet Earth, as reported in the Open Exoplanet Catalogue[1] as of 2015-11-14. Open Exoplanet Catalogue (2015-11-14). Retrieved on 2015-11-14. Aldaron, a.k.a. Aldaro
Size comparison of the exoplanet GJ 1132 b with Earth, as reported in the Open Exoplanet Catalogue as of 2015-11-14. Credit: Open Exoplanet Catalogue/Aldaron
At the same time, they determined that the planet’s atmosphere and proximity to its star would lead to a severe greenhouse effect that would leave the surface molten for a long time. This “magma ocean” would likely interact with the atmosphere by absorbing some of the oxygen. How much would be absorbed and how much would be retained was the big question.

They concluded that the planet’s magma ocean would absorb about one-tenth of the oxygen in the atmosphere. The majority of the remaining 90 percent, according to their model, would be lost to space while a small margin would linger around the planet. This proved to be very much consistent with measurements made of the planet thus far.

As Dr. Laura Schaefer explained to Universe Today via email:

“We determined that the planet would likely have a thin atmosphere by doing a suite of models looking at atmospheric loss and interaction with a surface magma ocean. For the allowable composition range (esp. the abundance of water) based on the current mass measurement, nearly all of the allowed compositions resulted in thin atmospheres, except at the very extreme upper end of the range.”

This magma ocean-atmosphere model could not only help scientists to study terrestrial exoplanets that orbit close to their parent stars, but also to understand how our own planet Venus came to be. For some time, scientists have theorized that Venus began with significant amounts of water on its surface, but that it then underwent a significant change.

Artist's impression of three newly-discovered exoplanets orbiting an ultracool dwarf star TRAPPIST-1. Credit: ESO/M. Kornmesser/N. Risinger (skysurvey.org).
Artist’s impression of three newly-discovered exoplanets orbiting an ultracool dwarf star TRAPPIST-1. Credit: ESO/M. Kornmesser/N. Risinger (skysurvey.org).

This ocean is believed to have evaporated due to Venus’ closer proximity to the Sun, with the ensuing water vapor triggering a runaway greenhouse effect. Over time, ultraviolet radiation from the Sun broke apart the water molecules, resulting in the hot, virtually waterless atmosphere we see today. However, what happened to all the oxygen has remained a mystery.

“We also have plans to use this model in the future to study Venus, which may have once had about the same amount of water as the Earth but is now very dry,” said Schaefer. “There is very little O2 left in Venus’ atmosphere, so this model would help us understand what happened to that oxygen (whether it was lost to space or absorbed by the planet’s mantle).”

Schaefer predicts that their model will also assist researchers with the study of other, similar exoplanets. One example is the TRAPPIST-1 system, which contains three planets that may lie with the star’s the habitable zone. But as Schaefer put it, the real value lies in the fact that we are more likely to find “Venus-like” worlds down the road:

“Most of the rocky planets that we know of and will discover in the near future will likely be hotter than the Earth or even Venus, just because it is easier to detect hotter planets. So there are a lot of planets out there similar to GJ 1132b just waiting to be studied!”

Headquartered in Cambridge, Mass., the Harvard-Smithsonian Center for Astrophysics (CfA) is a joint collaboration between the Smithsonian Astrophysical Observatory and the Harvard College Observatory. It’s scientists are dedicated to studying the origin, evolution and future of the universe.

And be sure to check out this video, courtesy of MIT news:

Further Reading: CfA, arXiv

Kepler Finds an Earth-Sized “Gas Giant”

Gas planets aren’t always bloated, monstrous worlds the size of Jupiter or Saturn (or larger) they can also apparently be just barely bigger than Earth. This was the discovery announced earlier today during the 223rd meeting of the American Astronomical Society in Washington, DC, when findings regarding the gassy (but surprisingly small) exoplanet KOI-314c were presented.

“This planet might have the same mass as Earth, but it is certainly not Earth-like,” said David Kipping of the Harvard-Smithsonian Center for Astrophysics (CfA), lead author of the discovery. “It proves that there is no clear dividing line between rocky worlds like Earth and fluffier planets like water worlds or gas giants.”

Discovered by the Kepler space telescope — ironically, during a hunt for exomoons — KOI-314c was found transiting a red dwarf star only 200 light-years away — “a stone’s throw by Kepler’s standards,” according to Kipping. (Kepler’s observation depth is about 3000 light-years.)

Relative size comparison of KOI-314c and Earth; both have similar mass. (J. Major)
Relative size comparison of KOI-314c and Earth; both have similar mass. (J. Major)

Kipping used a technique called transit timing variations (TTV) to study two of three exoplanets found orbiting KOI-314. Both are about 60% larger than Earth in diameter but their respective masses are very different. KOI-314b is a dense, rocky world four times the mass of Earth, while KOI-314c’s lighter, Earthlike mass indicates a planet with a thick “puffy” atmosphere… similar to what’s found on Neptune or Uranus.

Unlike those chilly worlds, though, this newfound exoplanet turns up the heat. Orbiting its star every 23 days, temperatures on KOI-314c reach 220ºF (104ºC)… too hot for water to exist in liquid form and thus too hot for life as we know it.

In fact Kipping’s team found KOI-314c to only be 30 percent denser than water, suggesting that it has a “significant atmosphere hundreds of miles thick,” likely composed of hydrogen and helium.

It’s thought that KOI-314c may have originally been a “mini-Neptune” gas planet and has since lost some of its atmosphere, boiled off by the star’s intense radiation.

Not only is KOI-314c the lightest exoplanet to have both its mass and diameter measured but it’s also a testament to the success and sensitivity of the relatively new TTV method, which is particularly useful in multiple-planet systems where the tiniest gravitational wobbles reveal the presence and details of neighboring bodies.

(Watch the latest Kepler Orrery video here)

“We are bringing transit timing variations to maturity,” Kipping said. He added during the closing remarks of his presentation at AAS223: “It’s actually recycling the way Neptune was discovered by watching Uranus’ wobbles 150 years ago. I think it’s a method you’ll be hearing more about. We may be able to detect even the first Earth 2.0 Earth-mass/Earth-radius using this technique in the future.”

Source: Harvard Smithsonian CfA press release

Earth’s Gold Came From Colliding Stars

Are you wearing a gold ring? Or perhaps gold-plated earrings? Maybe you have some gold fillings in your teeth… for that matter, the human body itself naturally contains gold — 0.000014%, to be exact! But regardless of where and how much of the precious yellow metal you may have with you at this very moment, it all ultimately came from the same place.

And no, I don’t mean Fort Knox, the jewelry store, or even under the ground — all the gold on Earth likely originated from violent collisions between neutron stars, billions of years in the past.

Recent research by scientists at the Harvard-Smithsonian Center for Astrophysics (CfA) in Cambridge, Massachusetts has revealed that considerable amounts of gold — along with other heavy elements — are produced during impacts between neutron stars, the super-dense remains of stars originally 1.4 to 9 times the mass of our Sun.

The team’s investigation of a short-duration gamma-ray outburst that occurred in June (GRB 130603B) showed a surprising residual near-infrared glow, possibly from a cloud of material created during the stellar merger. This cloud is thought to contain a considerable amount of freshly-minted heavy elements, including gold.

“We estimate that the amount of gold produced and ejected during the merger of the two neutron stars may be as large as 10 moon masses – quite a lot of bling!” said lead author Edo Berger.

"With this remnant of a dead neutron star, I thee wed." (FreeDigitalPhotos.net/bigjom)
“With this remnant of a dead neutron star, I thee wed.” (FreeDigitalPhotos.net/bigjom)

The mass of the Moon is 7.347 x 1022 kg… about 1.2% the mass of Earth. The collision between these neutron stars then, 3.9 billion light-years away, produced 10 times that much gold based on the team’s estimates.

Quite a lot of bling, indeed.

Gamma-ray bursts come in two varieties – long and short – depending on the duration of the gamma-ray flash. GRB 130603B, detected by NASA’s Swift satellite on June 3rd, lasted for less than two-tenths of a second.

Although the gamma rays disappeared quickly, GRB 130603B also displayed a slowly fading glow dominated by infrared light. Its brightness and behavior didn’t match the typical “afterglow” created when a high-speed jet of particles slams into the surrounding environment.

Instead, the glow behaved like it came from exotic radioactive elements. The neutron-rich material ejected by colliding neutron stars can generate such elements, which then undergo radioactive decay, emitting a glow that’s dominated by infrared light – exactly what the team observed.

“We’ve been looking for a ‘smoking gun’ to link a short gamma-ray burst with a neutron star collision,” said Wen-fai Fong, a graduate student at CfA and a co-author of the paper. “The radioactive glow from GRB 130603B may be that smoking gun.”

The team calculates that about one-hundredth of a solar mass of material was ejected by the gamma-ray burst, some of which was gold. By combining the estimated gold produced by a single short GRB with the number of such explosions that have likely occurred over the entire age of the Universe, all the gold in the cosmos – and thus on Earth – may very well have come from such gamma-ray bursts.

Watch an animation of two colliding neutron stars along with the resulting GRB below (Credit: Dana Berry, SkyWorks Digital, Inc.):

How much gold is there on Earth, by the way? Since most of it lies deep inside Earth’s core and is thus unreachable, the total amount ever retrieved by humans over the course of history is surprisingly small: about 172,000 tonnes, or enough to make a cube 20.7 meters (68 feet) per side (based on the Thomson Reuters GFMS annual survey.) Some other estimates put this amount at slightly more or less, but the bottom line is that there really isn’t all that much gold available in Earth’s crust… which is partly what makes it (and other “precious” metals) so valuable.

And perhaps the knowledge that every single ounce of that gold was created by dead stars smashing together billions of years ago in some distant part of the Universe would add to that value.

“To paraphrase Carl Sagan, we are all star stuff, and our jewelry is colliding-star stuff,” Berger said.

The team’s findings were presented today in a press conference at the CfA in Cambridge. (See the paper here.)

Source: Harvard-Smithsonian CfA

Earthlike Exoplanets Are All Around Us

Artist’s impression of a rocky planet orbiting a red dwarf. Credit: David A. Aguilar (CfA)

We may literally be surrounded by potentially habitable exoplanets, according to new research by a team from the Harvard-Smithsonian Center for Astrophysics.

Using data gathered by NASA’s exoplanet-hunting Kepler spacecraft, the CfA researchers discovered that many red dwarf stars harbor planets, and some of those planets are rocky, Earth-sized worlds. Considering that red dwarfs, albeit optically dim, are the most abundant type of stars in our galaxy, this means that even a small percentage of them being host to Earthlike exoplanets puts the total number of potentially habitable worlds very high — and some of them could be right next door.

“We thought we would have to search vast distances to find an Earth-like planet,” said CfA astronomer and the paper’s lead author Courtney Dressing. “Now we realize another Earth is probably in our own backyard, waiting to be spotted.”

And our own backyard, in cosmic terms, could mean a mere 13 light-years away.

Our solar system is surrounded by red dwarfs. You can’t see them in the night sky because they are much too dim — less than a thousandth the brightness of the Sun. But they make up 75% of the stars in the local neighborhood, and based on the Kepler data the CfA team estimates that 6% of those red dwarfs likely have an Earth-sized planet in orbit around them.

And with at least 75 billion red dwarfs scattered across the galaxy… well, you do the math.*

“We now know the rate of occurrence of habitable planets around the most common stars in our galaxy,” said co-author David Charbonneau (CfA). “That rate implies that it will be significantly easier to search for life beyond the solar system than we previously thought.”

Red-Dwarfs

A visualization of the “unseen” red dwarfs in the night sky. Credit: D. Aguilar & C. Pulliam (CfA) See original here.

The conditions on a planet orbiting a red dwarf wouldn’t be exactly like Earth, of course. The planet would have to orbit rather closely to its star to be within its habitable zone, and would have to have a reasonably thick atmosphere to regulate heat and protect it from stellar outbursts. But one benefit to orbiting a red dwarf is that they have very long life spans — potentially longer than the current age of the Universe! So a habitable world around a red dwarf would literally have billions of years for life to evolve, thrive and develop on it.

“We might find an Earth that’s 10 billion years old,” Charbonneau said.

The team’s findings were presented today, Feb. 6, by Dressing during a press conference at the Harvard-Smithsonian Center for Astrophysics in Cambridge, MA. The results will be published in The Astrophysical Journal. (Added 2/7/13: here’s the video of the press conference.)

press_conference_d+c2013.pptxCfA astronomers identified 95 planetary candidates circling red dwarf stars. Of those, three orbit within the habitable zone (marked in green) – the distance at which they should be warm enough to host liquid water on the surface. Those three planetary candidates (marked with blue dots) are 0.9, 1.4, and 1.7 times the size of Earth. Credit: C. Dressing (CfA)

Read more on the CfA news release here.

*Ok, I did the math. That’s 4,500,000,000 Earth-like exoplanets around red dwarfs alone!

Shedding Some Light on a Dark Discovery

[/caption]

Earlier this month astronomers released news of the darkest exoplanet ever seen: discovered in 2006, the gas giant TrES-2b reflects less than 1% of the visible light from its parent star… it’s literally darker than coal! Universe Today posted an article about this intriguing announcement on August 11, and now Dr. David Kipping of the Harvard-Smithsonian Center for Astrophysics is featuring a podcast on 365 Days of Astronomy in which he gives more detail about the dark nature of this discovery.

Listen to the podcast here.

The 365 Days of Astronomy Podcast is a project that will publish one podcast per day, for all 365 days of 2011. The podcast episodes are written, recorded and produced by people around the world.

“TrES-2b is similar in mass and radius to Jupiter but Jupiter reflects some 50% of the incident light. TrES-2b has a reflectivity less than that of any other planet or moon in the Solar System or beyond. The reflectivity is significantly less than even black acrylic paint, which makes the mind boggle as to what a clump of this planet would look like in your hand. Perhaps an appropriate nickname for the world would be Erebus, the Greek God of Darkness and Shadow. But what really is causing this planet to be so dark?”

– Dr. David Kipping

David Kipping obtained a PhD in Astrophysics from University College London earlier this year. His thesis was entitled ‘The Transits of Extrasolar Planets with Moons’ and David’s main research interest revolves around exomoons. He is just starting a Carl Sagan Fellowship at the Harvard-Smithsonian Center for Astrophysics.

The paper on which the the podcast is based can be found here.

_________________________

Jason Major is a graphic designer, photo enthusiast and space blogger. Visit his website Lights in the Dark and follow him on Twitter @JPMajor and on Facebook for more astronomy news and images!