What If We Do Find Aliens?


Time to talk about my favorite topic: aliens.

We’ve covered the Fermi Paradox many times over several articles on Universe Today. This is the idea that the Universe is huge, and old, and the ingredients of life are everywhere. Life could and should have have appeared many times across the galaxy, but it’s really strange that we haven’t found any evidence for them yet.

We’ve also talked about how we as a species have gone looking for aliens. How we’re searching the sky for signals from their alien communications. How the next generation of space and ground-based telescopes will let us directly image the atmospheres of extrasolar planets. If we see large quantities of oxygen, or other chemicals that shouldn’t be around, it’s a good indication there’s life on their planet.

We’ve even talked about how aliens could use that technique on us. We’ve been sending our radio and television signals out into space for the last few decades. Who knows what crazy things they think about our “historical documents”? But Earth life itself has been broadcasting our existence for hundreds of millions of years, since the first plankton started filling our atmosphere with oxygen. A distant civilization could be analyzing our atmosphere and know exactly when we entered the industrial age.

But what we haven’t talked about, the space elephant in the room, if you will, is what we’ll do if we actually make contact. What are we going to say to each other? And what will happen if the aliens show up?

War of the Worlds
I’m hoping that first contact doesn’t start out like this. Credit: Henrique Alvim Correa, 1906, for the novel “The War of the Worlds”

Although there’s no official protocol on talking to aliens, scientists and research institutions have been puzzling out the best way we might communicate for quite a while.

Perhaps the best example is the SETI Institute, the US-based research group who have dedicated radio telescopes scanning the skies for messages from space.

Let’s imagine you’re a SETI researcher, and you’re browsing last night’s logs and you see what looks like a message. Maybe it’s instructions to build some kind of dimensional portal, or a recipe book.

Whatever you do, don’t try out the recipes. Instead, you need to make absolutely sure you’re not dealing with some kind of natural phenomenon. Then you need to reach out to other researchers and get them to confirm the signal.

The Green Bank Telescope is the world’s largest, fully-steerable telescope. The GBT’s dish is 100-meters by 110-meters in size, covering 2.3 acres of space. The telescope is currently being used in a new SETI (Search for Extraterrestrial Intelligence) attempt to look for possible alien radio signals from Tabby's Star. Credit: NRAO/AUI/NSF
The Green Bank Telescope is the world’s largest, fully-steerable telescope. The GBT’s dish is 100-meters by 110-meters in size, covering 2.3 acres of space. The telescope is currently being used in a new SETI (Search for Extraterrestrial Intelligence) attempt to look for possible alien radio signals from Tabby’s Star. Credit: NRAO/AUI/NSF

If they agree it’s aliens, then you need to inform the International Astronomical Union and other international groups, like the United Nations, Committee on Space Research, etc.

Unless they’ve got some good reason to stop you, it’s time to announce the discovery to the worldwide media. You made the discovery, you get to break the news to the world.

At this point, of course, the entire world is going to freak right out. Whatever you do, however, you have to resist the urge to send back a message or build that dimensional portal, no matter how much you think you understand the science. Instead, let an international committee mull it over while you stockpile supplies in a secret alien proof bunker in the desert.

What kind of message should we actually craft to our new alien penpals? Will we become fast friends, jump starting our own technological progress, or will we insult them by accident?

In 2000, and international group of SETI researchers including the famous Jill Tarter devised The Rio Scale. It really easy to use, and there’s even a fun online calculator.

Step 1, figure out the class of phenomenon. Is it a message sent directly to Earth, expecting a reply? Or did we merely find some alien artifact or old timey Dyson sphere orbiting a nearby star?

Step 2, how verifiable is the discovery? Are we talking ongoing signals received by SETI researchers, or a hint in some old data that’s impossible to confirm?

Step 3, how far are we talking here? Hovering over Paris? Within our Solar System, or outside the galaxy?

Step 4, how sure are you? 100% certain, and everyone agrees because they can all see that enormous mothership floating above London? Or nobody believes you, and they’ve locked you up because of your insane ramblings and misappropriation of government equipment?

Punch in your numbers and you’ll get a rank on The Rio Scale between 0 and 10. Level 0 is “no importance” or “you’re a crank”, while level 10 is “extraordinary importance”, or “now would be a good time to panic”.

Movie poster from 'Independence Day.' Credit: 20th Century Fox
Not the best outcome. Credit: 20th Century Fox

SETI researcher Seth Shostak, calculated the Rio Scale for various sci-fi movies and shows. The first message from aliens in Independence Day would count as a 4. While the obliteration of the White House by a massive floating alien city that everybody could see would count as a 10.

the messages received in Contact, and independently confirmed by researchers around the world would qualify in the 4-8 range, while the monolith discovered on the Moon in 2001 would be a solid 6.

Now you know how important the discovery is, what do you say back to those chatty aliens?

This falls under the term CETI, which means Communications with Extraterrestrial Aliens, which shouldn’t be confused with SETI, or the Search for Extraterrestrial Aliens. And it turns out, that horse has already left the stable.

When the Pioneer and Voyager spacecraft were constructed, they were equipped with handy maps to find Earth’s precise location in the Milky Way.

The famous "Golden Record" carried aboard both Voyager 1 and 2 contains images, sounds and greetings from Earth. (NASA)
The famous “Golden Record” carried aboard both Voyager 1 and 2 contains images, sounds and greetings from Earth. (NASA)

In 1974, Carl Sagan and Frank Drake who composed a message in alienese and broadcast it into space from the Arecibo Observatory.

In 1999 and 2003 a series of signals were transmitted towards various interesting stars. The messages contained images of Earth, as well as various mathematical principles that could be used by aliens as a common language.

We’ll know if that was a good idea in a few decades.

In 2015, scientists like David Grinspoon, Seth Shostak and David Brin collected together to discuss if it’s a wise idea to send messages off into space, to broadcast our existence to potentially hostile alien civilizations.

According to Seth Shostak, the best message we can send is the entire internet. Just send it all, they’ll work out what we’re all about.

The science fiction author David Brin thinks that’s a terrible idea, and we should keep our mouths shut.

Personally, I think the aliens already know we’re here. If they wanted to invade and destroy our planet, they would have done it millions of years ago when early life made it obvious this planet was inhabited. The jig is up.

It’s a mind bending concept to imagine what life might be like if we knew with absolutely certainty that there’s an alien civilization right over there, on that world. I’m sure people will freak out for a while, but then we’ll probably just go back to life as normal. Human beings can get bored by the most surprising and amazing things.

If you learned there was definitely an alien civilization out there, how do you think humanity would respond? Let me know your thoughts in the comments.

100,000 Galaxies, and No Obvious Signs of Life

Beam us up, Scotty. There’s no signs of intelligent life out there. At least, no obvious signs, according to a recent survey performed by researchers at Penn State University. After reviewing data taken by the NASA Wide-field Infrared Survey Explorer (WISE) space telescope of over 100,000 galaxies, there appears to be little evidence that advanced, spacefaring civilizations exist in any of them.

First deployed in 2009, the WISE mission has been able to identify thousands of asteroids in our solar system and previously undiscovered star clusters in our galaxy. However, Jason T. Wright, an assistant professor of astronomy and astrophysics at the Center for Exoplanets and Habitable Worlds at Penn State University, conceived of and initiated a new field of research – using the infrared data to assist in the search for signs of extra-terrestrial civilizations.

And while their first look did not yield much in the way of results, it is an exciting new area of research and provides some very useful information on one of the greatest questions ever asked: are we alone in the universe?

“The idea behind our research is that, if an entire galaxy had been colonized by an advanced spacefaring civilization, the energy produced by that civilization’s technologies would be detectable in mid-infrared wavelengths,” said Wright, “exactly the radiation that the WISE satellite was designed to detect for other astronomical purposes.”

This logic is in keeping with the theories of Russian astronomer Nikolai Kardashev and theoretical physicist Freeman Dyson. In 1964, Kardashev proposed that a civilization’s level of technological advancement could be measured based on the amount of energy that civilization is able to utilize.

Freemon Dyson theorized that eventually, a civilization would be able to build a megastructure around its star to capture all its energy. Credit: SentientDevelopments.com
Freemon Dyson theorized that eventually, a civilization would be able to enclose its star with a megastructure that would to capture and utilize its energy. Credit: sentientdevelopments.com

To characterize the level of extra-terrestrial development, Kardashev developed a three category system – Type I, II, and III civilizations –  known as the “Kardashev Scale”. A Type I civilization uses all available resources on its home planet, while a Type II is able to harness all the energy of its star. Type III civilizations are those that are advanced enough to harness the energy of their entire galaxy.

Similarly, Dyson proposed in 1960 that advanced alien civilizations beyond Earth could be detected by the telltale evidence of their mid-infrared emissions. Believing that a sufficiently advanced civilization would be able to enclose their parent star, he believed it would be possible to search for extraterrestrials by looking for large objects radiating in the infrared range of the electromagnetic spectrum.

These thoughts were expressed in a short paper submitted to the journal Science, entitled “Search for Artificial Stellar Sources of Infrared Radiation“. In it, Dyson proposed that an advanced species would use artificial structures – now referred to as “Dyson Spheres” (though he used the term “shell” in his paper) – to intercept electromagnetic radiation with wavelengths from visible light downwards and radiating waste heat outwards as infrared radiation.

“Whether an advanced spacefaring civilization uses the large amounts of energy from its galaxy’s stars to power computers, space flight, communication, or something we can’t yet imagine, fundamental thermodynamics tells us that this energy must be radiated away as heat in the mid-infrared wavelengths,” said Wright. “This same basic physics causes your computer to radiate heat while it is turned on.”

Wide-field Infrared Survey Explorer, or WISE, will scan the entire sky in infrared light, picking up the glow of hundreds of millions of objects and producing millions of images
The Wide-field Infrared Survey Explorer (WISE) scans the entire sky in infrared light, picking up the glow of hundreds of millions of objects and producing millions of images. Credit: NASA/JPL-Caltech

However, it was not until space-based telescopes like WISE were deployed that it became possible to make sensitive measurements of this radiation. WISE is one of three infrared missions currently in space, the other two being NASA’s Spitzer Space Telescope and the Herschel Space Observatory – a European Space Agency mission with important NASA participation.

WISE is different from these missions in that it surveys the entire sky and is designed to cast a net wide enough to catch all sorts of previously unseen cosmic interests. And there are few things more interesting than the prospect of advanced alien civilizations!

To search for them, Roger Griffith – a postbaccalaureate researcher at Penn State and the lead author of the paper – and colleagues scoured the entries in the WISE satellites database looking for evidence of a galaxy that was emitting too much mid-infrared radiation. He and his team then individually examined and categorized 100,000 of the most promising galaxy images.

And while they didn’t find any obvious signs of a Type II civilization or Dyson Spheres in any of them, they did find around 50 candidates that showed unusually high levels of mid-infrared radiation. The next step will be to confirm whether or not these signs are due to natural astronomical processes, or could be an indication of a highly advanced civilization tapping their parent star for energy.

WISE will find the most luminous galaxies in the universe -- incredibly energetic objects bursting with new stars. The infrared telescope can see the glow of dust that shrouds these galaxies, hiding them from visible-light telescopes. An example of a dusty, luminous galaxy is shown here in this infrared portrait of the "Cigar" galaxy taken by NASA's Spitzer Space Telescope. Dust is color-coded red, and starlight blue. Credit: NASA/JPL-Caltech/Steward Observatory
WISE will take images of the most luminous galaxies in the universe, such as the “Cigar” galaxy shown here – taken by NASA’s Spitzer Space Telescope. Credit: NASA/JPL-Caltech/Steward Observatory

In any case, the team’s findings were quite interesting and broke new ground in what is sure to be an ongoing area of research. The only previous study, according to the G-HAT team, surveyed only about 100 galaxies, and was unable to examine them in the infrared to see how much heat they emitted. What’s more, the research may help shed some light on the burning questions about the very existence of intelligent, extra-terrestrial life in our universe.

“Our results mean that, out of the 100,000 galaxies that WISE could see in sufficient detail, none of them is widely populated by an alien civilization using most of the starlight in its galaxy for its own purposes,” said Wright. “That’s interesting because these galaxies are billions of years old, which should have been plenty of time for them to have been filled with alien civilizations, if they exist. Either they don’t exist, or they don’t yet use enough energy for us to recognize them.”

Alas, it seems we are no closer to resolving the Fermi Paradox. But for the first time, it seems that investigations into the matter are moving beyond theoretical arguments. And given time, and further refinements in our detection methods, who knows what we might find lurking out there? The universe is very, very big place, after all.

The research team’s first research paper about their Glimpsing Heat from Alien Technologies Survey (G-HAT) survey appeared in the Astrophysical Journal Supplement Series on April 15, 2015.

Further Reading: Astrophysical Journal via EurekAlert, JPL-NASA

How Would Earth Send Messages To A Starship — Or A Distant Civilization?

I have a new exercise routine where I watch Star Trek: The Next Generation most mornings of the week while doing my thing. Besides serving as awesome distraction, the episodes do get me thinking about how humans would talk to extraterrestrials. It likely wouldn’t be as easy as the show portrays to zoom across space to conduct diplomatic negotiations at the planet “Parliament”, for example, so interstellar communication would be a problem.

Luckily for non-engineers such as me, there are folks out there (on Earth, at least) that are examining the problem of talking between stars. David Messerschmitt, of the University of California at Berkeley, is one of those people. A new paper by him on Arxiv examines the issue. Note this is a preprint site and not a peer-reviewed journal, but all the same it provides an intriguing addition to how to communicate outside of Earth.

Messerschmitt explains that humans already communicate with probes that are a fair distance from Earth (say, Voyager 1 in interstellar space) at radio frequencies, and there is some usage now of laser/optical communications (namely between the Earth and the moon).

Across greater distances, however, you lose information, the interstellar medium gets in the way, and stars shift due to relative motion. Besides all that, at first you wouldn’t know how the other civilization designs its systems and you could therefore send a message that wouldn’t be picked up.

This sequence of images, showing a region where fewer stars are forming near the constellation of Perseus, illustrates how the structure and distribution of the interstellar medium can be distilled from the images obtained with Planck. Credit: ESA / HFI and LFI Consortia
This sequence of images, showing a region where fewer stars are forming near the constellation of Perseus, illustrates how the structure and distribution of the interstellar medium can be distilled from the images obtained with Planck. Credit: ESA / HFI and LFI Consortia

He further explains that starships and civilizations would have different communications requirements. Starship communication would be two-way and based on a similar design, so success comes by having high “uplink and downlink transmit times”. The more information, the better it would be for scientific observations and keeping down errors.

Civilization-to-civilization chats, however, would present headaches. As with all diplomatic negotiations, crafting suitable messages would take time. Then we’d have to send the message out repeatedly to make sure it is heard (which actually means that reliability is not as big of a problem.) Then the ISM would have to be contended with (something that pulsar astronomers and astrophysicists are already working on, he said).

In either case — talking to starships or other civilizations — one can assume there’d be a lot of energy involved, he added. “Starships are likely to be much closer than the nearest civilizations, but the cost of either a large transmit antenna or transmit energy is likely to be considerably greater for the starship than for a terrestrial-based transmitter,” he said, suggesting that a solution would be to minimize the energy delivered to the receiver. Other civilizations may have found more efficient ways to overcome this problem, he added.

You can read more details of the research on Arxiv, where Messerschmitt talks about Gaussian noise, channel coding and other parameters to keep in mind during communication.