13 Things That Saved Apollo 13, Part 6: Navigating By Earth’s Terminator

[/caption]

Note: To celebrate the 40th anniversary of the Apollo 13 mission, for 13 days, Universe Today will feature “13 Things That Saved Apollo 13,” discussing different turning points of the mission with NASA engineer Jerry Woodfill.

The rupture and explosion of Apollo 13’s oxygen tank crippled the spacecraft, endangering the lives of the crew and making a Moon landing not an option. But more problems arose as the perilous flight progressed. Keeping the spacecraft on the right trajectory was a huge challenge for Mission Control, and especially for the crew. Normally, the ship’s computers allowed for much of the navigation, but due to the loss of the Service Module as an electrical power source, even backup navigation and targeting functions were unavailable. The Lander’s limited battery power required the shutting down of its guidance computer. The astronauts also needed to use an on-board sextant to confirm their location by sighting-in the stars, similar to how ancient sailors navigated. “There are thirty-seven stars – and one is the sun,” said Apollo engineer Jerry Woodfill, “that provided an accurate way of aligning the spacecraft’s computer platform to allow the astronauts to steer their way through the heavens.”

But the explosion of the tank had enshrouded the Apollo 13 spacecraft with debris. Commander Jim Lovell and his crew couldn’t discern the stars from the particles that glimmered in the sunlight. “The situation was, without the ability to see the stars, you couldn’t navigate,” Woodfill said.

But NASA had a backup navigation plan, thanks to an insightful NASA contractor employee. This novel way of navigating had only been tried once before in space. And coincidentally, the astronaut who used it was Jim Lovell, during his previous flight — Apollo 8 — which orbited the Moon in December of 1968.

An employee of TRW – which was the contractor for many of the navigational systems and procedures for NASA — thought of an unusual backup navigation plan one day. “This fellow is a friend and neighbor of mine,” said Woodfill, “and by his account of the story to me, he said that a thought came to him one day about Apollo astronauts using stars to navigate. What if the stars couldn’t be seen? Now, that was highly unlikely, as there are no clouds, fog, or smoke to conceal stars from viewing by astronauts. But, nevertheless, the thought simply wouldn’t cease. Soon a follow-up idea came to mind. Why not use the Earth’s terminator?”

The nominal flight plan for a mission to the Moon. Credit: Apollo 13 report.

The terminator is the line which delineates between night and day on Earth; where the Sun is shining and where it is dark.

Woodfill’s friend figured out the geometry and wrote a computer program to validate the idea. He submitted the proposal to the navigation board, which approved the technique so that it was entered into the computers in the Mission Control Center.

Through unusual, and what could be called happenstance circumstances, Lovell experimented with the backup plan during Apollo 8.

Lovell served as navigator for the first manned mission to orbit the Moon. He made a star sighting in preparation for the return to Earth, and entered the coordinates into the Apollo spacecraft’s primitive computer using the “DSKY” (display and keyboard). Instead of pressing the ENTR (enter) key, he inadvertently pressed the adjacent CLR (clear) key erasing the entire navigational alignment.

“Lovell consulted with Mission Control whether to repeat the sextant star sighting,” Woodfill said, “and someone realized this would be an opportunity to test the backup ‘seat of the pants’ means of navigating using the Earth’s terminator. And it worked! But then everyone forgot about it, until…guess when?”

Apollo 13's view of the Moon. Credit: NASA

Initially, the Apollo 13 crew was able to use the Sun as a “marker” to help in guiding the spacecraft to confirm they were on the right path, and were able to fire the LM engines for course corrections using the transferred guidance platform from the Command Module.

But as Apollo 13 headed back to Earth, the Reentry (RETRO) and Guidance, Navigation and Control (GNC) officers looking at the trajectory analysis noticed the spacecraft was coming in too “shallow,” that is, Apollo 13 was headed to skip off the atmosphere and out into space forever. Something seemed to be “blowing” the spacecraft off course. Later, it was discovered that cooling vapor from the lander was responsible. Since no lander had been present for previous missions on a return trip from the Moon, such a mysterious “wind” had never been encountered prior to Earth re-entry.

Another burn was needed, but no help from the guidance system would be available, as powering the lander’s guidance system, its gyros, the computer, etc. would use too much electrical power.

Here’s where the backup navigation approach that Lovell experimented with on Apollo 8 came to the rescue.

“If a ‘dead-reckoning’ approach could be used, no electricity would be needed,” said Woodfill. “Simply point the vehicle correctly, start the engine and stop it based on Mission Control’s prescribed time for its operation.” Lovell eyed up the Earth’s terminator line and controlled the “yaw” of the spacecraft, Haise controlled the “pitch” and Swigert timed it with his accurate Omega Speedmaster watch.

Graphics from the Apollo 13 report on using Earth's terminator for navigation.

The Navigation report for Apollo 13 describes it this way:

“The cusps of the Earth terminator were placed on the Y axis of the COAS. The illuminated part of the Earth was placed at the top of the reticle. Pitch attitude was achieved by placing the Sun in the upper portion of the AOT (see below). This procedure aimed the LM +Z axis at the Earth and aligned the LM +X axis retrograde along the local horizontal. An AGS body axis alignment was performed, followed by transitioning the AGS to the automatic attitude hold mode. A maneuver to burn attitude was performed, followed by another body axis alignment.”

Navigation graphics from the Apollo 13 report.

Woodfill said he enjoyed Hollywood’s re-enactment of the procedure in the “Apollo 13” movie. Though the spacecraft gyrations about the heavens are wholly exaggerated, the scene where Tom Hanks, Bill Paxton, and Kevin Bacon set-up and execute the terminator burn is generally accurate.

Suffice to say, the procedure worked for Hollywood dramatics, but more importantly, it worked to save the lives of Lovell, Haise and Swigert.

Tomorrow, Part 6: Fire

Other articles from the “13 Things That Saved Apollo 13” series:

Introduction

Part 1: Timing

Part 2: The Hatch That Wouldn’t Close

Part 3: Charlie Duke’s Measles

Part 4: Using the LM for Propulsion

Part 5: Unexplained Shutdown of the Saturn V Center Engine

Part 6: Navigating by Earth’s Terminator

Part 7: The Apollo 1 Fire

Part 8: The Command Module Wasn’t Severed

Part 9: Position of the Tanks

Part 10: Duct Tape

Part 11: A Hollywood Movie

Part 12: Lunar Orbit Rendezvous

Part 13: The Mission Operations Team

Also:

Your Questions about Apollo 13 Answered by Jerry Woodfill (Part 1)

More Reader Questions about Apollo 13 Answered by Jerry Woodfill (part 2)

Final Round of Apollo 13 Questions Answered by Jerry Woodfill (part 3)

Never Before Published Images of Apollo 13’s Recovery

Listen to an interview of Jerry Woodfill on the 365 Days of Astronomy podcast.

13 Things That Saved Apollo 13, Part 5: Unexplained Shutdown of the Saturn V Center Engine

Note: To celebrate the 40th anniversary of the Apollo 13 mission, for 13 days, Universe Today will feature “13 Things That Saved Apollo 13,” discussing different turning points of the mission with NASA engineer Jerry Woodfill.

While oxygen tank number two on the Apollo 13 spacecraft was an accident waiting to happen, another problem on the Saturn V rocket could have destroyed Apollo 13 before it reached Earth orbit. During the second-stage boost, the center – or inboard — engine shut down two minutes early. The shutdown wasn’t a problem, as the other four engines were able to compensate for the loss by operating for an extra four minutes. But why the engine shut down is a mystery that may have saved the mission.

“A catastrophic failure should have ensued,” said Apollo engineer Jerry Woodfill, “and would have, except for the unexplained behavior of the engine’s shutoff system. In fact, even the NASA Apollo 13 accident report fails to deal with the seriousness of the event.”

When the center engine shut down, it caused a few moments of uneasiness for Mission Control and the crew. Speaking after the flight, Commander Jim Lovell said that when NASA gave them the OK to carry on with the flight, “We all breathed a sigh of relief on the spacecraft. Hey, that was our crisis over with and we thought we’d have a smooth flight from then on.”

Woodfill said that the quick assessment in Mission Control was that a minor electrical signal failed to keep the engine operating so that it shut down prematurely. But that wasn’t the problem.
[/caption]
What happened was the Saturn V rocket experienced dangerous so-called “pogo” thrust oscillations, a problem NASA knew about. While a fix had been planned for Apollo 14, time did not permit its implementation on Apollo 13’s Saturn V.

“While a clerical error caused Apollo 13’s oxygen tank to explode,” said Woodfill, “because its heater design had not been updated for 65 volt operation, and the tank was a virtual bomb (see Part 1), similarly NASA’s failure to fix a known serious booster flaw should have destroyed Apollo 13.”

The Saturn V rocket had five J-2 engines, each producing 200,000 pounds of thrust, together creating the 1 million pounds of thrust needed for a mission to the Moon.

On previous Saturn flights, these pogo oscillations had occurred during launch. The phenomenon occurred as the fuel lines and structure of the rocket resonated at a common frequency. The resonance tended to amplify in force and potential destruction with each bounce of the “pogo” mechanism. So damaging was the phenomena on the unmanned Apollo 6 mission that an entire outer panel of the Saturn 5 ejected into space.

Launch of Apollo 6. Credit: NASA

“The oscillations are like a jack hammer and it was so dreadful on Apollo 6 that it tore off a panel on the booster, and threatened the mission,” said Woodfill. “Apollo 6’s orbit was supposed to be circular, but because of the pogo effect and failure of second stage engines, the orbit became an elongated orbit of about 60 by 180 miles.”

Woodfill said if Apollo 13 had ended up in that type of orbit, it would have been bad but not fatal. However, Apollo 13 was a much different situation than Apollo 6.

The Apollo 6 mission carried a mock lunar lander of more modest mass than the “full-up” lander which Apollo 13 carried to orbit. With the added mass for Apollo 13, the pogo forces were suddenly a magnitude greater in intensity. A mission report said that the engine experienced 68g vibrations at 16 hertz, flexing the thrust frame by 3 inches (76 mm).

Woodfill said that if the center engine had continued running a few more seconds, the oscillations may have destroyed the vehicle. “That engine was pounding horizontally up and down, a quarter foot, at the rate of 16 times a second,” he said. “The engine had become a two ton sledge hammer, a deadly pogo stick of destruction, putting enormous forces on the supporting structures.”

What shut the engine down?

“It is, to this day, not fully understood, but it had something to do with fooling the engine’s thrust chamber pressure sensor that pressure was too low,” said Woodfill. He has studied the mission report, but says the complete analysis of why the engine shut down isn’t included.

“Though the shutdown command came from a low thrust chamber pressure sensor assessment, actually, the engine was operating correctly,” he said. ” The sensor had nothing to do with the pogo phenomenon. For some inexplicable reason, it was like something sucked the pressure out of the chamber and a sensor turned the engine off. But no one knows exactly why.”

Woodfill said those who later examined the situation said it was altogether lucky that the sensor shut down the engine. “Something intervened, stopping the engine from pounding its way from the mount into the fragile fuel tanks. This would have destroyed the Apollo 13 launch vehicle.”

As it was, the engine shutdown likely saved the Apollo 13 mission.

Tomorrow, Part 6: Navigation

Other articles from the “13 Things That Saved Apollo 13” series:

Introduction

Part 1: Timing

Part 2: The Hatch That Wouldn’t Close

Part 3: Charlie Duke’s Measles

Part 4: Using the LM for Propulsion

Part 5: Unexplained Shutdown of the Saturn V Center Engine

Part 6: Navigating by Earth’s Terminator

Part 7: The Apollo 1 Fire

Part 8: The Command Module Wasn’t Severed

Part 9: Position of the Tanks

Part 10: Duct Tape

Part 11: A Hollywood Movie

Part 12: Lunar Orbit Rendezvous

Part 13: The Mission Operations Team

Also:

Your Questions about Apollo 13 Answered by Jerry Woodfill (Part 1)

More Reader Questions about Apollo 13 Answered by Jerry Woodfill (part 2)

Final Round of Apollo 13 Questions Answered by Jerry Woodfill (part 3)

Never Before Published Images of Apollo 13’s Recovery

Listen to an interview of Jerry Woodfill on the 365 Days of Astronomy podcast.

13 Things That Saved Apollo 13, Part 4: Using the LM for Propulsion

[/caption]
Note: To celebrate the 40th anniversary of the Apollo 13 mission, for 13 days, Universe Today will feature “13 Things That Saved Apollo 13,” discussing different turning points of the mission with NASA engineer Jerry Woodfill.

After Flight Director Gene Kranz and his team in Mission Control had ascertained the true peril the Apollo 13 crew faced following the explosion of an oxygen tank in the Command and Service Module, they next faced a big decision. What was the best way to get the astronauts back to Earth? Do they get them home as fast as possible, or as safely as possible? The final decision they made likely saved Apollo 13.

“Immediately after the explosion, some recommended a faster return using the powerful service propulsion system (SPS), the engine designed for the retro burn into lunar orbit and the subsequent firing to propel the crew homeward to Earth,” said NASA Engineer Jerry Woodfill.

Using these engines to execute a direct abort burn would allow the crew to turn the spacecraft around, come around the front side of the Moon and be back to Earth within a day and a half. This was the quickest option, but it meant using the SPS, which were very near the area that had exploded on the CSM. No one knew if the engine had been damaged, too.

Vital stores of oxygen, water, propellant, and power were lost when the side of the service module blew off. The astronauts quickly moved into the lunar module which had been provided with independent supplies of these space necessities for the landing on the Moon. Years before, Apollo engineers had talked of using the lunar module as a lifeboat. Credit: NASA

The risk of using using the lunar module’s descent engine was an unknown. If it failed or blew, or if the burn wasn’t executed perfectly, the crew could impact the Moon.

The other option was to go completely around the Moon on a so called free-return trajectory, which would take between four to five days to get back to Earth. But would the crew have enough consumables to survive that long?

This flight plan, too, called for an engine burn to set the spacecraft on the correct path back to Earth. But should they use the SPS engine, which was designed for this maneuver but could be damaged, or use the use the descent engine on the Lunar Module, which had never been designed for this type of use?

In his book, “Failure is Not an Option,” Kranz said it was purely a gut feeling that made him choose to take the long way – to go around the Moon and use the descent engine on the lunar lander rather than the CSM.

“Later, Gene Kranz shared he felt a foreboding about using that engine,” said Woodfill. “Nevertheless, even the use of the lander’s descent engine had some risk. The system was not expected to be fired more than once on a lunar mission. It was designed for descent from lunar orbit to landing. To use it for both Apollo 13’s mid-course correction burn (to return to the free-return trajectory) and a subsequent firing to accelerate the journey home amounted to a second firing.”

With the first burn of the LM engines working as hoped, the crew swung around the far side of the Moon (some records indicate Apollo 13 traveled the farthest distance from the far side of the Moon, making them the crew that traveled the farthest away from Earth), Mission Control considered a second burn.

Without the second burn the ship’s trajectory likely would have successfully returned the crew to Earth approximately 153 hours after launch. This provided less than an hour of consumables to spare, a margin too close for comfort.

After a much discussion and calculating, the engineers in Mission Control determined the LM’s engines could handle the required burn. So, the descent engine was fired sufficiently to boost their speed up another 860 feet per second, cutting the flight time to 143 hours – which provided a better margin for survival.

Damage to the Apollo 13 spacecraft from the oxygen tank explosion. Woodfill noted the missing four Hi-Gain Antenna “horns” severed by the panel and shrapnel from the explosion. Credit: NASA

But what if the SPS engines had been fired? We will never know for sure, but Woodfill said the final photo taken of the damaged command ship after jettison from the reentry capsule appeared to show a slight deformation of the SPS engine nozzle. He believes the SPS panel adjacent to the exploding O2 tank severed the four horns from the mast of the hi-gain communication antenna system. Likely, the shrapnel from the devastating impact with those four dishes ricocheted into the SPS engine bell compromising its use. A hole in the engine’s thrust nozzle would have been catastrophic.

“The fiery bazooka-like blast of the explosion might have cracked the heat shield and damaged critical parts of that engine,” said Woodfill. “The engine’s systems were adjacent to the tunnel-like chimney located in the center of the service module. If the nozzle was deformed, surely, there would have been a potentially fatal consequence of its firing, akin to the loss of the Challenger resulting from the failed solid rocket (SRB) engine.”

Woodfill said that likely, the use of the SPS would have triggered the caution and warning combustion chamber high temperature alarm. “And its use might have made Apollo 13 a fiery meteor-like streak of light never to reach Earth,” he said. “Though a successful firing would have landed the crew days earlier in the Indian Ocean, the peril was too great.”

Tomorrow, Part 5: Unexplained Shutdown of the Saturn V engine

Other articles from the “13 Things That Saved Apollo 13” series:

Introduction

Part 1: Timing

Part 2: The Hatch That Wouldn’t Close

Part 3: Charlie Duke’s Measles

Part 4: Using the LM for Propulsion

Part 5: Unexplained Shutdown of the Saturn V Center Engine

Part 6: Navigating by Earth’s Terminator

Part 7: The Apollo 1 Fire

Part 8: The Command Module Wasn’t Severed

Part 9: Position of the Tanks

Part 10: Duct Tape

Part 11: A Hollywood Movie

Part 12: Lunar Orbit Rendezvous

Part 13: The Mission Operations Team

Also:

Your Questions about Apollo 13 Answered by Jerry Woodfill (Part 1)

More Reader Questions about Apollo 13 Answered by Jerry Woodfill (part 2)

Final Round of Apollo 13 Questions Answered by Jerry Woodfill (part 3)

Never Before Published Images of Apollo 13’s Recovery

Listen to an interview of Jerry Woodfill on the 365 Days of Astronomy podcast.

13 Things That Saved Apollo 13, Part 1: Timing

[/caption]

Note: To celebrate the 40th anniversary of the Apollo 13 mission, for the next 13 days, Universe Today will feature “13 Things That Saved Apollo 13,” discussing different turning points of the mission with NASA engineer Jerry Woodfill. Click here for our preview article.

Oxygen Tank two in the Apollo 13 Service Module exploded at Mission Elapsed Time (MET) 55 hours and 55 minutes, 321,860 kilometers (199,990 miles) away from Earth. If the tank was going to rupture and the crew was going to survive the ordeal, the explosion couldn’t have happened at a better time. “Not everyone agrees with all the things I’ve come up with in my research,” said NASA engineer Jerry Woodfill who has studied the Apollo 13 mission in intricate detail, “but pretty much everyone agrees on this, including Jim Lovell. The timing of when the explosion happened was key. Much earlier or later in the mission would have prevented a successful rescue.”

If the explosion happened earlier (and assuming it would have occurred after Apollo 13 left Earth orbit), the distance and time to get back to Earth would have been so great that there wouldn’t have been sufficient power, water and oxygen for the crew to survive. Had it happened much later, perhaps after astronauts Jim Lovell and Fred Haise had already descended to the lunar surface, there would not have been the opportunity to use the lunar lander as a lifeboat.

But looking at why the explosion happened when it did shows how fortuitous the timing ended up to be.

The control panel of the Apollo 13 capsule. The module is on display at the Kansas Cosmosphere and Space Center in Hutchinson, KS. Photo courtesy Kansas Cosmosphere and Space Center.

The explosion occurred when Jack Swigert flipped a switch to conduct a “stir” of the O2 tank. The Teflon insulation on the wires to the stirrer motor in O2 tank 2 had unknowingly been damaged because the manufacturer failed to update the heater design for 65 volt operation, and the tank overheated during a pre-flight test, melting the insulation. The damaged wires shorted out and the insulation ignited. The resulting fire rapidly increased pressure beyond its nominal 1,000 psi (7 MPa) limit and either the tank or the tank dome failed.

The O2 tanks were stirred in order to get an accurate reading on the gauging systems, as the cryogenic oxygen tends to solidify in the tanks, and stirring allows for a more accurate reading on the quantity of O2 remaining in the tank.

But this was not the first time the crew had been ordered to stir the tank. It was the fifth time during the mission. And most interestingly, the tanks normally were stirred approximately once every 24 hours. So, why was it stirred that often?

In what Woodfill said was a problem unrelated to what caused the explosion, the quantity sensor or gauge was not working correctly on O2 tank 2. The EECOM (Electrical Environmental and Consumables) flight controller in Houston discovered that the quantity sensor was not reading accurately, and because of that Mission Control asked the astronauts to perform additional actuations of the stirrer to try and troubleshoot why the sensor wasn’t working correctly.

So, it took five actuations until the short circuit and the resulting fire and explosion occurred. If the gauge had been working correctly and the normal stirring of the tank had been done, that would have put the time of the fifth stirring after Lovell and Haise had departed for the lunar surface, and the rescue scenario that ultimately was carried out couldn’t have happened.

“Check the arithmetic,” said Woodfill. “Five actuations at 24 hour periods amounts to a MET of 120 hours. The lunar lander would have departed for the Moon at 103.5 hours into the mission. At 120 hours into the mission, the crew of Lovell and Haise would have been awakened from their sleep period, having completed their first moon walk eight hours before. They would receive an urgent call from Jack Swigert and/or Mission Control that something was amiss with the mother ship orbiting the Moon.”

Apollo 13 crew: Jim Lovell, Jack Swigert and Fred Haise. Credit: NASA

Who knows what would have happened to the crew? The fuel cells required the liquid oxygen tanks. This meant no production of electrical power, water and oxygen. The attached lunar lander had to be available. Likely, the two ships couldn’t even have docked back together. And what if the accident had happened behind the Moon without mission control’s help? Alone in the Command module, Swigert would have had difficulty analyzing the problem. Without a fueled lunar lander descent stage attached, lacking its consumables and engines as well as the needed battery power, water and oxygen, the crippled Command Module could not have returned to Earth with live astronaut(s). Not only would Lovell and Haise have perished but Swigert’s fate would have been the same. Even if the damaged Service Module’s engine had worked, no fuel cells meant the ship would die. The situation that the Apollo 13 crew actually faced was dire, but the alternative scenario would certainly have been fatal.

Woodfill contends that the quantity sensor malfunction assured the lunar lander would be present and fully fueled at the time of the disaster. It was an extremely fortuitous event. Had it not occurred, the timing of the explosion would have been far different and the crew would have perished.

Additional Articles from the “13 Things That Saved Apollo 13” series that have now been posted:

Introduction

Part 2: The Hatch That Wouldn’t Close

Part 3: Charlie Duke’s Measles

Part 4: Using the LM for Propulsion

Part 5: Unexplained Shutdown of the Saturn V Center Engine

Part 6: Navigating by Earth’s Terminator

Part 7: The Apollo 1 Fire

Part 8: The Command Module Wasn’t Severed

Part 9: Position of the Tanks

Part 10: Duct Tape

Part 11: A Hollywood Movie

Part 12: Lunar Orbit Rendezvous

Part 13: The Mission Operations Team

Also:

Your Questions about Apollo 13 Answered by Jerry Woodfill (Part 1)

More Reader Questions about Apollo 13 Answered by Jerry Woodfill (part 2)

Final Round of Apollo 13 Questions Answered by Jerry Woodfill (part 3)

Never Before Published Images of Apollo 13’s Recovery

Listen to an interview of Jerry Woodfill on the 365 Days of Astronomy podcast.

Latest LRO Image Solves Apollo 14 Mystery

[/caption]
During the second EVA of the Apollo 14 mission on the moon, astronauts Alan Shepard and Edgar Mitchell had a goal of hiking to the rim of nearby Cone Crater in the Fra Maura highlands. But the steep terrain made the going difficult, elevating the astronauts’ heart rates. Additionally, without landmarks it was difficult to judge distances and the rolling terrain was filled with similar-looking ridges, so Shepard and Mitchell couldn’t really tell if they were close to the rim or not. Realizing time and available oxygen were getting short, Mission Control told the astronauts to head back to the Lunar Module, and although disappointed, the astronauts agreed. But how close did they actually come to the crater? No one knew for sure, until now.

One of the latest images from the Lunar Reconnaissance Orbiter shows new details of the Apollo 14 landing site. If you look closely at the image above, visible are the tracks from the astronauts steps and their three-wheeled MET cart, and you can clearly follow the trail of the astronauts on their “radial traverse.” Click the image for larger version if you’re having trouble seeing the tracks. Their tracks stop just 30 meters short of the rim, near a dark spot just to the lower left of the crater, which might be Saddle Rock, shown in the image below. Shepard and Mitchell never realized just how close they really were.

This photograph shows Saddle Rock, the largest boulder seen on this mission. Named for its shape, Saddle Rock is 4.5 meters across
This photograph shows Saddle Rock, the largest boulder seen on this mission. Named for its shape, Saddle Rock is 4.5 meters across

On the LROC (Lunar Reconnaissance Orbiter Camera) website, Samuel Lawrence notes that more and different detail is visible on this image as opposed to the initial images released prior to the Apollo 11 anniversary in July because the lighting is different. “This time the Sun is 24 degrees higher above the horizon providing a clearer view with fewer shadows. Albedo contrasts are greater, and more clearly show soil disturbances from landing, astronaut surface operations, and blast off.”
The MET cart from Apollo 14. Credit: NASA
The MET cart from Apollo 14. Credit: NASA

Lawrence notes how the term “radial traverse” does not quite do the crew of Apollo 14 justice. “Their journey sounds like a stroll in the park, however the reality is quite the contrary. The hike up Cone crater was quite challenging. For the first time, astronauts traveled out of the sight of their lunar module while hiking uphill over 1400 meters with only a poor map, dragging the tool cart (MET), and wearing their bulky spacesuits. It was an amazing feat that the two astronauts made it to the top of Cone ridge and acquired all their samples. They ended up about 30 meters shy of peering into Cone crater itself, surely a disappointment at the time, but absolutely no reflection on the success of the traverse and the scientific results gleaned after the mission.”

Here’s an annotated video of the Apollo 14 landing site. North is up, image width is approximately 1.6 km

Source: LROC

Gigapan the Apollo Landing Sites

[/caption]
If you haven’t had enough Apollo yet, this is like a firehose of image goodness. Gigapan and NASA Ames have collaborated to make huge, zoomable, panable images from two of the Apollo missions to the Moon. Apollo 16 and 17 are the only missions where the astronauts took panoramic images, so these are the only landing sites available in Gigapan. And if you really want to blow your socks off, look at these images in Google Moon. Click your icon for Google Earth (you DO have it downloaded already, don’t you?? If not go to Google Earth and download it,) choose Moon under the little Saturn-like icon on top, zoom in and find the flags for the Apollo 16 and 17 landing sites. Then look for the “camera” icons and click on one, and then choose the option to “fly” into the images. I’m still gasping from doing this with Apollo 17! Once you recover from flying in, you can then pan around and feel like you are walking alongside Gene Cernan and Harrison Schmitt on the Moon. It really is amazing!

Here’s the Gigapan image site. Enjoy!

Forgotten Apollo Data Could Solve Moon Dust Problem

Old, forgotten data from three Apollo moon missions could help overcome one of the biggest environmental hurdles facing future lunar colonists. Pervasive moon dust can clog equipment, scratch helmet visors –or worse, get inside astronaut lungs and cause serious health problems. But 173 data tapes hold information that could be essential in overcoming the problems the dust causes. The only trouble is that the tapes are archived on “ancient” 1960’s technology and no one could find the right equipment to playback the tapes. However, the Australian Computer Museum has an old IBM729 Mark 5 tape drive that should do the trick, IF the machine can be restored to operable condition again…

The IBM729 Mark 5 tape recorder is about as big as a household refrigerator. It recorded data from Apollo 11, 12 and 14 missions that carried “dust detectors.” Information from the detectors was beamed back to earth and recorded onto tapes. Copies of the tapes were supposedly sent to NASA, but the tapes were lost or misplaced before they could be archived in NASA’s holdings. But the original data tapes have sat in Perth, Australia for almost 40 years.

Physicist Brian O’Brien invented the detectors. He wrote a couple of papers on the information in the 1970’s, but no one was very interested in moon dust back then. However now, scientists realize this information could help make future missions to the moon more feasible.

Apollo astronaut Gene Cernan covered with moon dust.  Credit: NASA
Apollo astronaut Gene Cernan covered with moon dust. Credit: NASA

“These were the only active measurements of moon dust made during the Apollo missions, and no one thought it was important,” said O’Brien. “But it’s now realised that dust, to quote Harrison Schmitt, who was the last astronaut to leave the moon, is the number one environmental problem on the moon.”

O’Brien quit his work on lunar dust when he left the University of Sydney. Two years ago, someone at NASA remembered the data had been taken, but couldn’t find the duplicate tapes.

O’Brien says there is no indication as to when exactly the tapes were lost, but he guesses that it was “way, way back.” When O’Brien learned of the tape loss, he was contacted by Guy Holmes from a data recovery company who offered to try and extract the information on the old, original tapes. But Holmes realized he needed some old equipment to do the job, and came across the right IBM tape drive at the Australian Computer Museum.

The archaic-looking recorder is in need of refurbishing, however. Holmes jokes that a 1970s Toyota Corolla fan belt could be used to get the recorder up and running.

“The drives are extremely rare, we don’t know of any others that are still operating,” he said.

“It’s going to have to be a custom job to get it working again. It’s certainly not simple, there’s a lot of circuitry in there, it’s old, it’s not as clean as it should be and there’s a lot of work to do.”

Holmes is hopeful of getting the tape recorder working again in January, and then he says it should only take a week to extract information that has been locked away since the early 1970s.

Source: Australia’s ABC News