“Where In The Universe” Challenge #7

With all the excitement of Phoenix’s successful landing and subsequent activities, I almost forgot that its time for another “Where In The Universe” challenge. So, I’ve been blazing across the internet, trying to shoot off another version of this challenge without causing a conflagration or bursting into spontaneous human combustion (OK, I know that doesn’t really happen, but it fits here.)

I have to admit this image is really unusual. It almost looks like something found painted on a cave wall, but this is an actual image taken of the surface of a planetary body. It’s time to make your guesses, and no peeking below before you do…..

This image was chosen in honor of Phoenix. Still puzzled?

These are fire scars in an Australian desert. This image was taken in November of 2002 by a crew member on board the International Space Station. These unusual bright orange fire scars show up on the underlying sand dunes in the Simpson Desert, 300 kilometers east of Alice Springs. The background is an intricate pattern of sand cordons that angle across the view from lower left to upper right. These cordons are mostly green in this image, showing that, although they were once shifting, they have become more or less static—“tied down” by a vegetation mat of desert scrub.

The fire scars were produced by a fire in 2002, and are certainly not there anymore, unless a new fire has created new scars like this. According to scientists, the image suggests a time sequence of events: Fires first advanced into the view from the lower left—parallel with the major dune trend and dominant wind direction. Then the wind shifted direction by about 90 degrees so that fires advanced across the dunes in a series of frond-like tendrils. The sharp tips of the fronds show where the fires burned out naturally.

Over time these scars are erased as vegetation grows back.

How’d you do?

And let’s hear it one more time for the latest spacecraft on Mars! Phoenix, you really light my fire!

Image source: NASA Earth Observatory

Spitzer Spies Ghostly Magnetar

Spitzer Space Telescope Image of Magnetar SGR 1900+14

If only it were closer to Halloween. NASA’s Spitzer Space Telescope has captured an infrared image showing a ghostly ring extending seven light-years across around the corpse of a massive star, called a magnetar . The collapsed star, called Magnetar SGR 1900+14, is unlike anything ever seen before. Scientists believe this object may have formed in 1998 when the magnetar erupted in a giant flare. They believe the crusty surface of the magnetar cracked, sending out a flare, or blast of energy, that excavated a nearby cloud of dust, leaving an outer, dusty ring. “The universe is a big place and weird things can happen,” said Stefanie Wachter of NASA’s Spitzer Science Center.

Wachter is lead author of a paper about the findings in this week’s Nature. The ring is oblong, with dimensions of about seven by three light-years. It appears to be flat, or two-dimensional, but the scientists said they can’t rule out the possibility of a three-dimensional shell.

Magnetars are formed when a giant star ends its life in a supernova explosion, leaving behind a super dense neutron star with an incredibly strong magnetic field. These are the cores of massive stars that blew up in supernova explosions, but unlike other dead stars, they slowly pulsate with X-rays and have tremendously strong magnetic fields. The ring seen by Spitzer could not have formed during the original explosion, as any material as close to the star as the ring would have been disrupted by the supernova shock wave.

This composite image was taken using all three of Spitzer’s science instruments. The blue color represents 3.6-micron infrared light taken by the infrared array camera, green is 16-micron light from the infrared spectograph, and red is 24-micron radiation from the multiband imaging photometer.

Original News Source: NASA

Listen to Phoenix Descend

Europe’s Mars Express orbiter picked up the signal that Phoenix was transmitting as it descended to Mars’ surface on May 25. The data from the Mars Express Lander Communication system (MELACOM) tracked Phoenix and the signal was received on Earth soon after the Phoenix landing. The Mars Express Flight Control Team has now processed the signals, and the sounds of Phoenix descending are audible, loud and clear. ESA says the signal was tracked successfully, even during the expected transmission blackout window of the descent, until the lander was out of Mars Express’s view. The transmission blackout window is caused because of ionization around the probe, which builds up as the lander descends through the atmosphere and only very weak signals come through.

The closest Mars Express got to Phoenix was 1550 km. Then, as Mars Express flew away, the lander deployed its parachute, separated from it and landed. Then the signal from the lander was cut off.

Listening to the recording, you’ll notice the Doppler effect, which is very similar to what we hear when listening to the whistle of a passing train, of Phoenix and Mars Express getting closer and then farther away from each other.

Link to the sound recording.

The rest of the recording, the start and the end, contains background noise generated by Mars Express itself.

During the descent, all of the capabilities of Mars Express were focussed on tracking Phoenix with MELACOM. Unfortunately, the science observations carried out during the descent did not lead to the anticipated results.

Over the next few days, Mars Express will monitor Phoenix using MELACOM 15 more times; at least one of these will be used to demonstrate and confirm that the ESA spacecraft can be used as a data relay station for NASA, receiving data from the surface and transmitting test commands to the lander, which may be important if any issues remain with the communication troubles between Phoenix and the Mars Reconnaissance Orbiter.

Source: ESA

Countdown Begins for STS-124; Will Bring Supplies for ISS Toilet Repair

Countdown for the next space shuttle mission, STS-124 will begin today, Wednesday May 28 at 3:00 pm EDT. Launch is scheduled for Saturday, May 31 at 5:02 pm EDT. The mission will deliver Japan’s Kibo pressurized module to the station, as well as some last minute, very important equipment: parts to repair a balky toilet on board the space station. The pump that separates the solids from the gas wastes for the toilet has been working only sporadically. The replacement parts are being flown in from Russia today, hand-carried in a diplomatic pouch, and will be added to the payload on board space shuttle Discovery. “Clearly, having a working toilet is a priority for us,” said NASA’s Scott Higginbotham, mission manager in the International Space Station and Spacecraft Processing Directorate. STS-124 is the 123rd flight of the space shuttle, the 26th flight to the station and the 35th flight for space shuttle Discovery.

Mission managers report everything looks good for launch on Saturday. The flight crew will be arriving today. All systems on the shuttle are in good shape and the Kibo module is securely installed in Discovery’s payload bay. Kibo is the largest pressurized module ever delivered to the ISS, but at 32,000 pounds (14,515 kilograms), it’s not the heaviest payload ever launched on board a shuttle. That was the S3/S4 truss delivered last year, which weighed 35,678 pounds (16,183-kilograms).

10 minute launch window starts at 4:57 pm, and launch is targeted for the middle of window at 5:02 pm. STS-124 is a 14 day mission, with 3 EVAs planned from the ISS airlock. If any launch delays occur, they could continue with four launch attempts in five days, and the only constraint is the GLAST launch planned for June 5.

In addition to the Kibo module and crew, 975 lbs of equipment will be going up on the flight, including the last minute addition of toilet repair parts, which Higginbotham described as “fairly significant pieces of hardware.” For more info on the toilet, see Jim Oberg’s article on MSNBC.

Currently, the weather looks good for a the Saturday launch.

Image: The STS-124 crew members pose for a portrait at NASA’s Johnson Space Center. From the left are astronauts Mark Kelly, commander; Ken Ham, pilot; Karen Nyberg, Ron Garan, Mike Fossum, Japan Aerospace Exploration Agency astronaut Akihiko Hoshide, and astronaut Greg Chamitoff, all mission specialists. Photo credit: NASA

Comm Glitch Resolved; New Raw Images from Phoenix

The UHF radio on the Mars Reconnaissance Orbiter that had gone into standby mode yesterday was successfully restarted. The orbiter was then able to receive information from the Phoenix Mars Lander late Tuesday evening and relay the transmission to Earth, which included images and other data collected by Phoenix during the mission’s second day after landing on Mars. The radio system used by the orbiter to communicate with the lander experienced an undetermined “transient event” early Tuesday and shut itself off. This prevented sending Phoenix any new commands from Earth on Tuesday. Instead, the lander carried out a backup set of activity commands that had been sent Monday, which included taking additional pictures of itself and the landing site. Above is one of the raw, unprocessed image the lander took of itself.


We’ve gotten used to the panoramic images of Mars from the Mars Exploration Rovers, and we can expect more of the same from Phoenix. Above is the beginnings of a panoramic view of the lander and its surroundings. The Surface Stereo Imager is in the process of taking multiple images, which the imaging team will process and piece together to form a a large color panorama.

And how do these raw, black and white images become colorful photos and panoramas? At left is a calibration target on Phoenix. It has grayscale and color dots. Before launch, the calibration targets are imaged and measured very accurately, so that the imaging team back on Earth knows what the colors and different shades of grey are.

Once on Mars, a picture is taken of the target. The picture will be processed through the software they use, and if it comes out looking the same as the pictures taken of the target before launch, the imaging team knows they have processed the picture correctly. They then use the same technique to process the images of Mars surface, and produce images that are as close as possible to the “real” colors on Mars.

Here’s one more raw image, the beginnings the panorama of the entire spacecraft, of the SSI camera looking down on the spacecraft itself.

Image Source: Phoenix Gallery

Communication Glitch for Phoenix, MRO

The UHF communications radio on board the Mars Reconnaissance Orbiter has switched to standby and was unable to relay instructions to the Phoenix lander for its activities for sol 2, which included unstowing its robotic arm. The problem arose at 0608 PDT on Tuesday. MRO did receive the sol 2 sequence from Earth – meaning the communications link between Earth and MRO continues to operate normally. But subsequently MRO reported that there had been a “problem with the handshake between MRO and Phoenix,” said Fuk Li, manager of NASA’s Mars Exploration Program. A ‘handshake’ is the set of signals the radios on the two spacecraft send each other to establish a data-communications link.

“All this is is a one-day hiccup in being able to move the arm around, so it’s no big deal,” said Ed Sedivy, Phoenix program manager at Lockheed Martin Space Systems.

The next opportunity to send commands to Phoenix will occur on Wednesday morning, when Mars Odyssey, the other spacecraft used to communicate with Phoenix, passes over the landing site. At that time, the commands that failed to reach the lander today will be transmitted. We’ll keep you posted.

Also, we’ll take this opportunity to share a couple of other tidbits about Phoenix. The image above was taken on sol 1, and shows Phoenix’s backshell off in the distance.


On board Phoenix is a weather station, contributed by the Canadian Space Agency and University of Aarhus in Denmark. The weather station was activated in the first hour after landing on Mars. Measurements are being recorded continuously. Skies were clear and sunny on Sol 1 on Mars. The temperature varied between minus 112 degrees Fahrenheit in the early morning and minus 22 degrees Fahrenheit in the afternoon. The average pressure was 8.55 millibars, which is less than a 1/100th of the sea level pressure on Earth.

This image shows the spacecraft’s robotic arm in its stowed configuration, with the a biobarrier, a shiny, protective film, that covers the arm on landing day, or Sol (Martian day) 0, and then the biobarrier was removed during lander’s first full day on Mars, Sol 1.

The “elbow” of the arm can be seen at the top center of the picture, and the biobarrier is the shiny film seen to the left of the arm.

The biobarrier is an extra precaution to protect Mars from contamination with any bacteria from Earth. While the whole spacecraft was decontaminated through cleaning, filters and heat, the robotic arm was given additional protection because it is the only spacecraft part that will directly touch the ice below the surface of Mars. After Phoenix landed, springs were used to pop back the barrier, giving it room to deploy.

These images were taken on May 25, 2008 and May 26, 2008 by the spacecraft’s Surface Stereo Imager.

News Sources: Astrobiology Magazine, JPL Phoenix News

The A-Train: Using Five Satellites as One to Analyze Polluted Clouds

The A-Train - 5 satellites collaborate to scan polluted clouds (NASA)

This is one of the finest examples of satellite collaboration. Five Earth-observing orbiters, four from NASA and one from France, are working together to provide the deepest analysis of cloud cover ever carried out. The satellites orbit in a close formation, only eight minutes apart, and create what is known as the “Afternoon Constellation” (or “A-Train” for short). They are so close in fact, that they can be considered to act as one satellite, capable of carrying out a vast suite of measurements on the pollution content of clouds. This work is shedding new light on the link between clouds, pollution and rainfall, a study that could never be achieved with one satellite alone…

Pollution in clouds is a critical problem for the international community. These rogue particles can seriously change the natural behaviour of clouds and entire weather systems, but until now, scientists have been uncertain about the difference in rainfall from polluted and unpolluted cloud cover. This is primarily because no single environmental satellite has been able to probe deep into clouds with the limited number of instruments it can carry. But using the collective power of five independent satellites, scientists are beginning to unlock the secrets polluted clouds have been hiding.

Particulates from pollution mixing with clouds above the US (NASA)

Researchers at NASA’s Jet Propulsion Labs (JPL) in Pasadena have recently discovered that clouds peppered with pollutant particles do not produce as much rain as their unpolluted counterparts. This finding was only possible after analysing data from the near-simultaneous measurements made by the five A-Train satellites. The constellation includes NASA’s Aqua, Aura, CloudSat and CALIPSO and the French Space Agency’s PARASOL.

Typically, it is very hard to get a sense of how important the effect of pollution on clouds is. With the A-Train, we can see the clouds every day and we’re getting confirmation on a global scale that we have an issue here.” – Anne Douglass, project scientist at Goddard for NASA’s Aura satellite.

The A-Train is turning up some interesting, if alarming, results. When focusing on the skies above South America during the June-October dry season, the JPL team found that the increased level of agricultural burning during this period injected more aerosols into the clouds. This had the effect of shrinking the size of ice crystals in the clouds, preventing the crystals from getting large enough to fall as rain. This direct effect of burning and ice crystal formation has never been connected before the use of the A-Train. However, during wet seasons, the aerosol content in clouds appeared not to be a critical factor on the amount of rainfall.

How is it possible to distinguish between polluted and unpolluted clouds? Firstly, the A-Train’s Aura satellite measures the concentration of carbon monoxide in the clouds. This is a strong indicator for the presence of smoke and other aerosols originating from a power plant or agricultural activities. When the polluted clouds are identified, the A-Train’s Aqua satellite can be called into use. Using its Moderate Resolution Imaging Spectroradiometer instrument, the size of ice crystals in polluted and unpolluted clouds can be measured. Next up is NASA’s Tropical Rainfall Measuring Mission satellite that can measure the amount of precipitation (rain) from polluted and unpolluted clouds.

Through this combination of satellites, scientists are able to link pollution with clouds with precipitation. This is only one example of the flexibility behind collaborations such as A-Train, so cloud science can only go from strength to strength.

Source: Physorg.com

Why the Phoenix Landing Site is Perfect

Permafrost on Mars (top) compared to Earth (bottom). Image credit: NASA Earth Observatory

Phoenix’s landing site may look flat and uninteresting. But actually, the site is perfect, and is exactly what the Phoenix science team was hoping for. You see, Phoenix is actually more interested in what is below the surface. From one of the first images sent back by Phoenix, a view of Mars’ surface at this site reveals a landscape familiar to polar scientists on Earth: a pattern of interlocking polygon shapes that form in permafrost that freezes and thaws seasonally. These polygon patterns were seen in orbital pictures taken by the Mars Reconnaissance Orbiter, as well as other spacecraft, and these polygon shapes are part of the evidence that Mars’ polar regions harbor large quantities of frozen water.

This pair of images above shows the similarities between the surface of Mars where Phoenix landed (top) and permafrost on northeastern Spitsbergen, Svalbard (bottom) an archipelago in the Arctic Ocean north of mainland Europe, about midway between Norway and the North Pole. The polygon patterns in the permafrost form when the upper parts of the ground thaw and refreeze from season to season. The ground contracts in the winter cold, creating small spaces that fill with melted water in the summer. When winter returns and the water freezes, it acts like a wedge, enlarging the cracks.


The Phoenix landing site with polygon shapes visible from orbit via MRO.

The only difference in these photos is the Earth image shows water on the surface, and on Mars, water couldn’t pool on the surface because the low atmospheric pressure would cause any water that might bubble to the surface to sublimate. But the thaw/freeze process could presumably occur beneath Mars’ surface with far less water.

And why is this so interesting? On Earth, permafrost, glaciers, and other frozen environments can preserve organic molecules, bacteria, and fungi for hundreds of thousands, even millions, of years. The Phoenix spacecraft has scientific instruments that will dig into the frozen ground of the Martian Arctic, vaporize the soil sample, and analyze the chemistry of the vapors. Scientists hope to learn whether ice just below the surface ever thaws and whether some chemical ingredients of life are preserved in the icy soil.

That’s why Phoenix’s landing site is perfect.

Original News Source: NASA Earth Observatory

Another HiRISE Stunner: The Full Descent Image

I hope you’re not tired of seeing HiRISE images of Phoenix, but this one shows the grandeur of Mars compared to the tininess of our spacecraft. Remember the close-up image of Phoenix descending to Mars’ surface with its parachute? Well, the HiRISE folks were holding back on us. Above is the jaw-dropping full image, with the inset being the close-up of Phoenix! What an amazing vista, and our little Phoenix is just a tiny pixel or two in the entire image. That the imaging team found Phoenix in this photo is incredible. And no, Phoenix is not heading into the crater, as it appears. The lander is actually about 20 kilometers (about 12 miles) in front of the crater. This is just so amazing.

Tell me when you’ve had enough of these images, but I’m saying, “Keep ’em coming!”

I love HiRISE even more.

BTW, the crater is informally called “Heimdall,” and is about 10 km (6 miles) wide.

Original Source: JPL Phoenix News

HiRISE Does It Again; Captures Phoenix On Mars’ Surface

The HiRISE Camera Imaging Team for the Mars Reconnaissance Orbiter keeps outdoing themselves. First, they imaged Mars’ surface in such fine detail to help choose a safe yet interesting landing site for Phoenix. Then they beat the odds and actually captured Phoenix during its descent to Mars surface, which is completely incredible. And now, in very short order they’ve located and imaged Phoenix and all its accoutrements sitting on Mars north polar region. The parachute (lower left) is easy to identify because it is especially bright and the backshell is still attached to the parachute cords. The double dark marking at right is consistent with disturbance of the ground from impact and bouncing of the heat shield, which fell from a height of about 10 kilometers. The last object (upper left) is the Phoenix Lander whose two solar panels on either side of the lander are clearly visible.

To give you a sense of scale of what you’re seeing, the solar panels are about 5.5 meters (about 18 feet) across, and about 22 pixels in this image. The parachute and lander are about 300 meters, roughly 1,000 feet, apart. All seen and imaged by MRO from orbit. Amazing.

I love HiRISE.

In other Phoenix news, the commands to activate the robotic arm will be sent Wednesday morning via communications with, appropriately enough, MRO.

See below for close-ups and the entire image without the inserts.

All these images were acquired about 22 hours after Phoenix landed at about 3:00PM local time on the surface. The rest of the HiRISE observation shows a cloud free day for Phoenix Lander operations.

Close up of the Phoenix lander.

Parachute and backshell.

Source: HiRISE