The Early Universe Was All About Galactic Hook Ups

Artist's illustration of the Andromeda galaxy and the Milky Way, the two largest galaxies in the Local Group. Credit: NASA

In about 4 billion years, scientists estimate that the Andromeda and the Milky Way galaxies are expected to collide, based on data from the Hubble Space Telescope. And when they merge, they will give rise to a super-galaxy that some are already calling Milkomeda or Milkdromeda (I know, awful isn’t it?) While this may sound like a cataclysmic event, these sorts of galactic collisions are quite common on a cosmic timescale.

As an international group of researchers from Japan and California have found, galactic “hookups” were quite common during the early universe. Using data from the Hubble Space Telescope and the Subaru Telescope at in Mauna Kea, Hawaii, they have discovered that 1.2 billion years after the Big Bang, galactic clumps grew to become large galaxies by merging. As part of the Hubble Space Telescope (HST) “Cosmic Evolution Survey (COSMOS)”, this information could tell us a great about the formation of the early universe.

Continue reading “The Early Universe Was All About Galactic Hook Ups”

Andromeda and Milky Way Might Collide Sooner Than We Think

Andromeda's halo is gargantuan. Extending millions of light years, if we could see in our night sky it would be 100 times the diameter of the Moon or 50 degrees across! Credit: NASA

The merger of the Milky Way and Andromeda galaxy won’t happen for another 4 billion years, but the recent discovery of a massive halo of hot gas around Andromeda may mean our galaxies are already touching. University of Notre Dame astrophysicist Nicholas Lehner led a team of scientists using the Hubble Space Telescope to identify an enormous halo of hot, ionized gas at least 2 million light years in diameter surrounding the galaxy.

The Andromeda Galaxy is the largest member of a ragtag collection of some 54 galaxies, including the Milky Way, called the Local Group. With a trillion stars — twice as many as the Milky Way — it shines 25% brighter and can easily be seen with the naked eye from suburban and rural skies.

Quasars are distant, brilliant sources of light, believed to occur when a massive black hole in the center of a galaxy feeds on gas and stars. As the black hole consumes the material, it emits intense radiation, which is then detected as a quasar. These photos, taken by Hubble, show them as brilliant "stars" in the cores of six different galaxies. Credit: NASA/ESA
Six examples of quasars photographed with the Hubble. Quasars are distant, brilliant sources of light, believed to occur when a massive black hole in the center of a galaxy feeds on gas and stars. As the black hole consumes the material, it emits intense radiation, which is then detected as a quasar. Lehner and team measured Andromeda’s halo by studying how its gas affected the light from 18 different quasars.  Credit: NASA/ESA

Think about this for a moment. If the halo extends at least a million light years in our direction, our two galaxies are MUCH closer to touching that previously thought. Granted, we’re only talking halo interactions at first, but the two may be mingling molecules even now if our galaxy is similarly cocooned.

Lehner describes halos as the “gaseous atmospheres of galaxies”.  Despite its enormous size, Andromeda’s nimbus is virtually invisible. To find and study the halo, the team sought out quasars, distant star-like objects that radiate tremendous amounts of energy as matter funnels into the supermassive black holes in their cores. The brightest quasar, 3C273 in Virgo, can be seen in a 6-inch telescope! Their brilliant, pinpoint nature make them perfect probes.

To detect Andromeda's halo, Lehner and team studied how the light of 18 quasars (five shown here) was absorbed by the galaxy's gas. Credit: NASA
To detect Andromeda’s halo, Lehner and team studied how the light of 18 quasars (five shown here) was absorbed by the galaxy’s gas. Credit: NASA

“As the light from the quasars travels toward Hubble, the halo’s gas will absorb some of that light and make the quasar appear a little darker in just a very small wavelength range,” said J. Christopher Howk , associate professor of physics at Notre Dame and co-investigator. “By measuring the dip in brightness, we can tell how much halo gas from M31 there is between us and that quasar.”

Astronomers have observed halos around 44 other galaxies but never one as massive as Andromeda where so many quasars are available to clearly define its extent. The previous 44 were all extremely distant galaxies, with only a single quasar or data point to determine halo size and structure.

Andromeda’s close and huge with lots of quasars peppering its periphery. The team drew from about five years’ worth of observations of archived Hubble data to find many of the 18 objects needed for a good sample.

This illustration shows a stage in the predicted merger between our Milky Way galaxy and the neighboring Andromeda galaxy, as it will unfold over the next several billion years. In this image, representing Earth's night sky in 3.75 billion years, Andromeda (left) fills the field of view and begins to distort the Milky Way with tidal pull. (Credit: NASA; ESA; Z. Levay and R. van der Marel, STScI; T. Hallas; and A. Mellinger)
This illustration shows a stage in the predicted merger between our Milky Way galaxy and the neighboring Andromeda galaxy, as it will unfold over the next several billion years. In this image, representing Earth’s night sky in 3.75 billion years, Andromeda (left) fills the field of view and begins to distort the Milky Way with tidal pull. Credit: NASA; ESA; Z. Levay and R. van der Marel, STScI; T. Hallas; and A. Mellinger

The halo is estimated to contain half the mass of the stars in the Andromeda galaxy itself, in the form of a hot, diffuse gas. Simulations suggest that it formed at the same time as the rest of the galaxy. Although mostly composed of ionized hydrogen — naked protons and electrons —  Andromeda’s aura is also rich in heavier elements, probably supplied by supernovae. They erupt within the visible galaxy and violently blow good stuff like iron, silicon, oxygen and other familiar elements far into space. Over Andromeda’s lifetime, nearly half of all the heavy elements made by its stars have been expelled far beyond the galaxy’s 200,000-light-year-diameter stellar disk.

You might wonder if galactic halos might account for some or much of the still-mysterious dark matter. Probably not. While dark matter still makes up the bulk of the solid material in the universe, astronomers have been trying to account for the lack of visible matter in galaxies as well. Halos now seem a likely contributor.

The next clear night you look up to spy Andromeda, know this: It’s closer than you think!

For more on the topic, here are links to Lehner’s paper in the Astrophysical Journal and the Hubble release.

Disorderly Conduct: Andromeda’s Mature Stars Exhibit Surprising Behavior, Says Study

The Andromeda Galaxy will collide with the Milky Way in the future. Credit: Adam Evans
The Andromeda Galaxy. Credit: Adam Evans

To a distant observer, our own Milky Way and the Andromeda galaxy would probably look very similar. Although Andromeda is longer, more massive, and more luminous than the Milky Way, both galaxies are vast spirals composed of hundreds of millions of stars. But new research presented at this week’s AAS conference in Seattle suggests that there are other differences as well – namely, in the movement and behavior of certain stellar age groups. This observation is the first of its kind, and raises new questions about the factors that contribute to the formation of spiral galaxies like our own.

Armed with data from both the Hubble Space Telescope and the Keck Observatory in Hawaii, a group of astronomers from UC Santa Cruz resolved 10,000 tiny points of light in the Andromeda galaxy into individual stars and used their spectra to calculate the stars’ ages and velocities – a feat never before accomplished for a galaxy outside of our own.

Led by Puragra Guhathakurta, a professor of astrophysics, and Claire Dorman, a graduate student, the researchers found that in Andromeda, the behavior of older stars is surprisingly more frazzled than that of their younger counterparts; that is, they have a much wider range of velocities around the galactic center. Meanwhile, in the Milky Way, stars of all ages seem to coexist far more peacefully, moving along at the same speed in a consistent, ordered pack.

The astronomers believe that this asymmetry causes Andromeda to look more distinct from our own galaxy than previously thought. “If you could look at [Andromeda’s] disk edge on, the stars in the well-ordered, coherent population would lie in a very thin plane, whereas the stars in the disordered population would form a much puffier layer,” said Dorman.

What could account for such disorderly conduct among Andromeda’s older generation? It is possible that these more mature stars could have been disturbed long ago, during episodes of the kind of “galactic cannibalism” that is thought to go on among most spiral galaxies. Indeed, trails of stars in its outer halo suggest that Andromeda has collided with and consumed a number of smaller galaxies over the course of its lifetime; however, these effects cannot completely account for the jumbled flow of Andromeda’s most elderly stars.

A few examples of merging galaxies. NASA, ESA, the Hubble Heritage Team (STScI/AURA)-ESA/Hubble Collaboration and A. Evans (University of Virginia, Charlottesville/NRAO/Stony Brook University), K. Noll (STScI), and J. Westphal (Caltech)
A few examples of galactic cannibalism. NASA, ESA, the Hubble Heritage Team (STScI/AURA)-ESA/Hubble Collaboration and A. Evans (University of Virginia, Charlottesville/NRAO/Stony Brook University), K. Noll (STScI), and J. Westphal (Caltech)

Astronomers believe that a second explanation could fill in the blanks – one that owes to events occurring far earlier in history, during the birth of the galaxy itself. After all, if Andromeda originated from a lumpy, irregular gas cloud, its oldest stars would naturally appear fairly disordered. Over time, the parent gas would have settled down, giving rise to ever more organized generations of stars.

Guhathakurta, Dorman, and the rest of the team hope that their work will encourage other scientists to create simulations that will better constrain these possibilities. To them, understanding Andromeda is a vital key to learning more about our own galaxy. Guhathakurta explained, “In the Andromeda galaxy we have the unique combination of a global yet detailed view of a galaxy similar to our own. We have lots of detail in our own Milky Way, but not the global, external perspective.”

Now, thanks to this new research, scientists can cite our own galaxy’s comparative orderliness as strong evidence that we live in a quieter, less cannibalistic neighborhood than most other spiral galaxies in the Universe. “Even the most well ordered Andromeda stars are not as well ordered as the stars in the Milky Way’s disk,” said Dorman.

At least until 4 billion years from now, when the Milky Way and Andromeda collide.

We may as well enjoy the A+ for conduct while we can.

Andromeda Galaxy Shines In Nosehair-Closeup Glory

The Hubble Space Telescope's extreme close-up of M31, the Andromeda Galaxy. Picture released in January 2015. Credit: NASA, ESA, J. Dalcanton, B.F. Williams, and L.C. Johnson (University of Washington), the PHAT team, and R. Gendler

Woah, is that ever close! The Hubble Space Telescope’s new picture of the Andromeda Galaxy makes us feel as though we’re hovering right above the iconic structure, which is visible with the naked eye from Earth under the right conditions.

Just to show you how awesome this close-up is, we’ve posted a picture below the jump showing what is the typical view of M31 in a more modest telescope.

“This ambitious photographic cartography of the Andromeda galaxy represents a new benchmark for precision studies of large spiral galaxies that dominate the universe’s population of over 100 billion galaxies,” stated the Space Telescope Science Institute (STScI), which operates the telescope.

“Never before have astronomers been able to see individual stars inside an external spiral galaxy over such a large contiguous area. Most of the stars in the universe live inside such majestic star cities, and this is the first data that reveal populations of stars in context to their home galaxy.”

M31 (image credit: Noel Carboni).
M31 (image credit: Noel Carboni).

Andromeda is about 2.5 million light-years from us and on a collision course with our galaxy. The image at the top of this story is actually not a single picture; it was assembled from an astounding 7,398 exposures taken over 411 individual pointings, according to STScI.

The image is so big, in fact, that there’s a zoomable version that was released separately so that you can get a better sense of how high-definition this view is. Dontcha wish you could take a light-travel ship and see this thing up close, for real?

Sources: Space Telescope Science Institute and Hubble European Space Agency Information Centre

Dwarf Galaxies That Dance? Andromeda Observations Reveal A Larger Cosmic Mystery

Astrophoto: Andromeda Galaxy by Fabio Bortoli
Andromeda Galaxy. Credit: Fabio Bortoli

What is up with these dwarf galaxies? A survey of thousands of galaxies using the Sloan Digital Sky Survey reveals something interesting, which was first revealed by looking at the massive Andromeda Galaxy nearby Earth: dwarf galaxies orbiting larger ones are often in disc-shaped orbits and not distributed randomly, as astronomers expected.

The finding follows on from research in 2013 that showed that 50% of Andromeda’s dwarf galaxies are in a single plane about a million light-years in diameter, but only 300,000 light-years thick. Now with the larger discovery, scientists suspect that perhaps there is a yet-to-be found process that is controlling gas flow in the cosmos.

“We were surprised to find that a large proportion of pairs of satellite galaxies have oppositely directed velocities if they are situated on opposite sides of their giant galaxy hosts,” stated lead author Neil Ibata of Lycée International in France.

“Everywhere we looked, we saw this strangely coherent coordinated motion of dwarf galaxies,” added Geraint Lewis, a University of Sydney physicist. “From this we can extrapolate that these circular planes of dancing dwarfs are universal, seen in about 50 percent of galaxies. This is a big problem that contradicts our standard cosmological models. It challenges our understanding of how the universe works, including the nature of dark matter.”

The astronomers also speculated this could show something unexpected in the laws of physics, such as motion and gravity, but added it would take far more investigation to figure that out.

The findings were published in the journal Nature.

Source: University of Sydney

Update: Possible ‘Nearby’ Gamma Ray Burst Alert Was False Alarm

Color view of M31 (The Andromeda Galaxy), with M32 (a satellite galaxy) shown to the lower left. Credit and copyright: Terry Hancock.

Following the late night news yesterday of a possible gamma ray burst in our next door neighboring galaxy Andromeda, it was an “Oh darn!” moment this morning to find out the big event was likely a false alarm. The false alert — and the ensuing false excitement — was due to an unlikely combination of Swift’s Burst Alert Telescope (BAT) detecting what was a previously known object and a power outage at Goddard Space Flight Center and Swift Data Center, so that the data couldn’t be analyzed by the regular team of astronomers around the world.

Also, according to a blog post by Phil Evans, a post-doctoral research assistant from the University of Leicester and a member of the support team for Swift, the Swift team never actually announced a claim of such an event, and it turns out that the tentative data that triggered this story was overstated.

“Interestingly, the Swift team never claimed it was [a GRB]; indeed, I haven’t seen any professional communication claiming that this was a GRB,” Evans wrote on his blog. “Why it has been reported throughout the web as a GRB is something I can only speculate on, but Swift has been fabulously successful studying GRBs.”

Definitely read Evans’ entire analysis of the event.

A circular posted from the Swift-XRT team” on NASA’s Gamma-ray Coordinates Network (GCN) system at says that the astronomers “do not believe this source to be in outburst”. On the Nature blog, Alexandra Witze spoke with Swift team member Kim Page, also from the University of Leicester, who told Nature “that the source had been initially mistaken for a new outburst, and that its intensity had been overestimated due to measurement error. Instead, she says, it was a relatively common, persistent x-ray source — possibly a globular cluster — that had previously been catalogued.”

Here’s the circular in its entirety:

We have re-analysed the prompt XRT data on Swift trigger 600114 (GCN Circ.
16332), taking advantage of the event data.

The initial count rate given in GCN Circ. 16332 was based on raw data from
the full field of view, without X-ray event detection, and therefore may
have been affected by other sources in M31, as well as background hot
pixels. Analysis of the event data (not fully available at the time of the
initial circular) shows the count rate of the X-ray source identified in
GCN Circ. 16332 to have been 0.065 +/- 0.012 count s^-1, consistent with
the previous observations of this source [see the 1SXPS catalogue (Evans
et al. 2014): http://www.swift.ac.uk/1SXPS/1SXPS%20J004143.1%2B413420].

We therefore do not believe this source to be in outburst. Instead, it was
a serendipitous constant source in the field of view of a BAT subthreshold
trigger.

This circular is an official product of the Swift-XRT team.

The event caused a tweet-storm last night on Twitter (see #GRBM31) and as many have said, the excitement was magnified because of the ability to spread news quickly via social media:

Astronomer Robert Rutledge, who publishes the Astronomer’s Telegram has given a Tweet-by-Tweet analysis of what happened with the false alarm:

Is Andromeda Drifting Towards Us?

Image of the Andromeda Galaxy, showing Messier 32 to the lower left, which is currently merging with Andromeda. Credit: Wikipedia Commons/Torben Hansen

In a Universe that’s expanding apart, isn’t it strange that Andromeda is actually drifting towards us? Dr. Thad Szabo from Cerritos College explains why this is happening.

“I’m Thad Szabo, and I teach astronomy and physics at Cerritos College.”

Is Andromeda drifting towards us?

“The reason that we see Andromeda moving toward us is because it’s nearby enough, and the Milky Way is massive enough and Andromeda is massive enough that they’re gravity is strong enough that there is not enough space between them that the space was able to expand and push them apart against the force of gravity. So if you take the Milky Way, all of its stars and all of its gas and dust, all of its dark matter, you’re looking at something that’s a trillion times the mass of the sun. You have the same for Andromeda, and they’re less than a mega parsec apart – to Andromeda, its about 2.2 billion light years. And so with that distance and that much mass, that’s close enough that gravity is drawing them together. Most galaxies, because they’re so distant, you do see them moving away due to the expansion of the universe.”

“But actually M81, which is about 12 million light years away, is also moving towards the Milky Way. It’s the most distant galaxy that doesn’t show red shift. So there’s enough gravity in this local group – I guess the local group is typically the Milky Way galaxy, the Andromeda galaxy, the Triangulum galaxy, and however many tens of dwarf galaxies that we’ve either discovered or haven’t discovered yet. But there’s also a bubble of about ten to twenty major size galaxies extending out to about fifteen million light years or so, and that’s kind of right on the border between where the expansion of the universe would drive things apart and where the gravity is strong enough to hold things together.”

How Giant Galaxies Bind The Milky Way’s Neighborhood With Gravity

Artist's conception of the Milky Way galaxy. Credit: Nick Risinger
Artist's conception of the Milky Way galaxy. Credit: Nick Risinger

Is it stretching it too far to think of a Lord of the Rings-esque “Entmoot” when reading the phrase “Council of Giants”? In this case, however, it’s not trees gathering in a circle, but galaxies.

A new map of the galactic neighborhood shows how the Milky Way may be restricted by a bunch of galaxies surrounding and constricting us with gravity.

“All bright galaxies within 20 million light years, including us, are organized in a ‘Local Sheet’ 34-million light years across and only 1.5 million light years thick,” stated Marshall McCall of York University in Canada, who is the sole author of a paper on the subject.

“The Milky Way and Andromeda are encircled by twelve large galaxies arranged in a ring about 24-million light years across. This ‘Council of Giants’ stands in gravitational judgment of the Local Group by restricting its range of influence.”

The "Council of Giants" is shown in this diagram based on 2014 research from York University. It shows the brightest galaxies within 20 million light-years of the Milky Way. The galaxies in yellow are the "Council." (You can see a larger image if you click on this.) Credit: Marshall McCall / York University.
The “Council of Giants” is shown in this diagram based on 2014 research from York University. It shows the brightest galaxies within 20 million light-years of the Milky Way. The galaxies in yellow are the “Council.” (You can see a larger image if you click on this.) Credit: Marshall McCall / York University.

Here’s why McCall thinks this is the case. Most of the Local Sheet galaxies (the Milky Way, Andromeda, and 10 more of the 14 galaxies) are flattened spiral galaxies with stars still forming. The other other two galaxies are elliptical galaxies where star-forming ceased long ago, and of note, this pair lie on opposite sides of the “Council.”

“Winds expelled in the earliest phases of their development might have shepherded gas towards the Local Group, thereby helping to build the disks of the Milky Way and Andromeda,” the Royal Astronomical Society stated. The spin in this group of galaxies, it added, is unusually aligned, which could have occurred due to the influence of the Milky Way and Andromeda “when the universe was smaller.”

The larger implication is the Local Sheet and Council likely came to be in “a pre-existing sheet-like foundation composed primarily of dark matter”, or a mysterious substance that is not measurable by conventional instruments but detectable on how it influences other objects. McCall stated that on a small scale, this could help us understand more about how the universe is constructed.

You can read the study in the Monthly Notices of the Royal Astronomical Society.

Source: Royal Astronomical Society

Nearby Stream of Stars Reveals Past Cosmic Collision

The 51st entry in Charles Messier's famous catalog is perhaps the original spiral nebula--a large galaxy with a well defined spiral structure also cataloged as NGC 5194. Over 60,000 light-years across, M51's spiral arms and dust lanes clearly sweep in front of its companion galaxy, NGC 5195. Image data from the Hubble's Advanced Camera for Surveys was reprocessed to produce this alternative portrait of the well-known interacting galaxy pair. The processing sharpened details and enhanced color and contrast in otherwise faint areas, bringing out dust lanes and extended streams that cross the small companion, along with features in the surroundings and core of M51 itself. The pair are about 31 million light-years distant. Not far on the sky from the handle of the Big Dipper, they officially lie within the boundaries of the small constellation Canes Venatici. Image Credit: NASA

The tangled remains of vast cosmic collisions can be seen across the universe, such as the distant Whirlpool Galaxy’s past close encounter with a nearby galaxy, which resulted in the staggering beauty we see today.

Such colossal collisions between galaxies appear to be common. It’s likely giant galaxies, such as our own, originated long ago after smaller dwarf galaxies crashed together. Unfortunately, Hubble has yet to peer into the early Universe and catch two dwarf galaxies merging by chance. And they’re extremely rare to catch in the present nearby universe.

But for the first time, astronomers have uncovered evidence of a similar collision much closer to home.

The Milky Way is part of a large cosmic neighborhood. A collection of more than 35 galaxies compose the Local Group. While the largest and heavier members are the Milky Way and the Andromeda galaxy, there are many smaller satellite galaxies orbiting the two.  Anyone who has looked at the southern sky should be familiar with the Large and Small Magellanic Clouds: two satellite galaxies of the Milky Way less than 200,000 light years away.

Andromeda has over 20 satellite galaxies circling its nearly a trillion stars. A team of European astronomers has analyzed measurements of the stars in the dwarf galaxy Andromeda II — the second largest dwarf galaxy in the Local Group — and made a surprising discovery: an odd stream of stars that simply doesn’t belong.

The team led by Dr. Nicola C. Amorisco from the Dark Cosmology Centre at the Niels Bohr Institute in Copenhagen used the Deep Imaging Multi-Object (DEIMOS) spectrograph onboard the Keck II telescope in Hawaii in order to measure the velocities of more than 700 stars in the Andromeda II dwarf galaxy.

Stars in a large spiral galaxy will move, on average, with the rotation of the galaxy. On one side of the galaxy’s spinning disk, the stars will be moving away from the Earth, and their light waves will be stretched to redder wavelengths. On the opposite side, the stars will be moving toward the Earth, and their light waves will be compressed to bluer wavelengths.

But the stars in dwarf galaxies don’t exhibit such a pattern. Instead they move around entirely at random.

Amorisco and colleagues, however, found a rather different case present in Andromeda II. They observed a stream of stars — roughly 16,000 light years in length and 980 light years in thickness — that didn’t exhibit random motions at all. They orbit the center of the galaxy in a very coherent fashion.

But it gets better: the stars in this stream are also much colder than the stars outside the stream. In astronomy this is the equivalent of saying that the stars in this stream are much older. Amorisco’s team now believes they once belonged to a different galaxy entirely and remain only as a remnant of the past collision, which likely occurred over 3 billion years ago.

Streams of stars often result from collisions. As two galaxies begin to interact, the stars nearest the approaching galaxy feel a much stronger gravitational pull than the stars further away. Eventually the gravitational pull on the closer side of the galaxy will pull the stars from their initial galaxy, creating a stream of stars, dust and gas.

This is the smallest known example of two galaxies merging. The finding adds further evidence that mergers between dwarf galaxies plays a fundamental role in creating the large and beautiful galaxies we see today.

The paper has been published in Nature and is available for download here.