Hayabusa 2 Mission Approved by Japanese Government

Artist's conception of Hayabua 2 approaching the asteroid 1999 JU3. Credit: Akihiro Ikeshita/JAXA

[/caption]

In 2010, the Japanese spacecraft Hayabusa completed an exciting although nail-biting mission to the asteroid Itokawa, successfully returning samples to Earth after first reaching the asteroid in 2005; the mission almost failed, with the spacecraft plagued by technical problems. The canister containing the microscopic rock samples made a soft landing in Australia, the first time that samples from an asteroid had been brought back to Earth for study.

Now, the Japanese government has approved a follow-up mission, Hayabusa 2. This time the probe is scheduled to be launched in 2014 and rendezvous with the asteroid known as 1999 JU3 in mid-2018. Samples would again be taken and returned to Earth in late 2020.

1999 JU3 is approximately 914 metres (3,000 feet) in diameter, a little larger than Itokawa, and is roughly spherical in shape, whereas Itokawa was much more oblong.

As is common for any space agency, the Japanese Aerospace Exploration Agency (JAXA) is working with tight budgets and deadlines to make this next mission happen. There is a possibility of a back-up launch window in 2015, but if that deadline is also not met, the mission will have to wait another decade to launch.

The asteroid Itokawa, visited by Hayabusa in 2005. Credit: JAXA

One of the main problems with Hayabusa was the failure of the sampling mechanism during the “landing” (actually more of a brief contact with the surface with the sample capturing device) to retrieve the samples for delivery back to Earth. Only a small amount of material made it into the sample capsule, but which was fortunate and ultimately made the mission a limited success. The microscopic grains were confirmed to have primarily come from Itokawa itself and are still being studied today.

To avoid a repetition of the glitches experienced by Hayabusa, some fundamental changes needed to be made.

This next spacecraft will use an updated ion propulsion engine, the same propulsion system used by Hayabusa, as well as improved guidance and navigation systems, new antennas and a new altitude control system.

For Hayabusa 2’s sample-collecting activities, a slowly descending impactor will be used, detonating upon contact with the surface, instead of the high-speed projectile used by Hayabusa. Perhaps not quite as dramatic, but hopefully more likely to succeed. Like its predecessor, the main objective of the mission is to collect as much surface material as possible for delivery back home.

Hopefully Hayabusa 2 will not be hampered by the same problems as Hayabusa; if JAXA can achieve this, it will be exciting to have samples returned from a second asteroid as well, which can only help to further our understanding of the history and formation of the solar system, and by extrapolation, even other solar systems as well.

Astronomers Capture Images of Asteroid 2012 BX34’s Close Flyby of Earth

Animation of asteroid 2012 BX34's flyby of Earth on January 27, 2012, at 11:04 UTC, using the GRAS telescope in New Mexico, USA. E. Credit: Guido, G. Sostero & N. Howes

[/caption]

Small asteroid 2012 BX34 skimmed past Earth today, January 27, 2012, with closest approach at about 15:25 UT, and it passed only about 59,044 km (36,750 miles) or about ~0.2 lunar distance (or 0.0004 AU) above the Earth’s surface. It was discovered just a few days ago by the Catalina Sky Survey in Arizona.

Above is an animation created by image from Ernesto Guido, Giovanni Sostero & Nick Howes from the Remanzacco Observatory in Italy. However, they took this series of images remotely from the iTelescope (formerly called GRAS), near Mayhill, New Mexico, using a 0.10-m f/5 reflector + CCD.

“According to its absolute magnitude (H=27.6) this asteroid has an estimated diameter of roughly 8-18 meters, so it is very small,” the team said on their website. “At the moment of our images from New Mexico on January 27, 11:04UT, 2012 BX34 was moving at about ~318.86 “/min and its magnitude was ~15. At the moment of its close approach around 15UT of today, 2012 BX34 will be bright as magnitude ~13.8 and moving at ~1810 “/min.”

Below is a single 120-seconds exposure showing the object as a ~11-arcminutes trail (due to its fast speed). Also below is a video from Peter Lake using his telescope in New Mexico remotely from Melbourne Australia, who took a series of 11 images just 6 hours before its closest approach.

Single image of 2012 BX34's flyby of Earth on January 27, 2012, at 11:04 UTC, using the iTelescope telescope in New Mexico, USA. E. Credit: Guido, G. Sostero & N. Howes.

See this link to see an image taken by legendary comet and asteroid hunter Rob McNaught, using a telescope in Sliding Spring, Australia. McNaught’s data was used by the Goldstone Deep Space Communications Complex to obtain radar imagery to determine BX34’s shape, size and orbital parameters. At this point, there are various estimates of the asteroid’s size, which will be refined from all the data gathered by the various telescopes. But astronomers from JPL’s Asteroid Watch said the space rock was small enough that it wouldn’t have survived a trip through Earth’s atmosphere if it had been on a collision course with our planet.

The team from the Remanzacco Observatory have a great table on their website, the the top 20 closest approaches by NEOs (Near-Earth Objects) sorted by nominal distance. The table was computed on the NASA/Neo-JPL website.

Thanks to all the astronomers for sharing their images with Universe Today. We’ll add more as they become available.

8-Meter-Wide Asteroid Will Pass Close to Earth January 27

Orbital parameters of Asteroid 2012 BX34 from JPL's Small Body Database.

[/caption]

A small asteroid will pass extremely close to Earth tomorrow (January 27, 2012). Named 2012 BX34, this 11 meter- (36 feet-) wide 8 meter- (26-foot-) space rock (astronomers have updated their estimates of the size) will skim Earth less than 60,000 km (37,000 miles, .0004 AU)>, at around 15:30 UTC, (10:30 am EST) according to the Minor Planet Center. The latest estimates have this small bus-sized asteroid it traveling at about about 8,900 meters/second (about 20,000 miles per hour). 2012 BX34 has been observed by the Catalina Sky Survey and the Mt. Lemmon Survey in Arizona, and the Magdalena Ridge Observatory in New Mexico, so its orbit is well defined and there is no risk of impact to Earth.

Via the @AsteroidWatch Twitter feed, scientists from JPL said “It wouldn’t get through our atmosphere intact even if it dared to try.”

Amateur astronomers in the right place and time could view this object, as it should be about magnitude 14 at the time of closest approach. Click here to see a current orbit diagram, and here to view the ephemeris data. Nick Howes, with the Faulkes Telescope Project said his team is hoping to observe and image the asteroid, — although they aren’t sure if they will be able — but we hope to share their images later.

Update: see images from astronomers on our latest article regarding 2012 BX34

Hat Tip: Nick Howes

NASA’s Dawn Orbiter snaps Best Ever Images of Vesta

Crater in Shadow on Vesta. This new image from Dawn in its low altitude mapping orbit on Dec. 13 shows part of the rim of a fresh crater on Vesta located in an area known as the Heavily Cratered Terrain in the northern hemisphere at around 17 degrees latitude and 77 degrees longitude. It was obtained at an altitude of 119 miles (191 km) and covers an area 11 mi x 11 mi (18 km x 18 km). Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

[/caption]

NASA’s Dawn spacecraft has swooped down to the closest orbit above the monster asteroid Vesta that the craft’s cameras and spectrometers will ever glimpse and the probe has begun transmitting these highest resolution pictures to anxiously waiting scientists back on Earth.

Dawn arrived at its Low Altitude Mapping Orbit, known as LAMO, on Dec. 12, 2011 and will continue circling scarcely 130 miles (210 kilometers) above Vesta for at least the next 10 weeks. Each orbit takes about 4.3 hours.

NASA has now released the first batch of crisp new close-ups images taken by the Framing Camera on Dec. 13 showing the stippled and lumpy surface in an exquisitely fine detail never seen before.

The photo montage below shows side by side views of the same portion of the Vestan surface at ever increasing resolution and clarity from ever lower altitudes.

Closer and Closer to the Vesta Surface
NASA’s Dawn spacecraft has spiraled closer and closer to the surface of the giant asteroid Vesta since arriving in mid-2011. The two images on the left represent an identical area, first observed during Dawn's survey orbit (far left image). The picture in the center is from Dawn's high-altitude mapping orbit (HAMO) from an altitude of about 430 miles (700 km) with about 230 feet (70 meters-per-pixel) resolution. The image at right was obtained on Dec. 13 from the low altitude mapping orbit (LAMO) at an altitude of 124 miles (199 km) above the surface and has a resolution of 75 feet (23 m) per pixel. It shows small impact craters or slumping at the steep-flanked mountain in the image center that can be identified in the two images to the left. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

The high resolution image gallery reveals fine scale highlights such as multitudes of small craters, grooves and lineaments, landslides and slumping, ejecta from past colossal impacts, and small outcrops of bright and dark materials.

The science team, led by Principal Investigator Prof Chris Russell of UCLA, believes that Vesta is actually more like a planet than an asteroid based on the data obtained thus far.

Vesta is the smallest terrestrial planet in our Solar System”, Russell told Universe Today. “We do not have a good analog to Vesta anywhere else in the Solar System.”

The primary science objectives at the LAMO orbit are to measure the elemental abundances on the surface of Vesta with the US built gamma ray and neutron detector (GRaND) and to probe the interior structure of the asteroid by measuring the gravity field.

Vesta is a proto-planet formed just a few million years after the birth of the solar system whose evolution into a larger planet was stopped cold by the massive gravitational influence of the planet Jupiter.

Scientists are plowing through thousands of images and millions of spectral measurements to glean clues about the origin and evolution of the solar system that have been preserved on the hitherto unexplored world.

Buried Craters on Vesta
This Dec. 13 image from Dawn spacecraft in its low altitude mapping orbit shows many buried craters located within the equatorial trough region of Vesta. This area bears traces of the material thrown out by the impact that created the Rheasilvia basin in the asteroid’s south polar region. Lineated features are visible in a variety of shapes and sizes from an altitude of 117 miles (189 km) over an area of 11 mi x 11 mi (18 km x 18 km). Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

“Vesta is a transitional body between a small asteroid and a planet and is unique in many ways,” says mission scientist Vishnu Reddy of the Max Planck Institute for Solar System Research in Katlenburg-Lindau, Germany. “Vesta is unlike any other asteroid we have visited so far.”

After completing the LAMO measurements, Dawn will again spiral back to a higher altitude for further data gathering especially at the unseen North Pole which is in darkness now.

Dawn will continue orbiting Vesta until July 2012 when it will fire up its ion propulsion system and depart for Ceres, the largest body in the main Asteroid belt between Mars and Jupiter.

“What can be more exciting than to explore an alien world that until recently was virtually unknown!” Dr. Marc Rayman told Universe Today. Rayman is Dawn’s Chief Engineer from NASA’s Jet Propulsion Lab (JPL) in Pasadena, Calif.

Equatorial Trough in Dark and Bright on Vesta
This image was one of the first obtained by Dawn in its low altitude mapping orbit and shows a part of one of the long troughs at the equator of Vesta. Credit: NASA/ JPL-Caltech/ UCLA/ MPS/ DLR/ IDA

“Dawn continues to gather gamma ray spectra and neutron spectra,” Rayman reports. “The bonus imaging at LAMO is yielding pictures more than three times better than those acquired in the high altitude mapping orbit (HAMO). Every week at this low altitude, Dawn will use its ion propulsion system to fine tune its orbit. The first of these weekly orbit adjustments was performed on December 17.”

The framing cameras eere built by the Max Planck Institute for Solar System Research in Germany.

A treasure trove of spectacular Vesta close-ups are streaming at this moment to the home planet and we’ll have many more goodies to show.

Read continuing features about Dawn by Ken Kremer starting here:
Holiday Greetings from an Alien Snowman on Vesta
Dawn swoops to lowest orbit around Vesta – Unveiling Spectacular Alien World
Rainbow of Colors Reveal Asteroid Vesta as More Like a Planet
Vrooming over Vivid Vestan Vistas in Vibrant 3 D – Video
NASA Planetary Science Trio Honored as ‘Best of What’s New’ in 2011- Curiosity/Dawn/MESSENGER
Dawn Discovers 2nd Giant South Pole Impact Basin at Strikingly Dichotomous Vesta
Amazing New View of the Mt. Everest of Vesta
Dramatic 3 D Imagery Showcases Vesta’s Pockmarked, Mountainous and Groovy Terrain

Holiday Greetings from an Alien Snowman on Vesta

Holiday Greetings from an Alien Snowman on Vesta - to all inhabitants of the Galaxy

[/caption]

Celebrate the winter holiday season in the company of an ‘Alien Snowman’ on the asteroid Vesta, someone we didn’t even have a clue about until six months ago.

Vesta and the Snowman have been transformed into the beautiful banner above – sent to me courtesy of the Dawn mission team to share with the readers of Universe Today.

Now you can be a creative artist and use the striking new images of Vesta to fashion your own greeting cards (see below) and send seasonal tidings of winter holiday cheer not possible before – all thanks to the remarkably insightful discoveries of Dawn’s international science team.

Vesta Greeting Card created by Joe W - From Dawn website

The Dawn spacecraft orbiting the giant asteroid Vesta is one of NASA’s crowning scientific accomplishments of 2011 because it’s cameras and spectrometers have unveiled a mysteriously diverse world that has no match elsewhere in our solar system.

The more we explore the unknown the more we are enlightened as to just how limited our view of the Universe is from within the narrow confines of our miniscule abode.

Vesta Greeting Card created by Judy C - From Dawn website
Hey, Let's go skiing at the South Pole !

The Kepler Space Telescopes latest discoveries of Earth-sized worlds are just the latest examples guiding us to a clearer understanding of our place in the Universe.

Vesta Greeting Card created by Jillian S - From Dawn website

Here are just a few of the Vestan images you can masterfully decorate – the Snowman, The Mount Everest of Vesta and the cataclysmically bombarded South Pole.

Alien Snowman on Vesta
An impact structure on asteroid Vesta resembling a snowman. Credit: NASA

So, let you imaginations run wild with wintery scenes to match the majesty of this matchless world. The Dawn Education and Public Outreach (EPO) team has created several templates which you can access here

Of course you can also use any of the images posted at the Dawn mission website.

The Mount Everest of Vesta
Image of asteroid Vesta calculated from a shape model, showing a tilted view of the topography of the south polar region. This perspective shows the topography, but removes the overall curvature of Vesta, as if the giant asteroid were flat and not rounded. Credit: NASA
Shattered South Pole of Vesta
This Dawn framing camera image shows scarps, hummocky (eg. wavy/ undulating) terrain and impacts in Vesta's south polar region. Credit: NASA

And feel free to post your inspired creations here at Universe Today.

Vesta is the second most massive object in the main Asteroid Belt between Mars and Jupiter.

Dawn arrived in orbit at Vesta in July 2011 for the first ever close up studies of the shattered celestial body. Dawn will spend a year investigating Vesta before spiraling out towards Ceres, the largest asteroid.

Read continuing features about Dawn by Ken Kremer starting here:
Dawn swoops to lowest orbit around Vesta – Unveiling Spectacular Alien World
Rainbow of Colors Reveal Asteroid Vesta as More Like a Planet
Vrooming over Vivid Vestan Vistas in Vibrant 3 D – Video
NASA Planetary Science Trio Honored as ‘Best of What’s New’ in 2011- Curiosity/Dawn/MESSENGER
Dawn Discovers Surprise 2nd Giant South Pole Impact Basin at Strikingly Dichotomous Vesta
Amazing New View of the Mt. Everest of Vesta
Dramatic 3 D Imagery Showcases Vesta’s Pockmarked, Mountainous and Groovy Terrain
Rheasilvia – Super Mysterious South Pole Basin at Vesta
Space Spectacular — Rotation Movies of Vesta
3 D Alien Snowman Graces Vesta
NASA Unveils Thrilling First Full Frame Images of Vesta from Dawn
Dawn Spirals Down Closer to Vesta’s South Pole Impact Basin

Earth’s Other Moons

Saturn's moons Rhea and Dione as seen by the Cassini spacecraft. Could this be a future view from Earth? Image credit: NASA/JPL/Space Science Institute

[/caption]

In the fall of 2006, observers at the Catalina Sky Survey in Arizona found an object orbiting the Earth. At first, it looked like a spent rocket stage — it had a spectrum similar to the titanium white paint NASA uses on rocket stages that end up in heliocentric orbits. But closer inspection revealed that the object was a natural body. Called 2006 RH120, it was a tiny asteroid measuring just a few metres across but it still qualified as a natural satellite just like the Moon. By June 2007, it was gone. Less than a year after it arrived, it left Earth’s orbit in search of a new cosmic companion.

Now, astrophysicists at Cornell are suggesting that 2006 RH120 wasn’t an anomaly; a second temporary moon is actually the norm for our planet.

Temporary satellites are a result of the gravitational pull of Earth and the Moon. Both bodies pull on one another and also pull on anything else in nearby space. The most common objects that get pulled in by the Earth-Moon system’s gravity are near Earth objects (NEOs) — comets and asteroids are nudged by the outer planets and end up in orbits that bring them into Earth’s neighbourhood.

Near Earth object Eros, the type of object that could be a second satellite. Image credit: NASA

The team from Cornell, astrophysicists Mikael Granvik, Jeremie Vaubaillon, Robert Jedicke, has modeled the way our Earth-Moon system captures these NEOs to understand how often we have additional moons and how long they stick around.

They found that the Earth-Moon system captures NEOs quite frequently. “At any given time, there should be at least one natural Earth satellite of 1-meter diameter orbiting the Earth,” the team said. These NEOs orbit the Earth for about ten months, enough time to make about three orbits, before leaving.

Luckily, and very interestingly, this discovery has implication well beyond academic applications.

Knowing that these small satellites come and go but that one is always present around the Earth, astronomers can work on detecting them. With more complete information on these bodies, specifically their position around the Earth at a given time, NASA could send a crew out to investigate. A crew wouldn’t be able to land on something a few metres across, but they could certainly study it up close and gather samples.

Close up image of asteroid 243 Ida. Image credit: NASA/courtesy of nasaimages.org

Proposals for a manned mission to an asteroid have been floating around NASA for years. Now, astronauts won’t have to go all the way out to an asteroid to learn about the Solar System’s early history. NASA can wait for an asteroid to come to us.

If the Cornell team is right and there is no shortage of second satellites around the Earth, the gains from such missions increases. The possible information about the solar system’s formation that we could obtain would be amazing, and amazingly cost-efficient.

Source: Earth Must Have Another Moon, Astronomers Say

Dawn swoops to lowest orbit around Vesta – Unveiling Spectacular Alien World

Dawn Orbiting Vesta. This artist's concept shows NASA's Dawn spacecraft orbiting the giant asteroid Vesta. The depiction of Vesta is based on images obtained by Dawn's framing cameras. Dawn is an international collaboration of the US, Germany and Italy. Credit: NASA/JPL-Caltech

[/caption]

NASA’s Dawn Asteroid Orbiter successfully spiraled down today to the closest orbit the probe will ever achieve around the giant asteroid Vesta, and has now begun critical science observations that will ultimately yield the mission’s highest resolution measurements of this spectacular body.

“What can be more exciting than to explore an alien world that until recently was virtually unknown!” Dr. Marc Rayman gushed in an exclusive interview with Universe Today. Rayman is Dawn’s Chief Engineer from NASA’s Jet Propulsion Lab (JPL) in Pasadena, Calif., and a protégé of Star Trek’s Mr. Scott.

Before Dawn, Vesta was little more than a fuzzy blob in the world’s most powerful telescopes. Vesta is the second most massive object in the main Asteroid Belt between Mars and Jupiter.

Dawn is now circling about Vesta at the lowest planned mapping orbit, dubbed LAMO for Low Altitude Mapping Orbit. The spacecraft is orbiting at an average altitude of barely 130 miles (210 kilometers) above the heavily bombarded and mysterious world that stems from the earliest eons of our solar system some 4.5 Billion years ago. Each orbit takes about 4.3 hours.

“It is both gratifying and exciting that Dawn has been performing so well,” Rayman told me.

Dawn Orbiting Over Vesta - A Hi Res Taste of What's Ahead!
This image of the giant asteroid Vesta was obtained by Dawn in the evening Nov. 27 PST (early morning Nov. 28, UTC), as it was spiraling down from its high altitude mapping orbit to low altitude mapping orbit. Low altitude mapping orbit is the closest orbit Dawn will be making, at an average of 130 miles (210 kilometers) above the giant asteroid's surface. The framing camera obtained this image of an area in the northern mid-latitudes of Vesta from an altitude of about 140 miles (230 kilometers). Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Dawn arrived in orbit at Vesta in July 2011 after a nearly 4 year interplanetary cruise since blasting off atop a Delta II rocket from Cape Canaveral, Florida in September 2007. The probe then spent the first few weeks at an initial science survey altitude of about 1,700 miles (2,700 kilometers).

Gradually the spaceship spiraled down closer to Vesta using her ion propulsion thrusters.

See Vesta science orbit diagram, below, provided courtesy of Dr. Marc Rayman.

Along the way, the international science and engineering team commanded Dawn to make an intermediate stop this past Fall 2011 at the High Altitude Mapping orbit altitude (420 miles, or 680 kilometers).

“It is so cool now to have reached this low orbit [LAMO]. We already have a spectacular collection of images and other fascinating data on Vesta, and now we are going to gain even more,” Rayman told me.

“We have a great deal of work ahead to acquire our planned data here, and I’m looking forward to every bit!

Dawn will spend a minimum of 10 weeks acquiring data at the LAMO mapping orbit using all three onboard science instruments, provided by the US, Germany and Italy.

While the framing cameras (FC) from Germany and the Visible and Infrared Mapping spectrometer (VIR) from Italy will continue to gather mountains of data at their best resolution yet, the primary science focus of the LAMO orbit will be to collect data from the gamma ray and neutron detector (GRaND) and the gravity experiment.

GRaND will measure the elemental abundances on the surface of Vesta by studying the energy and neutron by-products that emanate from it as a result of the continuous bombardment of cosmic rays. The best data are obtained at the lowest altitude.

Dawn spacecraft - Science orbits at Vesta
Credit: NASA/JPL-Caltech/Marc Rayman

By examining all the data in context, scientists hope to obtain a better understanding of the formation and evolution of the early solar system.

Vesta is a proto-planet, largely unchanged since its formation, and whose evolution into a larger planet was stopped cold by the massive gravitational influence of the planet Jupiter.

Dawn’s visit to Vesta has been eye-opening so far, showing us troughs and peaks that telescopes only hinted at,” said Christopher Russell, Dawn’s principal investigator, based at UCLA. “It whets the appetite for a day when human explorers can see the wonders of asteroids for themselves.”

After investigating Vesta for about a year, the engineers will ignite Dawn’s ion propulsion thrusters and blast away to Ceres, the largest asteroid which may harbor water ice and is another potential outpost for extraterrestrial life

Dawn will be the first spaceship to orbit two worlds and is also the first mission to study the asteroid belt in detail.

Asteroid Vesta from Dawn - Exquisite Clarity from a formerly Fuzzy Blob
NASA's Dawn spacecraft obtained this image of the giant asteroid Vesta with its framing camera on July 24, 2011. It was taken from a distance of about 3,200 miles (5,200 kilometers). Before Dawn, Vesta was just a fuzzy blob in the most powerful telescopes. Dawn entered orbit around Vesta on July 15, and will spend a year orbiting the body before firing up the ion propulsion system to break orbit and speed to Ceres, the largest Asteroid. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
South Polar Region of Vesta - Enhanced View
An ancient cosmic collision blasted away much of the south pole of Vesta, leaving behind an enoumous mountain about 3 times the height of Mt. Everest. NASA's Dawn spacecraft obtained this image centered on the south pole of Vesta with its framing camera on July 18, 2011 as it passed the terminator. The image has been enhanced to bring out more surface details. It was taken from a distance of about 6,500 miles (10,500 kilometers) away from the protoplanet Vesta. The smallest detail visible is about 1.2 miles (2.0 km). Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA. Enhanced and annotated by Ken Kremer

Read continuing features about Dawn by Ken Kremer starting here:

Rainbow of Colors Reveal Asteroid Vesta as More Like a Planet
Vrooming over Vivid Vestan Vistas in Vibrant 3 D – Video
NASA Planetary Science Trio Honored as ‘Best of What’s New’ in 2011- Curiosity/Dawn/MESSENGER
Dawn Discovers Surprise 2nd Giant South Pole Impact Basin at Strikingly Dichotomous Vesta
Amazing New View of the Mt. Everest of Vesta
Dramatic 3 D Imagery Showcases Vesta’s Pockmarked, Mountainous and Groovy Terrain
Rheasilvia – Super Mysterious South Pole Basin at Vesta
Space Spectacular — Rotation Movies of Vesta
3 D Alien Snowman Graces Vesta
NASA Unveils Thrilling First Full Frame Images of Vesta from Dawn
Dawn Spirals Down Closer to Vesta’s South Pole Impact Basin

Rainbow of Colors Reveal Asteroid Vesta as More Like a Planet

'Rainbow-Colored Palette' of Southern Hemisphere of Asteroid Vesta from NASA Dawn Orbiter. This mosaic using color data obtained by the framing camera aboard NASA's Dawn spacecraft shows Vesta's southern hemisphere in false color, centered on the Rheasilvia impact basin, about 290 miles (467 kilometers) in diameter with a central mound reaching about 14 miles (23 kilometers) high. The black hole in the middle is data that have been omitted due to the angle between the sun, Vesta and the spacecraft. The green areas suggest the presence of the iron-rich mineral pyroxene or large-sized particles. This mosaic was assembled using images obtained during Dawn's approach to Vesta, at a resolution of 480 meters per pixel. The German Aerospace Center and the Max Planck Institute for Solar System Research provided the Framing Camera instrument and funding as international partners on the mission team. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

[/caption]

The giant Asteroid Vesta is among the most colorful bodies in our entire solar system and it appears to be much more like a terrestrial planet than a mere asteroid, say scientists deciphering stunning new images and measurements of Vesta received from NASA’s revolutionary Dawn spacecraft. The space probe only recently began circling about the huge asteroid in July after a four year interplanetary journey.

Vesta is a heavily battered and rugged world that’s littered with craters and mysterious grooves and troughs. It is the second most massive object in the Asteroid Belt and formed at nearly the same time as the Solar System some 4.5 Billion years ago.

“The framing cameras show Vesta is one of the most colorful objects in the solar system,” said mission scientist Vishnu Reddy of the Max Planck Institute for Solar System Research in Katlenburg-Lindau, Germany. “Vesta is unlike any other asteroid we have visited so far.”

Scientists presented the new images and findings from Dawn at the American Geophysical Union meeting this week in San Francisco.

Dawn is the first man-made probe to go into orbit around Vesta.

Comparative View of Terrains on Vesta - Oppia Crater
This image of Oppia Crater combines two separate views of the giant asteroid Vesta obtained by Dawn's framing camera. The far-left image uses near-infrared filters where red is used to represent 750 nanometers, green represents 920 nanometers and blue represents 980 nanometers. The image on the right is an image with colors assigned by scientists, representing different rock or mineral types on Vesta. The data reveal a world of many varied, well-separated layers and ingredients. The reddish color suggests a steep visible spectral slope, and areas of fresh landslides in the inner walls of the crater show deeper green colors. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

“Vesta is a transitional body between a small asteroid and a planet and is unique in many ways,” Reddy said. “We do not know why Vesta is so special.”

Although many asteroids look like potatoes, Reddy said Vesta reminds him more of an avocado.

Asteroid Vesta is revealed as a ‘rainbow-colored palette’ in a new image mosaic (above) showcasing this alien world of highly diverse rock and mineral types of many well-separated layers and ingredients.

Researchers assigned different colors as markers to represent different rock compositions in the stunning new mosaic of the asteroid’s southern hemisphere.

The green areas in the mosaic suggest the presence of the iron-rich mineral pyroxene or large-sized particles, according to Eleonora Ammannito, from the Visible and Infrared (VIR) spectrometer team of the Italian Space Agency. The ragged surface materials are a mixture of rapidly cooled surface rocks and a deeper layer that cooled more slowly.

What could the other colors represent?

“The surface is very much consistent with the variability in the HED (Howardite-Eucritic-Diogenite) meteorites,” Prof. Chris Russell, Dawn Principal Investigator (UCLA) told Universe Today in an exclusive interview.

“There is Diogenite in varying amounts.”

“The different colors represent in part different ratios of Diogenite to Eucritic material. Other color variation may be due to particle sizes and to aging,” Russell told me.

No evidence of volcanic materials has been detected so far, said David Williams, Dawn participating scientist of Arizona State University, Tucson.

Fresh Impact Craters on Asteroid Vesta
The fresh impact craters in this view are located in the south polar region, which has been partly covered by landslides from the adjacent crater. This would suggest that a layer of loose material covers the Vesta surface. This image combines two separate views of the giant asteroid Vesta obtained by Dawn’s framing camera. The far-left image uses near-infrared filters where red is used to represent 750 nanometers, green represents 920 nanometers and blue represents 980 nanometers. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Before Dawn arrived, researchers expected to observe indications of volcanic activity. So, the lack of findings of volcanism is somewhat surprising. Williams said that past volcanic activity may be masked due to the extensive battering and resultant mixing of the surface regolith.

“More than 10,000 high resolution images of Vesta have been snapped to date by the framing cameras on Dawn,” Dr. Marc Rayman told Universe Today. Rayman is Dawn’s Chief Engineer from NASA’s Jet Propulsion Lab (JPL) in Pasadena, Calif.

Dawn will spend a year in orbit at Vesta and investigate the asteroid at different altitudes with three on-board science instruments from the US, Germany and Italy.

The probe will soon finish spiraling down to her lowest mapping orbit known as LAMO (Low Altitude Mapping Orbit), approximately 130 miles (210 kilometers) above Vesta’s surface.

“Dawn remains on course to begin its scientific observations in LAMO on December 12,” said Rayman.

The German Aerospace Center and the Max Planck Institute for Solar System Research provided the Framing Camera instrument and funding as international partners on the mission team. The Visible and Infrared Mapping camera was provided by the Italian Space Agency.

In July 2012, Rayman and the engineering team will fire up Dawn’s ion propulsion system, break orbit and head to Ceres, the largest asteroid and what a number of scientists consider to be a planet itself.

Ceres is believed to harbor thick caches of water ice and therefore could be a potential candidate for life.

Southern Hemisphere of Vesta -Rheasilvia and Older Basin
Colorized shaded-relief map showing location of 375-kilometer-wide Older impact basin that is overlapping with the more recent 500 km (300 mi) wide Rheasilvia impact structure at asteroid Vesta’s South Pole. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
Asteroid Vesta from Dawn - Exquisite Clarity from a formerly Fuzzy Blob
NASA's Dawn spacecraft obtained this image of the giant asteroid Vesta with its framing camera on July 24, 2011. It was taken from a distance of about 3,200 miles (5,200 kilometers). Before Dawn, Vesta was just a fuzzy blob in the most powerful telescopes. Dawn entered orbit around Vesta on July 15, and will spend a year orbiting the body before firing up the ion propulsion system to break orbit and speed to Ceres, the largest Asteroid. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Read continuing features about Dawn by Ken Kremer starting here:

Vrooming over Vivid Vestan Vistas in Vibrant 3 D – Video
NASA Planetary Science Trio Honored as ‘Best of What’s New’ in 2011- Curiosity/Dawn/MESSENGER
Dawn Discovers Surprise 2nd Giant South Pole Impact Basin at Strikingly Dichotomous Vesta
Amazing New View of the Mt. Everest of Vesta
Dramatic 3 D Imagery Showcases Vesta’s Pockmarked, Mountainous and Groovy Terrain
Rheasilvia – Super Mysterious South Pole Basin at Vesta
Space Spectacular — Rotation Movies of Vesta
3 D Alien Snowman Graces Vesta
NASA Unveils Thrilling First Full Frame Images of Vesta from Dawn
Dawn Spirals Down Closer to Vesta’s South Pole Impact Basin
First Ever Vesta Vistas from Orbit – in 2D and 3D
Dawn Exceeds Wildest Expectations as First Ever Spacecraft to Orbit a Protoplanet – Vesta

Vrooming over Vivid Vestan Vistas in Vibrant 3 D – Video

Vivid Vesta Vista in Vibrant 3 D from NASA’s Dawn Asteroid Orbiter. Vesta is the second most massive asteroid and is 330 miles (530 km) in diameter. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

[/caption]

It’s time to put on your 3-D glasses and go soaring all over the giant asteroid Vesta – thanks to the superlative efforts of Dawn’s international science team.

Now you can enjoy vivid ‘Vestan Vistas’ like you’ve never ever seen before in a vibrant 3 D video newly created by Dawn team member Ralf Jaumann, of the German Aerospace Center (DLR) in Berlin, Germany – see below.

To fully appreciate the rough and tumble of the totally foreign and matchless world that is Vesta, you’ll absolutely have to haul out your trusty red-cyan (or red-blue) 3 D anaglyph glasses.

Then hold on, as you glide along for a global gaze of mysteriously gorgeous equatorial groves ground out by a gargantuan gong, eons ago.

Along the way you’ll see an alien ‘Snowman’ and the remnants of the missing South Pole, including the impressive Rheasilvia impact basin – named after a Vestal virgin – and the massive mountain some 16 miles (25 kilometers) high, or more than twice the height of Mt. Everest.


Video Caption: This 3-D video incorporates images from the framing camera instrument aboard NASA’s Dawn spacecraft from July to August 2011. The images were obtained as Dawn approached Vesta and circled the giant asteroid during the mission’s survey orbit phase at an altitude of about 1,700 miles (2,700 kilometers). To view this video in 3-D use red-green, or red-blue, glasses (left eye: red; right eye: green/blue). Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

“If you want to know what it’s like to explore a new world like Vesta, this new video gives everyone a chance to see it for themselves,” Jaumann said. “Scientists are poring over these images to learn more about how the craters, hills, grooves and troughs we see were created.”

NASA’s Dawn spacecraft is humanity’s first probe to investigate Vesta, the second most massive body in the main Asteroid Belt between Mars and Jupiter.


Video caption: 2 D rotation movie of Vesta. Compare the 2 D movie to the new 3 D movie. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA.

Indeed Dawn was just honored by Popular Science magazine and recognized as one of three NASA Planetary Science missions to earn a ‘Best of What’s New in 2011’ for innovation in the aviation and space category – along with the Curiosity Mars Science Laboratory (MSL) and MESSENGER Mercury orbiter.

Asteroid Vesta and Mysterious Equatorial Grooves - from Dawn Orbiter
This full view of the giant asteroid Vesta was taken by NASA’s Dawn spacecraft on July 24, 2011, at a distance of 3,200 miles (5,200 kilometers). This view shows impact craters of various sizes and mysterious grooves parallel to the equator. The resolution of this image is about 500 meters per pixel. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

The images in the 3 D video were snapped between July and August 2011 as Dawn completed the final approach to Vesta, achieved orbit in July 2011 and circled overhead during the mission’s initial survey orbit phase at an altitude of about 1,700 miles (2,700 kilometers) in August.

How was the 3 D movie created?

“The Dawn team consists of a bunch of talented people. One of those talented people is Ralf Jaumann, Dawn co-Investigator from the DLR in Berlin,” Prof. Chris Russell, Dawn Principal Investigator, of UCLA, told Universe Today.

“Jaumann and the team behind him have stitched together the mosaics we see and they have made shape models of the surface. They are also skilled communicators and have been heroes in getting the Dawn Image of the Day together. I owe them much thanks and recognition for their efforts.”

“They wanted to make and release to the public an anaglyph of the rotating Vesta to share with everyone the virtual thrill of flying over this alien world.”

“I hope everyone who follows the progress of Dawn will enjoy this movie as much as I do.”

“It is just amazing to an old-time space explorer as myself that we can now make planetary exploration so accessible to people all over our globe in their own homes and so soon after we have received the images,” Russell told me.

3 D of the ‘Snowman' Crater
This anaglyph image shows the topography of Vesta's three craters, informally named the "Snowman," obtained by the framing camera instrument aboard Dawn on August 6, 2011. The camera has a resolution of about 260 meters per pixel.
Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Dawn is now spiraling down to her lowest mapping orbit known as LAMO (Low Altitude Mapping Orbit), barely 130 miles (210 kilometers) above Vesta’s surface.

“Dawn remains on course and on schedule to begin its scientific observations in LAMO on December 12,” says Dr. Marc Rayman, Dawn’s Chief Engineer from the Jet Propulsion Lab (JPL), Pasadena, Calif.

“The focus of LAMO investigations will be on making a census of the atomic constituents with its gamma ray and neutron sensors and on mapping the gravity field in order to determine the interior structure of this protoplanet.”

“Today, Dawn is at about 245 km altitude,” Rayman told Universe Today.

The 3 D video is narrated by Carol Raymond, Dawn’s deputy principal investigator at JPL.

“Dawn’s data thus far have revealed the rugged topography and complex textures of the surface of Vesta, as can be seen in this video”.

“Soon, we’ll add other pieces of the puzzle such as the chemical composition, interior structure, and geologic age to be able to write the history of this remnant protoplanet and its place in the early solar system.”

3 D Image of Vesta's South Polar Region
This anaglyph image of the south polar region was taken on July 9, 2011 by the framing camera instrument aboard NASA's Dawn spacecraft. Each pixel in this image corresponds to roughly 2.2 miles (3.5 kilometers). The anaglyph image shows the rough topography in the south polar area, the large mountain, impact craters, grooves, and steep scarps in three dimensions.
Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Read continuing features about Dawn by Ken Kremer starting here:

NASA Planetary Science Trio Honored as ‘Best of What’s New’ in 2011- Curiosity/Dawn/MESSENGER
Dawn Discovers Surprise 2nd Giant South Pole Impact Basin at Strikingly Dichotomous Vesta
Amazing New View of the Mt. Everest of Vesta
Dramatic 3 D Imagery Showcases Vesta’s Pockmarked, Mountainous and Groovy Terrain
Rheasilvia – Super Mysterious South Pole Basin at Vesta
Space Spectacular — Rotation Movies of Vesta
3 D Alien Snowman Graces Vesta
NASA Unveils Thrilling First Full Frame Images of Vesta from Dawn
Dawn Spirals Down Closer to Vesta’s South Pole Impact Basin
First Ever Vesta Vistas from Orbit – in 2D and 3D
Dawn Exceeds Wildest Expectations as First Ever Spacecraft to Orbit a Protoplanet – Vesta

Consolation Prize for Phobos-Grunt? Experts Consider Possibilities for Sending Spacecraft to Moon or Asteroid

The Phobos-Grunt mission profile. Credit: Roscosmos

[/caption]

Editor’s note: Dr. David Warmflash, principal science lead for the US team from the LIFE experiment on board the Phobos-Grunt spacecraft, provides an update for Universe Today on the likelihood of saving the mission.

If communication with Russia’s troubled Phobos-Grunt is not established by November 21, the window for a trajectory to the Martian moon Phobos, will close, experts say. But this would not mean that the spacecraft could not travel to a different destination. In a statement published earlier today by the news and information agency Ria Novosti, Russian space expert Igor Lisov suggested that Phobos-Grunt could be sent to orbit the Moon – Earth’s Moon, that is – or may be even an asteroid, if communication is restored at any point before the 13-ton probe re-enters Earth’s atmosphere.

Evolution of Phobos-Grunt’s Orbit

Boosted into space by a Zenit 2 rocket last week, Phobos-Grunt entered into a low parking orbit, where she was supposed to wait only for 2.5 hours before the next booster stage, Fregat, would send her to a higher orbit and then on to Mars. Because the Fregat engine did not ignite, Grunt still orbits just above our heads. “Highly elliptical, with an initial altitude of 347 kilometers at apogee (the high point) and 207 kilometers at perigee (the low point), the orbit initially was predicted to decay by late November, causing the spacecraft to reenter the atmosphere and burn up. But while the apogee has been decreasing (down to 326 km today), the perigee actually has been increasing by about 0.5 kilometers per day (up to 210.2 km today), due to periodic maneuvering by way of the probe’s small thrusters. After it was realized that the first maneuvering episode had improved the orbit, the predicted reentry date was adjusted to mid January, and if the thrusting episodes continue we can expect the date of the probe’s demise to be moved back still more.

An artists concept of the Phobos-Grunt Mission. Credit: Roscosmos

Time for Trajectory to Phobos is Running Out

The improved orbit gives controllers at the Russian Space Agency, Roscosmos, several weeks –even more, if the perigee continues to get higher– to restore communication with Phobos-Grunt, allowing for the uploading of new commands. But, even if control is restored, a flight to Mars and Phobos will not be possible after Monday, November 21st, Lisov explained. Although the Fregat stage is loaded with fuel, to reach Mars, given Grunt’s orbit around Earth and the alignment between Earth and Mars after Monday, would require a higher change in velocity –what propulsion specialists call delta v – than the Fregat is capable of producing.

A Consolation Prize

While cautioning that the idea of sending Phobos-Grunt somewhere other than Phobos falls into the realm of wishful thinking, Lisov urged that efforts to reconnect with the spacecraft continue in full force as long as the craft is in space. Despite several failures of lunar missions, the former Soviet space program did succeed in returning samples from the lunar surface to Earth in the 1970s. Thus, re-purposing the current mission as “Luna-Grunt” or something of that nature is not likely to have the same appeal as Phobos-Grunt has among Russians. Nor could the Grunt landing craft, designed to scoop a surface sample into a capsule that would return to Earth, even set down on the lunar surface. But other components of the science payload might be useful. Though built to observe Mars,China’s Yinghuo-1 orbiter might be able to do something interesting from lunar orbit. Instruments that were to remain on the Phobosian surface might be useful as well.

Then, there is the issue of avoiding reentry. Experts at Roscosmos are confident that the many tons of nitrogen teroxide and hydrazine in Grunt’s fuel tanks will burn up high in the atmosphere if the probe reenters. But people around the planet are scared, and thus might prefer that the fuel be used, even for a one-way mission with undefined science objectives. More importantly, achieving in a partial victory by sending the spacecraft anywhere but back to Earth could give rise to an Apollo 13-like milieu that might reinvigorate the Russian planetary program.

Millions of Tiny Passengers

The Planetary Society’s Living Interplanetary Flight Experiment (LIFE) capsule, on board the Phobos-Grunt spacecraft. Credit:The Planetary Society

As I’ve discussed in a previous update, to be useful scientifically, the Planetary Society’s Living Interplanetary Flight Experiment (LIFE) rides inside the capsule that was designed to return the Phobosian sample to Earth. The point of the experiment is to test the effects of the space environment on several different types of organisms. Because the Moon orbits Earth far outside the Van Allen radiation belts, the radiation received per time by organisms on lunar flights is the same as that received during flights to Mars. If the capsule could be sent into lunar orbit, our millions of passengers would be like organisms traveling inside a meteoroid from Mars. Then perhaps some future mission could recover the capsule some day, and we could study the organisms, as we planned to do upon their return from Phobos.

A Possible Asteroid Mission

Lisov also speculated about sending the Grunt spacecraft to an asteroid instead of the Moon. Various asteroids travel fairly close to Earth, and it’s plausible that a Grunt probe revived after November 21 would have enough delta v to reach one of them. Unlike Earth’s Moon, whose gravity the Grunt lander was not designed to withstand, many asteroids are small. Theoretically, Grunt’s lander could set down on any celestial body with a gravitational force similar to that of Phobos. If any such asteroid candidate exists –and this is a big if– the ascent engine, designed to propel the Grunt return capsule back to Earth might be utilized to deliver a sample of the asteroid, along with the LIFE experiment.