How Dense is the Asteroid Belt?

How Dense is the Asteroid Belt?

We’ve seen way too many science fiction episodes that show asteroid belts as dense fields of tumbling boulders. How dense is the asteroid belt, and how to spacecraft survive getting through them?

For the purposes of revenue, lazy storytelling, and whatever it is Zak Snyder tells himself to get out of bed in the morning, when it comes to asteroids, Science fiction and video games creators have done something of disservice to your perception of reality.

Take a fond trip down sci-fi memory lane, and think about the time someone, possibly you, has had to dogfight or navigate through yet another frakkin’ asteroid belt. Huge space rocks tumbling dangerously in space! Action! Adventure! Only the skilled pilot, with her trusty astromecha-doplis ship can maneuver through the dense cluster of space boulders, dodging this way and that, avoiding certain collision.

And then she shoots her pew pew laser breaking up larger asteroids up into smaller ones, possibly obliterating them entirely depending on the cg budget. Inevitably, there’s bobbing and weaving. Pursuit craft will clip their wings on asteroids, spinning off into nearby tango. Some will fly straight into a space boulder.

Finally you’ll thread the needle on a pair of asteroids and the last ship of the whatever they’re called clicky clacky mantis Zorak bug people will try and catch you, but he/it won’t be quite so lucky. Poetically getting squashed like… a… bug. Sackhoff for the win, pilot victorious.

Okay, you probably knew the laser part is totally fake. I mean, everybody knows you can’t hear sounds in space. Outside of Starbuck being awesome, is that at all realistic? And if so, how does NASA maneuver unmanned spacecraft through that boulder-strewn grand canyon death trap to reach the outer planets?

The asteroid belt is a vast region between the orbits of Mars and Jupiter. Our collection of space rocks starts around 300 million kilometers from the Sun and ends around 500 million kilometers. The first asteroid, the dwarf planet Ceres which measures 950 km across, was discovered in 1801, with a “That’s funny.”. Soon after astronomers turned up many more small objects orbiting in this region at the “Oooh neat!” stage.

Artist’s concept of Dawn in its survey orbit at dwarf planet Ceres. Credit: NASA/JPL-Caltech
Artist’s concept of Dawn in its survey orbit at dwarf planet Ceres. Credit: NASA/JPL-Caltech

They realized it was a vast belt of material orbiting the Sun, with I suspect a “We’re all gonna die.”. To date, almost half a million asteroids have been discovered, most of which are in the main belt.

As mentioned in a another video, gathering up all the material in the asteroid belt and gluing it together makes a mass around 4% of the Moon. So, in case one of your friends gets excited and suggests it was a failed planet, you can bust out that stat and publicly shame them for being so 1996, Goodwill Hunting style. You like asteroids? How about them asteroids?

There’s a few hundred larger than 100 km across, and tens of millions of rocks a hundred meters across. Any one of these could ruin a good day, or bring a bad day to a welcome firey close for either a depressed wayfaring spacecraft or a little bluegreen speck of a planet. Which sounds dangerous all the way around.

Fortunately, our asteroid belt is a vast region of space. Let’s wind up the perspective-o-meter. If you divide the total number of objects in the field by the volume of space that asteroid belt takes up, each space rock is separated by hundreds of thousands of kilometers. Think of it as gravity’s remarkably spacious zen rock garden.

Ceres compared to asteroids visited to date, including Vesta, Dawn's mapping target in 2011. Image by NASA/ESA. Compiled by Paul Schenck.
Ceres compared to asteroids visited to date, including Vesta, Dawn’s mapping target in 2011. Image by NASA/ESA. Compiled by Paul Schenck.

As a result, when NASA engineers plot a spacecraft’s route through the asteroid belt, they don’t expect to make a close encounter with any asteroids – in fact, they’ll change its flight path to intercept asteroids en route. Because hey look, asteroid!

Even though Ceres was discovered in 1801, it’s never been observed up close, until now. NASA’s Dawn spacecraft already visited Asteroid Vesta, and by the time you’re watching this video, it will have captured close-up images of the surface of Ceres.

Once again, science fiction creatives sold us out to drama over hard science. If you’re passing through an asteroid belt, you won’t need to dodge and weave to avoid the space rocks. In fact, you probably wouldn’t even know you were passing through a belt at all. You’d have to go way the heck over there to even get a nearby look at one of the bloody things. So we’re safe, our speck is safe, and all the little spacecraft are safe…. for now.

Which dramatic version of “asteroids” are you most fond of? Tell us in the comments below.

Will We Mine Asteroids?

Will We Mine Asteroids?

It’s been said that a single asteroid might be worth trillions of dollars in precious rare metals. Will we ever reach out and mine these space rocks? How hard could it be?

Here on Earth, precious metals like gold and silver are getting harder to find. Geologists are developing more elaborate ways to get at the veins of precious metals beneath the surface of the Earth. And for the truly rare metals, like platinum and iridium, forget about it. All the platinum ever mined in the history of the world would fit inside my basement, and it’s not that big of a basement.

There are asteroids out there, just floating past us, taunting us, containing mountains of precious minerals. There are iron-nickel asteroids made entirely of metal. Comets of water, dirt and organic materials, everything you’d need to make an orbital farm. Just a single 30-meter asteroid, like the recently discovered 2012 DA14, is worth $20 trillion dollars. Now, if you could just somehow get to it.

Mining here on Earth is hard enough, but actually harvesting material from asteroids in the Solar System sounds almost impossible. But almost impossible, is still possible. With enough ingenuity and a few breakthroughs in spaceflight and robotics, plus some convenient hand waving for the sake of storytelling and there could be a future of asteroid mining ahead of us.

If there are mineral rich asteroids that contain a large amount of precious elements, it just might be cost effective to deliver those elements back to Earth. $20 trillion dollars sure would help buy that space elevator you wanted for sci-fi Christmas. If we had Robotic harvesters extract the gold, platinum and iridium off the surface of the space rock and they could send return capsules to Earth.

It would make even more sense to keep this stuff in space. Future spacecraft will need rocket fuel, hydrogen and oxygen, conveniently contained in water. If you could mine water ice off a comet or asteroid, you could create fuel depots across the Solar System.

Artists's conception of a Robot space miner. Credit: NASA
Artists’s conception of a Robot space miner. Credit: NASA

Miners could extract and concentrate other materials needed for spaceflight and return them to Earth orbit. There could eventually be an orbiting collection of everything you need to survive in space, all gathered together and conveniently located … in space.

You might be surprised to know that getting to a nearby asteroid would require less energy than traveling to the Moon. Asteroids actually make better refueling stations than the Moon, and could serve as a waypoint to the other planets.

There are a few companies working to mine asteroids right now. Planetary Resources and Deep Space Industries have both developed plans for robotic missions to find asteroid targets, analyze them up close, and even return samples to Earth for study.

Artist's illustration of a robotic miner. Image credit: NASA
Artist’s illustration of a robotic miner. Image credit: NASA

Within a few decades, they should have identified some ideal candidate asteroids for mining, and we get on with the work of mining with Solar System to support our further exploration. Perhaps then we’ll become a true spacefaring civilization, or just get conquered by an uprising of our sentient robotic miner drones.

So, will this ever happen? Will we eventually mine asteroids to send material back to Earth and support the exploration of space? Who knows. Business and industry are drivers of innovation. If there’s profit to be made, somebody will figure out how to do it.

What do you think? Do you envision a future career as an asteroid miner? Can we all be like Bruce Willis? Tell us in the comments below.

Thanks for watching! Never miss an episode by clicking subscribe. Our Patreon community is the reason these shows happen. We’d like to thank:
From Quarks to Quasars
Dark Matter is the New Black
and the rest of the members who support us in making great space and astronomy content.
Members get advance access to episodes, extras, contests, and other shenanigans with Jay, myself and the rest of the team.Want to get in on the action? Click here.

How Private Space Companies Make Money Exploring The Final Frontier

Virgin Galactic's SpaceShipTwo soars in a powered flight test on Sept. 5, 2013. Credit: MarsScientific.com and Clay Center Observatory

TORONTO, CANADA – There’s a big difference in thinking between governments and the private companies that participate in space. While entities such as NASA can work on understanding basic human health or exploring the universe for the sake of a greater understanding, companies have a limitation: they need to eventually make a profit.

This was brought up in a human spaceflight discussion at the International Astronautical Congress today (Oct. 1), which included participants from agencies and companies alike. Below are some concepts for how private companies in the space world today are making their money.

“We have in space a movement towards more privatization … and also for more use of space activities in general and human space activity in the future by individual private persons,” said Johann Dietrich Worner, chairman of the executive board of DLR (Germany’s space agency), in the panel.

“You can imagine that even for the upcoming 10 to 20 to 30 years, the public funding is the basic funding for [space] activities while in other areas, we are already seeing that private money is doing its work if you look to communication and if you look to other activities, like for instance, research in space.”

But commercial spaceflight is already taking place, as some of these examples show.

Commercial crew

Would you ‘Enter the Dragon’? First look inside SpaceX Dragon V2 next generation astronaut spacecraft unveiled by CEO Elon Musk on May 29, 2014. Credit: Robert Fisher/AmericaSpace
Would you ‘Enter the Dragon’?
First look inside SpaceX Dragon V2 next generation astronaut spacecraft unveiled by CEO Elon Musk on May 29, 2014. Credit: Robert Fisher/AmericaSpace

The two successful companies in NASA’s latest round of commercial contracts — SpaceX (Dragon) and Boeing (CST-100) — are each receiving government money to develop their private space taxis. The companies are responsible for meeting certain milestones to receive funds. There is quite the element of risk involved because the commercial contracts are only given out in stages; you could be partway through developing the spacecraft and then discover you will not be awarded one for the next round. This is what happened to Sierra Nevada Corp., whose Dream Chaser concept did not receive more money in the announcement last month. The company has filed a legal challenge in response.

Private space travel

Sir Richard Branson hugs designer Burt Rutan as they are surrounded by employee's of Virgin Galactic, The SpaceShip Company and Scaled Composites watch as Virgin Galactic's SpaceShip2 streaks across the sky under rocket power, its first ever since the program began in 2005. Burt's wife Tonya Rutan is at right taking their photo. The spacecraft was dropped from its "mothership", WhiteKnight2 over the Mojave, CA area, April 29, 2013 at high altitude before firing its hybrid power motor. Virgin Galactic hopes to become the first commercial space venture to bring multiple passengers into space on a regular basis.
Sir Richard Branson hugs designer Burt Rutan, surrounded by employees of Virgin Galactic, The SpaceShip Company, and Scaled Composites, and watch as Virgin Galactic’s SpaceShip2 streaks across the sky under rocket power, its first ever since the program began in 2005. Burt’s wife Tonya Rutan is at right taking their photo. The spacecraft was dropped from its “mothership,” WhiteKnight2, over the Mojave CA area on April 29, 2013, at high altitude before firing its hybrid power motor. Virgin Galactic hopes to become the first commercial space venture to bring multiple passengers into space on a regular basis.

Virgin Galactic and its founder, Richard Branson, are perhaps the most visible of the companies that are looking to bring private citizens into space — as long as they can pay $250,000 for a ride. The first flight of Virgin into space is expected in the next year. Customers must pay a deposit upfront upon registering and then the balance before they head into suborbit. In the case of Virgin, Branson has a portfolio of companies that can take on the financial risk during the startup phase, but eventually the company will look to turn a profit through the customer payments.

Asteroid mining

Artist concept of the ARKYD spacecraft by an asteroid. Credit: Planetary Resources.
Artist concept of the ARKYD spacecraft by an asteroid. Credit: Planetary Resources.

The business case for Planetary Resources and Deep Space Industries, the two self-proclaimed asteroid mining companies, hasn’t fully been released yet. We assume that the companies would look to make a profit through selling whatever resources they manage to dig up on asteroids, but bear in mind it would cost quite a bit of money to get a spacecraft there and back. Meanwhile, Planetary Resources is diversifying its income somewhat by initiatives such as the Arkyd-100 telescope, which will look for asteroids from Earth orbit. They raised money for the project through crowdsourcing.

Space station research

The International Space Station in March 2009 as seen from the departing STS-119 space shuttle Discovery crew. Credit: NASA/ESA
The International Space Station in March 2009 as seen from the departing STS-119 space shuttle Discovery crew. Credit: NASA/ESA

NanoRacks is a company that has research slots available on the International Space Station that it sells to entities looking to do research in microgravity. The company has places inside the station and can also deploy small satellites through a Japanese system. While the company’s website makes it clear that they are focused on ISS utilization, officials also express an interest in doing research in geocentric orbit, the moon or even Mars.

If You Mine An Asteroid, Who Does The Property Belong To?

An astronaut retrieves a sample from an asteroid in this artist's conception. Credit: NASA

There have been several proposals in recent months to visit asteroids — NASA is talking about sending astronauts to an asteroid sometime, and both Planetary Resources and Deep Space Industries have outlined distant plans to mine these space rocks for resources.

But once the stuff is extracted, who does it belong to? A bill being considered by the U.S. House of Representatives says it would belong to “the property of the entity that obtained such resources.”

In a blog on Space Politics, aerospace analyst Jeff Foust outlined a discussion on the bill at the NewSpace 2014 conference last week. There are still a few wrinkles to be worked out, with one of the most pressing being to define what the definition of an asteroid is. Also, the backers of the bill are talking with the U.S. State Department to see if it would conflict with any international treaty obligations. (Here’s a copy of the bill on the Space Politics website.)

A single radar image frame close-up view of 2014 HQ124. Credit: NASA
A single radar image frame close-up view of 2014 HQ124. Credit: NASA

The panel also noticed there is precedent for keeping and even selling samples: the visits to the Moon. Both Apollo astronauts (with the United States) and the Luna robotic missions (from the Soviet Union) returned samples of the Moon to the Earth. Some of the Apollo rocks, for example, are on display in museums. Others are stored in the NASA Lunar Sample Laboratory Facility at the Johnson Space Center in Houston.

That said, extraterrestrial property rights are difficult to define. For example, the United Nations Moon Treaty (more properly known as Agreement Governing the Activities of States on the Moon and Other Celestial Bodies) allows samples to be removed and stored for “scientific purposes”, and during these investigations they may “also use mineral and other substances of the moon in quantities appropriate for the support of their missions.” But it also adds that “the moon and its natural resources are the common heritage of mankind.”

NASA’s Sci-Fi Vision: Robots Could Help Humanity Mine Asteroids

An artist's conception of a spacecraft designed to pick up an asteroid. Credit: NASA/Advanced Concepts Laboratory

In a few generations of robotics, we’ll see mighty machines able to fully construct themselves and operate from the surface of asteroids — providing applications for mining, NASA researchers say in a new study.

The scientists are convinced that this type of research is not only possible, but also able to support itself financially. (Costs overruns are a notorious factor in space exploration as it pushes frontiers both literally and engineering-wise.)

“Advances in robotics and additive manufacturing have become game-changing for the prospects of space industry. It has become feasible to bootstrap a self-sustaining, self-expanding industry at reasonably low cost,” the researchers stated in a new study.

A couple of factors are pointing to this, researchers said: private industry is willing and able to get involved. Advances in technologies such as 3-D printing are making off-world work more feasible. Also, humanity’s surveys of space resources has revealed the elements needed to make rubber, plastic and alloys needed for machinery.

NASA proposes a robotic flotilla could mine nearby space rocks. They caution the technology won’t be ready tomorrow, and more surveys will need to be done of nearby asteroids to figure out where to go next. There is, however, enough progress to see building blocks, the agency stated.

An artist's conception of a space exploration vehicle approaching an asteroid. Credit: NASA
An artist’s conception of a space exploration vehicle approaching an asteroid. Credit: NASA

“Robots and machines would just make the metal and propellants for starters,” stated Phil Metzger, a senior research physicist at NASA’s Kennedy Space Center, who led the study.

“The first generation of robots makes the second generation of hardware, except the comparatively lightweight electronics and motors that have to be sent up from Earth. It doesn’t matter how much the large structures weigh because you didn’t have to launch it.”

A computer model in the study showed that in six generations of robotics, these machines will be able to construct themselves and operate without any need of materials from Earth.

Artist impression of the Arkyd Interceptor, a low cost asteroid mission that enables accelerated exploration. Credit: Planetary Resources.
Artist impression of the Arkyd Interceptor, a low cost asteroid mission that enables accelerated exploration. Credit: Planetary Resources.

At least two startups would agree with the optimism: Deep Space Industries and Planetary Resources.

In the past year, members of both firms have proposed asteroid mining ideas, and since then, Planetary Resources has also unveiled other projects such as a public space telescope (perhaps in a bid to diversify revenues and attract more attention.)

In early 2013, when NASA submitted its fiscal budget request for 2014, it also got in on the hubbub: the agency proposed robotically venturing out to an asteroid and bringing it back to Earth.

That’s received many questions from critics (including at least one government space committee), but NASA has argued it is feasible and a way to unite innovation across various sectors.

“Because asteroids are loaded with minerals that are rare on Earth, near-Earth asteroids and the asteroid belt could become the mining centers for remotely-operated excavators and processing machinery,” NASA stated.

Asteroid 951 Gaspra
Asteroid 951 Gaspra. Credit: NASA

“In the future, an industry could develop to send refined materials, rare metals and even free, clean energy to Earth from asteroids and other bodies.”

Check out more details of the new report in the Journal of Aerospace Engineering.

A side note, this isn’t the only NASA-funded group looking at asteroid mining. In September, NASA’s Innovative Advanced Concepts office offered Phase 1 funding to a Robotic Asteroid Prospector proposal.

Source: NASA

‘Space Selfie’ Telescope Could Hunt Alien Planets … If It Raises A Cool $2M

Example of an orbital 'selfie' that Planetary Resources' ARKYD telescope could provide to anyone who donates to their new Kickstarter campaign. Credit: Planetary Resources.

A crowdfunded telescope — best known for offering “space selfies” for backers as an incentive to send money — is now considering a search for alien planets.

Planetary Resources Inc. (the proposed asteroid miners) announced a new “stretch goal” for its asteroid-hunting Arkyd-100 telescope.

If the company can raise $2 million — double its original goal — it promises to equip the Arkyd telescope to look at star systems for exoplanets. The project is still short the $1 million required to receive any money, but the target appears to be close enough now to give Planetary Resources confidence that more funds will come for new initiatives.

The motivation for planet hunting was mechanical trouble besetting the famous Kepler space telescope. Kepler recently lost the second of its four reaction wheels, devices that are used to stabilize the telescope in space as it seeks alien worlds.

Artist's conception of the Kepler Space Telescope. Credit: NASA/JPL-Caltech
Artist’s conception of the Kepler Space Telescope. Credit: NASA/JPL-Caltech

Because Kepler needs at least three reaction wheels to point towards targets, its future is uncertain. Some planet searching is still possible with ground-based observatories, however.

“With NASA’s recent equipment failure on the Kepler telescope (RIP, Kepler!), our search for extrasolar planets nearly came to a grinding halt. If we can meet our stretch goal, we can resume some of this progress by enhancing the Arkyd,” Arkyd organizers stated on their Kickstarter campaign website.

“We’re partnering with exoplanet researchers at MIT [the Massachusetts Institute of Technology] to equip citizen scientists like YOU with the tools to join a search that’s captivated us for generations.”

Arkyd would use two methods to hunt down planets:

Transiting, or seeing the dip in a star’s brightness when a planet passes in front of it;

Gravitational microlensing, or finding planets by measuring how the gravity of the star (and its planets) distorts light from stars and galaxies behind.

With 19 days to go, Arkyd is at about $857,000 of its preliminary $1 million goal that it must reach to receive any money.

If it can raise $1.3 million, Planetary Resources proposes to build a ground station at an undisclosed “educational partner” that would double the download speed of data from the orbiting observatory.

The project has more than 9,500 backers. Two more stretch goals will be revealed if Arkyd receives 11,000 backers and 15,000 backers, Planetary Resources stated.

More information on the Arkyd Kickstarter campaign is here.

Planetary Resources Looks to Crowdfund a Space Telescope for the Public

Example of an orbital 'selfie' that Planetary Resources' ARKYD telescope could provide to anyone who donates to their new Kickstarter campaign. Credit: Planetary Resources.

How much would you donate to have access to a space telescope … or just to have an orbital “selfie”? Planetary Resources, Inc., the company that wants to mine asteroids, has launched a Kickstarter campaign for the world’s first crowdfunded space telescope. They say their Arkyd-100 telescope will provide unprecedented public access to space and place the most advanced exploration technology into the hands of students, scientists and a new generation of citizen explorers.

To make their campaign successful, they need to raise $1 million in Kickstarter pledges by the end of June 2013. Less than 2 hours into their campaign, they have raised over $100,000.

Last year, Planetary Resources revealed their plans to develop a series of small spacecraft to do a little ‘space prospecting’ which would eventually allow them to mine near Earth asteroids, extracting valuable resources.

Their announcement today of the crowdfunded Arkyd-100 space telescope will allow them to begin the search for asteroid they could mine, while involving the public and providing access to to the space telescope “for inspiration, exploration and research” or have a commemorative photo of those who donate displayed above the Earth, such as the image above.

During a webcast today to announce the Kickstarter campaign, Chris Lewicki, President and Chief Engineer for Planetary Resources said the telescope would have 1 arcsecond resolution, with the benefit of being above atmosphere.

A wide array of scientists, space enthusiasts and even Bill Nye the Science Guy have voiced their support for Planetary Resources’ new public space telescope.

Artist concept of the Arkyd telescope in space. Credit: Planetary Resources Inc.
Artist concept of the Arkyd telescope in space. Credit: Planetary Resources Inc.

“The ARKYD crowdfunding campaign is extraordinary,” said Sara Seager, Ph.D., Professor of Physics and Planetary Science at the Massachusetts Institute of Technology. “Not only does the telescope have the technical capability to increase our understanding of space, but it can be placed in orbit for an incredibly low cost. That is an economic breakthrough that will accelerate space-based research now and in the future.”

The space telescope is being built by Planetary Resources’ technical team, who worked on every recent U.S. Mars lander and rover.

“I’ve operated rovers and landers on Mars, and now I can share that incredible experience with everyone,” said Lewicki. “People of any age and background will be able to point the telescope outward to investigate our Solar System, deep space, or join us in our study of near-Earth asteroids.”

Planetary Resources will use the proceeds from the Kickstarter campaign to launch the telescope, fund the creation of the public interface, cover the fulfillment costs for all of the products and services listed in the pledge levels, and fund the immersive educational curriculum for students everywhere. Any proceeds raised beyond the goal will allow for more access to classrooms, museums and science centers, and additional use by individual Kickstarter backers.

However, if they fail to reach the $1 million goal, they receive none of the money. According to Jeff Foust at the NewSpace Journal quoted Lewicki as saying, if that happens, they’ll proceed with their current plans, including development of a small prototype satellite, called Arkyd 3, that is planned for launch next year.

Here are a few of the donation levels:

• Your Face in Space – the #SpaceSelfie: For US$25, the team will upload an image of the campaign backer’s choice to display on the ARKYD, snap a photo of it with the Earth in the background, and transmit it to the backer. This space ‘photo booth’ allows anyone to take (or gift) a unique Space Selfie image that connects a personal moment with the cosmos in an unprecedented, yet tangible way.

• Explore the Cosmos: Higher pledge levels provide students, astronomers and researchers with access to the ARKYD main optic for detailed observations of the cosmos, galaxies, asteroids and our Solar System.

• Support Education Worldwide: At the highest levels, pledgers can offer the K-12 school, science center, university, or any interested group of their choice access to the ARKYD for use in interactive educational programming to strengthen STEM education worldwide. The full pledge list and ARKYD technical specifications can be found here.

See all the levels at Planetary Resources’ Kickstarter Page.

“When we launched Planetary Resources last year, we had an extraordinary response from the general public,” said Peter Diamandis, Co-Founder and Co-Chairman of Planetary Resources, Inc.. “Tens of thousands of people contacted us and wanted to be involved. We are using this Kickstarter campaign as a mechanism to engage the community in a productive way.”

During a webcast today to make their Kickstarter announcement Diamandis said, “In the last 50 years, space exploration has been led by national governmental agencies with their own set of priorities. Imagine not having to wait for Congress to decide what missions will fly!”

ARKYD Infographic

The Most Profitable Asteroid Is…

Artist impression of the Arkyd Interceptor, a low cost asteroid mission that enables accelerated exploration. Credit: Planetary Resources.

[/caption]

With the recent announcement of the asteroid mining company, Planetary Resources, some of the most-asked questions about this enticing but complex endeavor include, what asteroids do we mine? Which are the easiest asteroids to get to? Could it really be profitable?

While Planetary Resources officials said they hope to identify a few promising targets within a decade, the initial answers to those questions are available now on a new website that estimates the costs and rewards of mining rocks in space. Called Asterank, the website uses available data from multiple scientific sources on asteroid mass and composition to try and compute which asteroids would be the best targets for mining operations.

So, which asteroids are most profitable, valuable, easily accessible and cost effective?

The winners are, according to Asterank:

Most Profitable: 253 Mathilde, a 52.8 km-diameter C-type (carbonaceous) asteroid that has an estimated value of over $100 trillion and estimated profit of $9.53 trillion (USD)
Most Cost Effective: 2000 BM19, a very small O-type asteroid (less than 1 km wide) that makes several close approaches to Earth. Its estimated value is $18.50 trillion and an estimated profit of $3.55 trillion.
Most Valuable: 253 Mathilde
Most Accessible: 2009 WY7, another small asteroid with regular close approaches of less than 1 AU. This is an S-type asteroid, a silicaceous or “stony” object that has a high accessibility score on Asterank of 7.6577.

Asterank combines both the economic and scientific features of over 580,000 asteroids in our solar system, looking specifically for platinum-group metals and water. It was created by Ian Webster, a software engineer in the San Francisco Bay Area.

“I’ve always had a strong interest in astronomy and especially space exploration,” Webster said via an email to Universe Today. “The commercialization of space through ventures like asteroid mining really excites me because I believe it’ll open space to the rest of us and improve human quality of life. My day job is at a startup unrelated to space, but my hobbies include building rockets and many side projects like this one. I have a lot of fun applying computer science in different ways and I hope that Asterank will educate and inspire people.”

Webster provides a caveat, however, to the rankings of the top 100 asteroids in each category.

“Scientists know shockingly little about the composition of asteroids,” he writes on the website. “Visit JPL’s Small Body Database and you will notice how sparse information is.”

So, this mean that there aren’t really ‘experts’ in this field, and even those most knowledgeable about asteroids likely don’t have the numbers needed to completely and accurately estimate the true value of an asteroid or the cost of mining it — “which is why Planetary Resources is going to spend years or even decades investing in LEO-telescopes and data-gathering flybys before they ever touch an asteroid,” Webster said.

Webster has used databases, websites, books and other publications to get as much accurate, up-to-date information as possible, but even then, he said everything on the website is a rough estimation.

“The primary purpose of this site is to broadly educate and inspire, rather than provide completely accurate data — which is currently impossible,” he said. “I created the site in response to the announcement of Planetary Resources. “I should point out that nearly all the measurements and hard data come from the scientists at NASA JPL, but I had a lot of fun putting the site together.”

And it is fun to peruse the various categories and see what asteroids make the top of each category.

The ranking takes into account the value of the materials on the asteroids such as metals, volatile compounds, and water; the costs of getting to an asteroid and moving the raw materials: and the comparative savings and potential profit, which at this point are very hypothetical, taking into account processing and moving raw material.

“We really don’t know yet how much it will cost to mine an object millions of miles away,” Webster said.

While this website is a first step, it offers an exciting and enjoyable initial look at the potential commercial viability of space mining.

Check out Asterank.