Inflatable Lunar Habitat to Be Tested in Antarctica

2007-1123habitat.thumbnail.jpg

As humans prepare to return to the Moon, this time to stay, there are so many different technologies that need to be developed and tested. NASA and the NSF are testing out a new prototype for an inflatable habitat that might eventually protect humans on the Moon. And they’re testing it in the most extreme place on Earth: Antarctica.

The newly developed inflatable habitat is inflated and pressurized, giving potential astronauts their own atmosphere. Inside the tent is heated, offering up 35 square metres (384 square feet) of living space, under a 2.4-metre (8-foot) ceiling. It also has access points for electrical power.

NASA currently uses a 50-year old tent design called a Jamesway hut. Television viewers will recognize these designs in the show M*A*S*H. Although there are new approaches to this old design, they’re rigid, difficult to ship, and have limited insulation. When you’re working in Antarctica, a lack of insulation is a serious problem.

The purpose of this new design is to test out how well an inflatable habitat will work in terms of packing, transportation, set up, power consumption and damage tolerance.

When astronauts do finally return to the Moon by 2020, they’ll be setting up a permanent lunar outpost. An inflatable habitat like this could be carried on future lunar rovers, and would allow the astronauts to set up a temporary home, far away from the permanent base. This would greatly increase their range, and allow the exploration of the most interesting lunar features – not just those nearby the base.

The inflatable habitat is being developed under NASA’s Innovative Partnerships Program.

Original Source: NSF News Release

Meteorites Reveal Mars’ Past: Molten Surface, Thick Atmosphere

hst_mars_opp_9709a.thumbnail.jpg

If Mars ever had water flowing on its surface, as the many canyons and riverbed-like features on the Red Planet seem to indicate, it also would have needed a thicker atmosphere than what encircles that planet today. New research has revealed that Mars did indeed have a thick atmosphere for about 100 million years after the planet was formed. But the only thing flowing on Mars’ surface at that time was an ocean of molten rock.

A study of Martian meteorites found on Earth shows that Mars had a magma ocean for millions of years, which is surprisingly long, according to Qing-Zhu Yin, assistant professor of geology at the University of California- Davis. For such a persistent event, a thick atmosphere had to blanket Mars to allow the planet to cool slowly.

Meteorites called shergottites were studied to document volcanic activities on Mars between 470 million and 165 million years ago. These rocks were later thrown out of Mars’ gravity field by asteroid impacts and delivered to Earth — a free “sample return mission” as the scientists called it — accomplished by nature.

By precisely measuring the ratios of different isotopes of neodymium and samarium, the researchers could measure the age of the meteorites, and then use them to work out what the crust of Mars was like billions of years before that. Previous estimates for how long the surface remained molten ranged from thousands of years to several hundred million years.

The research was conducted by the Lunar and Planetary Institute, UC Davis and the Johnson Space Center.

Planets form by dust and rocks coming together to form planetisimals, and then these small planets collide together to form larger planets. The giant collisions in this final phase would release huge amounts of energy with nowhere to go except back into the new planet. The rock would turn to molten magma and heavy metals would sink to the core of the planet, releasing additional energy. The molten mantle eventually cools to form a solid crust on the surface.

Although Mars appears to no longer be volcanically active, NASA’s Mars Global Surveyor Spacecraft discovered that the Red Planet hasn’t completely cooled since its formation 4.5 billion years ago. Data from MGS in 2003 indicated that Mars’ core is made either of entirely liquid iron, or it has a solid iron center surrounded by molten iron.

Original News Source: UC Davis Press Release

Seeing Inside the Earth with Neutrinos

2007-1121icecube.thumbnail.jpg

You know what it’s like to get an X-ray done: you go to the doctor, get in a large machine, she puts on a lead vest, and X-rays shoot through your body, forming a picture of your skeletal structure. Well, using the IceCube neutrino detector – as well as other neutrino detectors to come – it might be possible to do something very similar to this, but to the Earth.

A collaborative team of physicists and geologists from around the world has proposed that with the construction of IceCube, a neutrino detector at the South Pole, it should be possible to get a very accurate picture of the Earth’s core using neutrinos that stream through the Earth from the other side. Their recent paper is entitled Imaging the Internal Structure of the Earth with Atmospheric Neutrinos.

Neutrinos are particles with very small mass that don’t interact with other types of matter very often. There are trillions of them streaming through your body this very second, but don’t worry: the chance that they will interact with any of the protons or neutrons that make up your body are very, very low. The higher the energy of the neutrino, the more likely it is to interact with a particle that has mass. When this happens a cascade of other particles is created, and a particle called a muon that is produced by this reaction can be detected.

Neutrino telescopes don’t look anything like your average viewing telescopes; rather, they are made up of a huge block of matter, usually water or ice. IceCube is just such a detector, made up of one cubic km of ice at the South Pole. There are small “strings” of detectors placed strategically in the ice to record the presence of muons from neutrino-particle interactions. The large mass of the detector increases the likelihood of finding the collisions between neutrinos and other particles.

The idea to use neutrinos as a way to image Earth’s interior has been around for more than 25 years, but IceCube is the first neutrino telescope with the ability to detect neutrinos at the energies necessary to give an accurate picture of the core.

Using IceCube to view the inside the Earth would increase our understanding of the “core-mantle transition” – where the Earth’s core meets the mantle – because this method is more accurate than methods currently used to estimate what the inside of the Earth looks like.

Dr. Francis Halzen of the University of Wisconsin Department of Physics, one of the co-authors of the research paper proposes, “we can see the transition “directly” and not infer it from some analysis of indirect data, such as data on Earth sound waves. The precision of our mapping is directly related to our angular resolution on the path taken through the Earth by a neutrino.”

Much like in an X-ray, some of the neutrinos coming through the Earth would be blocked by the dense core – like the Earth’s “skeleton” – while those streaming through the mantle, which is less dense, would be detected by IceCube.
Though the IceCube telescope is still under construction, it has already begun taking data, and will only continue to improve as more detectors are added to the ice.

Dr. Halzen said, “An unusual feature of IceCube is that we operate the partially deployed detector while we are constructing it. We have been collecting data relevant to this problem for more than 1 year and hope to run half the detector starting this February, i.e. after another construction season over the Antarctic summer that just started.”

The imaging is expected to be finished anywhere between the next 3 and 10 years.

Source: Arxiv Paper

Podcast: Neptune

2007-1121neptune.thumbnail.jpg

We’ve reached Neptune, the final planet in our tour through the solar system – but don’t worry! The tour’s not over, but after this week we’ll be all out of planets. Neptune has a controversial story about its discovery, some of the strongest winds in the solar system and some weird moons.
Click here to download the episode

Neptune – Show notes and transcript

Or subscribe to: astronomycast.com/podcast.xml with your podcatching software.

Book Review: Endless Universe

2007-1121endless.thumbnail.jpg

A child wakes with boundless energy, runs and jumps through a day of fun and excitement. Then they fall, exhausted, to sleep, dreaming of another day. Authors Paul Steinhardt and Neil Turok in their book Endless Universe – Beyond the Big Bang see our universe as having similar cycles. And, just as with the child, energy plays a staring role for their universe as it goes through its motions.

Humans have an historical record on Earth of a few thousand years. Geologists posit Earth’s history back for over 4 billion years, which many also consider the age of our solar system. Looking far away in the night sky, cosmologists age our universe to nearly 14 billion years. And, indications are the universe has been as active as a little child waking from a good nap. Yet, where we think we know the start and end conditions of human life and also of the solar system, we have no evidence of the start or end of the universe.

The book Endless Universe doesn’t let a lack of evidence slow down its story. The authors’ premise has our universe as a complete entity that cycles through states. In their book, they begin with a review of much of the grand cosmology we’ve already pinned together. Inflationary periods, mass appearing out of nothing and dominating dark energy all get an appearance. But the authors don’t stay on the easy show-and-tell path. For, they include in the book tales of string theory and particle dynamics, recent ideas that are still making their meaning felt. The authors’ intent is to show how they can bring all these ideas into one theory. They envisage a universe that does so and to emphasize their originality, they coin a new phrase, the ekpyrotic universe.

In the book, they describe why this vision of our universe is so special and so unique. They put bubbles on brane’s surfaces to act as small spring like strings that increase and decrease their energy content as the universe, and its partner universe, approach and withdraw from each other. Also, the shape of these universes change through this motion, again to account for changing energy levels. Novel and imaginative as this is, the authors consider this the best representation for today’s cosmological history and include many descriptions and anecdotes to convince the reader.

As should be apparent, this book discusses our universe. But, it also describes the authors’ lifetime journeys through science, their relationship and many conferences and meetings to which they attended. With this, the authors lose the reader’s focus. Reading about the complexities of string theory and the pleasures of taking a train to chat about physics make this book disjointed. Further, the writing style and choice of words doesn’t suit the complexity of the subject. For example, saying ‘a brane world spring gets boosted by gravity’ unsuccessfully blends common with very uncommon. The result is an image of an ekpyrotic universe but not an image that readily fits into common concepts.

Therefore, yes this book provides a description of an endless universe that encompasses more than the big bang inflationary model as the title says. But, no, this book includes enough extraneous and uncommon material as to make the reading stilted. For those wanting to know more about the authors personally as well as their ekpyrotic model, this book suffices. Otherwise, the reader may find they have to work hard for not so great a reward.

A child’s boundless energy and ceaseless curiosity wonderfully prepares them for maturity as adults and scientists. Our universe has its own bounds of energy, together with many other characteristics. Paul Steinhardt and Neil Turok in their book Endless Universe – Beyond the Big Bang present their ideas on how these come together. With it, we again see the wonderful benefits from our species curiosity.

Read more reviews, or purchase a copy online from Amazon.com.

What’s Up this Week: November 19 – November 25, 2007

2007-1121moon.thumbnail.jpg

Monday, November 19 – Even if you only use binoculars tonight, you can’t miss the beautiful C-shape of Sinus Iridium as it comes into view on the lunar surface. As we have learned, the mountains that ring it are called the Juras, and the crater punctuating them is named Bianchini. Do you remember what the bright tips of the opening into the “Bay of Rainbows” are called? That’s right: Promontorium LaPlace to the northeast and Promontorium Heraclides to the southwest. Now take a good look at Heraclides… Just south of here is where Luna 17 landed, leaving the Lunokhod rover to explore!

Now turn your eyes or binoculars just west of bright Aldebaran and have a look at the Hyades Star Cluster. While Aldebaran appears to be part of this large, V-shaped group, it is not an actual member. The Hyades cluster is one of the nearest galactic clusters, and it is roughly 130 light-years away in the center. This moving group of stars is drifting slowly away towards Orion, and in another 50 million years it will require a telescope to view!

Tuesday, November 20 – Today celebrates another significant astronomer’s birth – Edwin Hubble. Born 1889, Hubble became the first American astronomer to identify Cepheid variables in M31 – which in turn established the extragalactic nature of the spiral nebulae. Continuing with the work of Carl Wirtz, and using Vesto Slipher’s redshifts, Hubble then could calculate the velocity-distance relation for galaxies. This has become known as “Hubble’s Law” and demonstrates the expansion of our Universe.

Tonight we’re going to ignore the Moon and head just a little more than a fistwidth west of the westernmost bright star in Cassiopeia to have a look at Delta Cephei (RA 22 29 10.27 Dec +58 24 54.7). This is the most famous of all variable stars and the granddaddy of all Cepheids. Discovered in 1784 by John Goodricke, its changes in magnitude are not due to a revolving companion – but rather the pulsations of the star itself.

Ranging over almost a full magnitude in 5 days, 8 hours and 48 minutes precisely, Delta’s changes can easily be followed by comparing it to nearby Zeta and Epsilon. When it is its dimmest, it will brighten rapidly in a period of about 36 hours – yet take 4 days to slowly dim again. Take time out of your busy night to watch Delta change and change again. It’s only 1000 light-years away, and doesn’t even require a telescope! (But even binoculars will show its optical companion…)

Wednesday, November 21 – Tonight the gibbous Moon will dominate the sky. If you haven’t had a chance to log some features like Copernicus, Gassendi, Tycho and Plato – be sure to pick them up before the glare overpowers them. While you’re there, be sure to look for “the Man in the Moon!”

Now, let’s continue our stellar studies with the central-most star in the lazy “W” of Cassiopeia – Gamma…

At the beginning of the 20th century, the light from Gamma appeared to be steady, but in the mid-1930s it took an unexpected rise in brightness. In less than 2 years it jumped by a magnitude! Then, just as unexpectedly, it dropped back down again in roughly the same amount of time. A performance it repeated some 40 years later!

Gamma Cassiopeiae isn’t quite a giant and is still fairly young on the evolutionary scale. Spectral studies show violent changes and variations in the star’s structure. After its first recorded episode, it ejected a shell of gas which expanded Gamma’s size by over 200% – yet it doesn’t appear to be a candidate for a nova event.

The best estimate now is that Gamma is around 100 light-years away and approaching us a very slow rate. If conditions are good, you might be able to telescopically pick up its disparate 11th magnitude visual companion, discovered by Burnham in 1888. It shares the same proper motion – but doesn’t orbit this unusual variable star. For those who like a challenge, visit Gamma again on a dark night! Its shell left two bright (and difficult!) nebulae, IC 59 and IC 63, to which we will return at the end of the month.

Thursday, November 22 – As our observing year draws to a close, let’s take another look at a feature you might have missed – Wargentin. Located in the southwest quadrant on the terminator just south of the larger crater Schickard, we return again because Wargentin is one of the Moon’s most well-known curiosities. Able to be captured in binoculars, but best seen through a telescope at high power, really take a look at what was once a normal small crater! Unlike most craters, Wargentin’s walls were solid – able to contain the lava which eventually filled it to a height of 84 meters above the lunar surface.

While at first you might not notice, compare it to nearby Nasmyth and Phocylides. While both of these craters go below the surface, they also contain interior strikes – Wargentin has none! Except for a gentle, unnamed rille across its elevated surface, Wargentin is smooth.

While we still have about a month until it reaches opposition, the “Red Planet” is always worthy of a little attention. While Mars isn’t at its closest right now, this will be the only time this year that we can view it in the evening. Catch it now – before the Moon catches up with it in the days ahead!

Friday, November 23 – Tonight in 1885, the very first photograph of a meteor shower was taken. Also, the weather satellite TIROS II was launched on this day in 1960. Carried to orbit by a three-stage Delta rocket, the “Television Infrared Observation Satellite” was about the size of a barrel, testing experimental television techniques and infrared equipment. Operating for 376 days, Tiros II sent back thousands of pictures of Earth’s cloud cover and was successful in its experiments to control the orientation of the satellite spin and its infrared sensors. Oddly enough, a similar mission – Meteosat 1 – also became the first satellite put into orbit by the European Space Agency, in 1977 on this day. Where is all this leading? Why not try observing satellites on your own! Thanks to wonderful on-line tools from NASA you can be alerted by e-mail whenever a bright satellite makes a pass for your specific area. It’s fun!

Now, let’s explore tonight’s lunar feature – Galileo. It is a challenge for binoculars to spot this feature, but telescopes of any size capable of higher power will find it easily on the terminator in the west-northwest section of the Moon. Set in the smooth sands of Oceanus Procellarum, Galileo is a very tiny, eye-shaped crater and has a soft rille that accompanies it. It was named for the very man who first viewed and contemplated the Moon through a telescope. No matter what lunar resource you choose to follow, all agree that giving such an insignificant crater a great name like Galileo is unthinkable! For those of you familiar with some of the outstanding lunar features, read any good account of Galileo’s life and just look at how many spectacular craters were named for people he supported! We cannot change the names of lunar cartography, but we can remember Galileo’s many accomplishments each time we view this crater

Saturday, November 24 – Tonight it is Full “Frost Moon” and there is little doubt about how its name came to be! For those of you interested in viewing lunar features tonight, libration could be favorable to study a collection of shallow, dark craters known as Mare Australe. Located on the southeastern limb, this large binocular and telescopic object is well-worth looking for because it’s a challenge that isn’t always visible.

Ready to aim for a bullseye? Then head for the bright, reddish star Aldebaran. Set your eyes, scopes or binoculars there and let’s look into the “eye” of the Bull.

Known to the Arabs as Al Dabaran, or “the Follower,” Alpha Tauri took its name for the fact that it appears to follow the Pleiades across the sky. In Latin it was Stella Dominatrix, yet the old English knew it as Oculus Tauri, or very literally the “eye of Taurus.” No matter which source of ancient astronomy lore we explore, there are references to Aldeberan.

As the 13th brightest star in the sky, it almost appears from Earth to be a member of the V-shaped Hyades star cluster, but its association is merely coincidental, since it is about twice as close to us as the cluster. In reality, Aldeberan is on the small end as far as K5 stars go, and like many other orange giants could possibly be a variable. Aldeberan is also known to have five close companions, but they are faint and very difficult to observe with backyard equipment. At a distance of approximately 68 light-years, Alpha is only about 40 times larger than our own Sun and approximately 125 times brighter. To get a grasp on that size, think of it as being about the same size as the area Earth’s orbit! Because of its position along the ecliptic, Aldeberan is one of the very few stars of first magnitude that can be occulted by the Moon.

Sunday, November 25 – While Cassiopeia is in prime position for most northern observers, let’s return tonight for some additional studies. Starting with Delta, let’s hop to the northeast corner of our “flattened W” and identify 520 light-year distant Epsilon. For larger telescopes only, it will be a challenge to find this 12″ diameter, magnitude 13.5 planetary nebula I.1747 in the same field as magnitude 3.3 Epsilon!

Using both Delta and Epsilon as our “guide stars” let’s draw an imaginary line between the pair extending from southwest to northeast and continue the same distance until you stop at visible Iota. Now go to the eyepiece…

As a quadruple system, Iota will require a telescope and a night of steady seeing to split its three visible components. Approximately 160 light-years away, this challenging system will show little or no color to smaller telescopes, but to large aperture, the primary may appear slightly yellow and the companion stars a faint blue. At high magnification, the 8.2 magnitude “C” star will easily break away from the 4.5 primary, 7.2″ to the east-southeast. But look closely at that primary: hugging in very close (2.3″) to the west-southwest and looking like a bump on its side is the B star!

Dropping back to the lowest of powers, place Iota to the southwest edge of the eyepiece. It’s time to study two incredibly interesting stars that should appear in the same field of view to the northeast. When both of these stars are at their maximum, they are easily the brightest of stars in the field. Their names are SU (southernmost) and RZ (northernmost) Cassiopeiae and both are unique! SU is a pulsing Cepheid variable located about 1000 light-years away and will show a distinctive red coloration. RZ is a rapidly eclipsing binary that can change from magnitude 6.4 to magnitude 7.8 in less than two hours. Wow!

Astrosphere for November 16th, 2007

2007-1116astrosphere.thumbnail.jpg

Today’s photo is the Moon. Sure, I’ve shown lots of pictures of the Moon, but this one’s lunertic’s first astrophoto, and I thought I could help encourage this wonderful hobby. Take more, let’s see them.

Space Prizes has some interesting links to the recent 2009 Space Settlement Calendar Art Contest. How come nobody told me about this?

Nancy Houser at A Mars Odyssey has a great two part article about the first African American astronaut: Guion Bluford. Here’s part 1 and part 2.

Astronomy Picture of the Day has an image of the Orion Nebula, with a streak through the middle that turned out to be fuel dumped out of a recent rocket launch.

Jeff Foust at Space Politics gives a run down of NASA’s Administrator’s time in front of a Senate committee. It sounds like an uncomfortable place to be. Keith Cowing from NASA Watch has an opinion on the matter too.

Director of the Planetary Society, Louis Friedman, puts the most recent shuttle mission into perspective. The astronauts had a dangerous job of fixing the station’s solar wings, so why wasn’t there more press about it?

Pamela Gay translates some astro-gibberish into a really interesting scientific result.

The Angry Astronomer got a great post about the power of Big Sky Surveys.

NASA Tests New Parachutes for Ares Spacecraft

201992main_noc1197_516.thumbnail.jpg

This has been an exciting week for NASA’s Constellation program — the missions that will bring humans back to the Moon. Earlier in the week, NASA announced plans for testing abort systems and inflatable Moon habitats.

But on Thursday, November 15 actual tests were conducted for some of the genuine hardware that will be used for the Ares launch vehicles.

Near Yuma, Arizona, engineers tested the parachutes that will bring boosters from the first stage of the massive Ares rockets back to Earth.

Certainly, parachutes and rocket booster recovery is nothing new for NASA. But this new parachute is a whopper. Spanning 150 feet across and weighing 2,000 pounds makes this the largest chute of its kind ever tested for parachutes that will carry some of the heaviest payloads ever delivered.

And the new parachute worked perfectly — if not patriotically — with its red, white and blue striped canopy. Made of Kevlar, which is stronger and lighter than the nylon chutes used for the space shuttle’s solid rocket booster recovery, these bigger and stronger parachutes can still fit into the same size canister used for the shuttle boosters but yet be lighter.

Although the Ares boosters will actually come down in the Atlantic Ocean, the tests were conducted in the desert near the U.S. Army’s Yuma Proving Ground. Additionally, the tests used only a 42,000 pound weighted tub as opposed to the 200,000 pound weight of the actual boosters. But the drop tests from 16,000 ft. from a C-17 airplane simulated the peak loads at parachute opening and measured the drag area to validate the design.

The parachute system will allow the Ares I and Ares V boosters to be recovered and then refurbished and reused for future flights. Ares I will launch the Orion vehicle, which will carry humans to the moon, while the larger Ares V will be used for the Cargo Launch Vehicle.

The boosters are scheduled to be flight tested in 2009.

Keep those tests coming!

Original News Source: NASA Press Release

How to Keep a Venus Rover Cool

2007-1115rover.thumbnail.jpg

In comparison to a mission to Venus, missions to Mars or the Moon are a cakewalk. With temperatures exceeding 450ºC (840ºF) and pressures over 92 times that of the surface of the Earth, landing a rover on the surface of Venus is quite a feat. This, however, is exactly what a research and development team at the NASA John Glenn Research Center hopes to accomplish.

Venus has been explored by a number of different missions, but there is a lot of science yet to be done on the planet.

“Understanding the atmosphere, climate, geology, and history of Venus could shed considerable light on our understanding of our own home planet. Yet the surface of Venus is the most hostile operating environment of any of the solid-surface planets in the solar system,” wrote Dr. Geoffrey Landis of the NASA John Glenn Research Center.

The extreme conditions on Venus make traditional rover technology impossible: the heat and pressure combined wreak havoc on any electronic components, and the atmosphere of Venus, mostly composed of carbon dioxide and sulfuric acid, is highly corrosive on metal parts. And if this weren’t enough, the thick atmosphere makes the light conditions on the surface like a rainy day on Earth, which limits the potential of solar energy.

To solve the problem of putting electronics on the surface, the team will split the mission into two: a rover that will have limited electronic components in pressurized chamber cooled to under 300ºC (570ºF), and an airplane that will fly in the middle atmosphere of the planet, where the temperature is more moderate and the pressure not as great. The airplane will contain most of the more sensitive electrical components like computers, and will assist in relaying all the information back to Earth.

The Russian Venera lander to last the longest on the surface of Venus operated for a mere two hours before being crushed, but the rover for this mission will be designed to last more than 50 days.

Extreme conditions call for extreme technology; the team analyzed the possibility of using a number of different sources of energy, from solar to nuclear to microwave beaming. Solar power just can’t provide the energy necessary to run the rover and cool everything down, and microwave beaming energy from the airplane – which would collect solar energy – isn’t feasible because of how new the technology is.

This leaves nuclear power, something that has been used in past missions such as Galileo, Voyager, the current Cassini probe. To power the rover with nuclear energy, though, there is a twist: the heat produced by bricks of Plutonium will power a Stirling engine, an engine that uses the pressure difference between two chambers to produce mechanical energy with very high efficiency. This mechanical energy can be used to power the wheels directly, or transferred to electrical energy for the electrical and cooling systems, and the technology is being adapted to work on Venus.

“We’ve been working on Stirling technology for many years. The project reported was a project to design a Stirling specifically for Venus – which makes for a very different design in some ways; notably in that the heat rejection temperature is extremely hot – but we are building from existing technology, not developing it from scratch,” wrote Dr. Landis

The airplane would study the atmospheric conditions and Venus’ electric field, while the rover would place seismic stations and study surface conditions. A camera is almost definite on the airplane, and while it would be difficult to put a camera on the rover, it is not entirely out of the question.

When can you expect to see images of the surface, or hear more about the sulfuric acid clouds that envelop the planet?

“It’s a mission concept study so far, not a funded mission, so it’s not actually scheduled to take place. However, there’s a lot of interest in flying it in the 2015-2020 time frame,” said Dr. Landis.

Source: Acta Astronautica

Prototype Heat Shield for Orion

2007-1115orion.thumbnail.jpg

I know what you’re thinking, and no, that’s not a UFO in a secret government laboratory. It’s not a prop for an upcoming science fiction movie, and it’s not the world’s largest Frisbee. It’s a prototype heat shield, developed by Boeing for NASA’s Orion Crew Exploration Vehicle.

When Orion returns from space, it needs to decelerate from orbital velocity to be able to land safely. Just like the space shuttle, the capsule will point this heat ablating surface into the atmosphere, and let it get super hot. The heat shield can rise to extremely high temperatures, while the astronauts stay nice and safe.

The lunar protective system will need to be much more capable that the shuttle’s system, since capsules will be returning directly to the Earth after flying from the Moon. In some cases, Orion’s thermal protection will face 5 times as much heat as vehicles returning from the International Space Station. That’s hot.

It was the catastrophic failure of Columbia’s heat shield that doomed it when it was re-entering the Earth’s atmosphere. Needless to say, NASA wants to get this right.

The contract for the new Thermal Protection System was awarded to Boeing Advanced Systems about a year ago. Last month, a NASA Ames technical and quality inspection team completed an acceptance review of the shield.

The shield is made from Phenolic Impregnated Carbon Ablator (PICA). That’s a mouthful, but it uses a special trick to keep the capsule cool. As the heat shield heats up during reentry, the PICA material “ablates”. It chars, melts and then sublimates to create a cool boundary layer that protects the spacecraft.

Boeing will continue working on the heat shield, to meet Orion’s TPS preliminary design review in early 2008.

Original Source: Boeing News Release