“Starlight Zone” Interview Now Online

The interview that I (Nancy) did with the “Starlight Zone” radio show from station 2NUR FM in Newcastle, Australia back on June 19 is now online (or just listen below). It’s only five minutes long, so if you need a short diversion to your day…. We talked about the concept of a one-way trip to Mars and the Phoenix mission.

Col Maybury, who does the show was a very fun guy to talk with. Check out all the past interviews he’s done with various “spacey” people on 2NUR’s “Starlight Zone” website.

G’day!

WeekEnd SkyWatcher’s Forecast: July 4 – 6, 2008

Artist Impression of Deep Impact - Credit: NASA

Greetings, fellow SkyWatchers! If you’re enjoying a holiday weekend where you live, then start the fireworks off as we begin by remembering Deep Impact and journey towards a nearby star approaching the supernova phase. As things heat up towards one of the most spectacular conjunctions of the year, we’ll also take a look at another globular cluster study, lunar features and a binocular deep sky treat! Are you ready to step in the realm of a Barnard dark nebula? The grab your optics and let’s head out into the night…

Friday, July 4 – On this date in 2005, the Deep Impact mission entered the history books as its probe impacted Comet Tempel 1 successfully. The spacecraft relayed back to Earth a wealth of information about the material released from the surface. Thanks to this incredible mission (a collaboration between JPL, the University of Maryland, and Ball Aerospace Technologies), we’ve learned much more about the nature of comets and the protosolar nebula in which they formed.

This date in history also marks the 1947 founding of the Astronomical League – a worldwide organization with almost 15,000 members!

And did you know that celestial fireworks occurred in 1054, also on this day? It is believed the bright supernova recorded by Chinese astronomers happened at this point in history, and today we know its remnants as the Crab Nebula (M1).

Palomar Observatory, courtesy of CaltechBut could such an event happen again in our own celestial “backyard?” Look no further than HR 8210 (RA 21 26 26 Dec +19 22 32). It may be nothing more than a white dwarf star hiding out in late night Capricornus, but it’s a star that’s almost run out of fuel. This rather ordinary binary system has a companion white dwarf star that’s 1.15 times the mass of our Sun. As the companion also expends its fuel, it will add mass to HR 8210 and push it over the Chandrasekhar limit – the point of no return in mass. This will someday result in a supernova event located only 150 light-years away from our solar system…

And that’s 50 light-years too close for comfort!

470 light-years away in the Gould Belt, and roughly 1.5 million years ago, a similarly massive star exploded in the Upper Scorpius association. No longer able to fuel its mass, it unleashed a supernova event which left its evidence as a layer of iron here on Earth, and may have caused a certain amount of biological extinction when its gamma rays directly affected our ozone layer.

Take a long look at Antares tonight – for it is part of that association of stars and is no doubt also a star poised on the edge of extinction. At a safe distance of 500 light-years, you’ll find this pulsating red variable equally fascinating to the eye as well as to the telescope. Unlike HD 8210, Alpha Scorpii also has a companion which can be revealed to small telescopes under steady conditions. Discovered on April 13, 1819 during a lunar occultation, this 6.5 magnitude green companion isn’t the easiest to split from such a bright primary – but it’s certainly fun to try! And the best is yet to come, because Antares will be occulted again in a matter of days…

Saturday, July 5– Tonight the Moon has returned in a position to favor a bit of study. Start by checking IOTA information for a possible visible occultation of Regulus, and also look for Saturn quite nearby as the slender crescent graces the early evening skies.

Although poor position makes study difficult during the first few lunar days, be sure to look for the ancient impact crater Vendelinus just slightly south of central. Spanning approximately 150 kilometers in diameter and with walls reaching up to 4400 meters in height, lava flow has long ago eradicated any interior features. Its old walls give mute testimony to later impact events, which you can see when viewing crater Holden on the south shore; much larger Lame on the northeast edge; and sharp Lohse northwest. Mark your challenge list!

For all observers, let’s take a closer look at the fascinating constellation of Lupus southwest of brilliant Antares. While more northern latitudes will see roughly half of this constellation, it sits well at this time of year for those in the south. So why bother?

Cutting through our Milky Way galaxy at a rough angle of about 18 degrees is a disc-shaped zone called Gould’s Belt. Lupus is part of this area whose perimeter contains star forming regions which came to life about 30 million years ago when a huge molecular cloud of dust and gas was compressed – much like in the Orion area. In Lupus we find Gould’s Belt extending above the plane of the Milky Way!

Palomar Observatory, courtesy of CaltechReturn again to the beautiful Theta and head around five degrees west for NGC 5986 (RA 15 46 03 Dec 37 47 10), a 7th magnitude globular cluster which can be spotted with binoculars with good conditions. While this Class VII cluster is not particularly dense, many of its individual stars can be resolved in a small telescope.

Now sweep the area north of NGC 5986 (RA 17 57 06 Dec 37 05 00) and tell me what you see. That’s right! Nothing. This is dark nebula B 288 – a cloud of dark, obscuring dust which blocks incoming starlight. Look carefully at the stars you can see and you’ll notice they appear quite red. Thanks to B 288, much of their emitted light is absorbed by this region, providing us with a pretty incredible on-the-edge view of something you can’t see – a Barnard dark nebula.

NASASunday, July 6 – Celestial scenery alert! SkyWatchers… Mark your calendar and be sure to make this date with the western skyline as sunset marks one of the most picturesque views of the year! Regulus, Mars and Saturn will all dance with the da Vinci Moon. No special equipment is needed to see this event, and thanks to Leonardo da Vinci we can see the ghostly effect on the Moon as quite logical. He was the first to theorize that sunlight was reflecting off the Earth and illuminating the portion of the Moon not lit by the Sun. We more commonly refer to this as “Earthshine” – but no matter how scientific the explanations are for this phenomena, its appearance remains beautiful.

Today in 1687, Isaac Newton’s monumental Principia was published by the Royal Society with the help of Edmund Halley. Although Newton was indeed a very strange man with a highly checkered history, one of the keys to Newton’s work with the theory of gravity was the idea that one body could attract another across the expanse of space.

Now let’s have a look at some things gravitationally bound as we start at Eta Lupi, a fine double star which can even be resolved with binoculars. Look for the 3rd magnitude primary and 8th magnitude secondary separated by a wide 15″. You’ll find it by starting at Antares and heading due south two binocular fields to center on bright H and N Scorpii – then one binocular field southwest (RA 16 00 07 Dec 38 23 48).

Palomar Observatory, courtesy of CaltechWhen you are done, hop another roughly five degrees southeast (RA 16 25 18 Dec 40 39 00) to encounter the fine open cluster NGC 6124. Discovered by Lacaille and known to him as object I.8, this 5th magnitude open cluster is also known as Dunlop 514, as well as Melotte 145 and Collinder 301. Situated about 19 light-years away, it will show as a fine, round, faint spray of stars to binoculars and be resolved into about 100 stellar members to larger telescopes. While NGC 6124 is on the low side for northern observers, it’s worth the wait for it to hit its best position. Be sure to mark your notes, because this delightful galactic cluster is a Caldwell object and a southern skies binocular reward!

Wishing you an awesome weekend…

This week’s photos are courtesy of: Deep Impact Mission – Credit: JPL/NASA, HR 8210 – Credit: Palomar Observatory courtesy of Caltech, NGC 5986 – Credit: Palomar Observatory courtesy of Caltech, Da Vinci Moon – Credit: NASA and NGC 6124 – Credit: Palomar Observatory courtesy of Caltech.

History of Saturn

Galileo

Saturn is easily visible with the unaided eye, so it’s hard to say when the planet was first discovered. The Romans named the planet after Saturnus, the god of the harvest – it’s the same as the Greek god Kronos.

You can also check out these cool telescopes that will help you see the beauty of planet Saturn.

Nobody realized the planet had rings until Galileo first turned his rudimentary telescope on the planet in 1610. Of course, Galileo didn’t realize what he was looking at, and thought the rings were large moons on either side of the planet.

It wasn’t until Christian Huygens used a better telescope to see that they were actually rings. Huygens was also the first to discover Saturn’s largest moon Titan.

Jean-Domanique Cassini uncovered the gap in Saturn’s rings, later named the Cassini Division, and he was the first to see 4 more of Saturn’s moons: Iapetus, Rhea, Tethys, and Dione.

There weren’t many more major discoveries about Saturn until the spacecraft flybys in the 70s and 80s. NASA’s Pioneer 11 was the first spacecraft to visit Saturn, getting within 20,000 km of the planet’s cloud layers. It was followed by Voyager 1 in 1980, and Voyager 2 in August 1981.

It wasn’t until July 2004 that NASA’s Cassini spacecraft arrived at Saturn, and began the most detailed exploration of the system. Cassini has performed multiple flybys of many of Saturn’s moons, and sent back thousands of images of the planet and its moons. It has discovered 4 new moons, a new ring, and saw liquid hydrocarbon seas on Titan.

This article was published when Cassini had finished half its primary mission, and discusses many of the discoveries made so far, and another article when its primary mission was complete.

This article has a timeline of Saturn history, and more history from NASA.

We have recorded two episodes of Astronomy Cast just about Saturn. The first is Episode 59: Saturn, and the second is Episode 61: Saturn’s Moons.

Formation of Saturn

Solar nebula. Image credit: NASA

Like the rest of the planets, Saturn formed from the solar nebula about 4.6 billion years ago. This solar nebula started out as a vast cloud of cold gas and dust which was disturbed somehow – perhaps by colliding with another cloud, or the shock wave from a supernova.

You can also check out these cool telescopes that will help you see the beauty of planet Saturn.

The cloud compressed down, forming a protostar in the center, surround by a flattened disk of material. The inner part of this disk contained more heavier elements, and formed the terrestrial planets, while the outer region was cold enough for ices to remain intact.

These ices came together, forming larger and larger planetesimals. And these planetesimals collided together, merging into planets. At some point in Saturn’s early history, a moon roughly 300 km across might have been torn apart to create the rings that circle the planet today.

Since Saturn was smaller than Jupiter, it cooled down more quickly. Astronomers think that once its outer atmosphere reached about 15 K, helium condensed into droplets that fell towards its core. The friction from these droplets heated up the planet to the point that it gives off roughly 2.3 times the amount of energy it receives from the Sun.

Here’s an article from Universe Today about how the gas giant planets might have consumed their moons early on, and another article about how gas giant planets might form around other stars.

Here’s an article about the formation of Saturn’s rings, and an article about what Saturn’s moons might tell scientists about planet formation.

We have recorded two episodes of Astronomy Cast just about Saturn. The first is Episode 59: Saturn, and the second is Episode 61: Saturn’s Moons.

Radiation on Saturn

Radiation Belts on Saturn. Image credit: NASA/JPL/SSI

Just like Jupiter, Saturn radiates out more energy that it draws in from the Sun. In fact, Saturn radiates 2.3 times more energy than it receives from the Sun.

You can also check out these cool telescopes that will help you see the beauty of planet Saturn.

This has been a bit of a mystery to scientists. But the solution lies in the fact that Saturn’s atmosphere is relatively poor in helium, compared to Jupiter. Scientists think it cooled faster than Jupiter after initial formation, and then helium droplets formed when the temperature of the atmosphere dropped below 15 K. These droplets have been falling down into the core of Saturn, heating it up, and generating the heat.

When NASA’s Cassini first arrived at Saturn, the spacecraft detected lightning storms and radiation belts around the planet. It even found a brand new radiation belt located inside the rings of Saturn. The belts extend from about 139,000 km from Saturn’s center out to 362,000, and contain highly charged particles.

Here’s an article about Cassini finding the radiation belts around Saturn, and another about strange radio emissions coming from Saturn, related to the belts.

Here’s more information on the radiation belts, and a nice photograph from NASA.

We have recorded two episodes of Astronomy Cast just about Saturn. The first is Episode 59: Saturn, and the second is Episode 61: Saturn’s Moons.

Storms on Saturn

Storms on Saturn. Image credit: NASA/JPL/SSI

Jupiter is well known for the storms that rage across its upper atmosphere, especially the Great Red Spot. But Saturn has storms too. They’re not as large, intense or large lived, but compared to Earth, they’re enormous. And Saturn has one of the big mysteries in the Solar System; a hexagon-shaped storms at its poles.

You can also check out these cool telescopes that will help you see the beauty of planet Saturn.

Winds blow hard on Saturn. The highest velocities are near the equator, where easterly blowing winds can reach speeds of 1,800 km/h. The wind speeds drop off as you travel towards the poles.

Like Jupiter, storms can appear in the bands that circle the planet. One of the largest of these was the Great White Spot, observed by the Hubble Space Telescope in 1990. These storms seem to appear once every year on Saturn (once every 30 Earth years).

NASA’s Cassini spacecraft discovered static hexagonal storm circling around Saturn’s north pole, including a clearly defined eyewall – just like a hurricane. Each side on the northern polar hexagon is approximately 13,800 km long, and the whole structure rotates once every 10 hours and 39 minutes; the same as a day on Saturn.

Here’s an article about a time when Cassini tracked a long-lived lightning storm on Saturn, and another about the strange “Dragon Storm” seen in the planet’s southern hemisphere.

Here’s an article about the northern hexagonal storm from MSNBC, and Astronomy Picture of the Day has an image of storm alley on Saturn.

We have recorded two episodes of Astronomy Cast just about Saturn. The first is Episode 59: Saturn, and the second is Episode 61: Saturn’s Moons.

Mass of Saturn

Cassini's view of Saturn. Image credit: NASA/JPL/SSI

The mass of Saturn is 5.6846×1026 kg. Just for a comparison, this is 95 times the mass of the Earth.

Saturn is much larger than Earth; its equator spans 9.4 times the size of our home planet. And yet, it’s much less dense. In fact, Saturn has such a low density that it would actually float on water if you could find a pool large enough.

And so, even though it’s much larger and more massive than Earth, if you could actually stand on the “surface of Saturn” – which you can’t, there’s no surface – you would only feel 91% of gravity that we feel here on Earth.

Here’s an article from Universe Today explaining just how big planets can get, and an article about how Jupiter and the other gas giants might have gobbled up their moons while they were forming.

Here’s Hubblesite’s News Releases about Saturn, which has more info about the ringed planet, and NASA’s Solar System Exploration guide.

We have recorded two episodes of Astronomy Cast just about Saturn. The first is Episode 59: Saturn, and the second is Episode 61: Saturn’s Moons.

Is There Life on Saturn?

Color view of Enceladus. Image credit: NASA/JPL/SSI

It’s hard to imagine a planet less hospitable for life than Saturn. The planet is comprised almost entirely hydrogen and helium, with only trace amounts of water ice in its lower cloud deck. Temperatures at the top of the clouds can dip down to -150 C.

You can also check out these cool telescopes that will help you see the beauty of planet Saturn.

Temperatures do get warmer as you descend into Saturn’s atmosphere, but the pressures increase too. When temperatures are warm enough to have liquid water, the pressure of the atmosphere is the same as several kilometers beneath the ocean on Earth.

To find life, scientists will want to take a good look at Saturn’s moons. They’re comprised of significant amounts of water ice, and their gravitational interaction with Saturn probably keeps their interiors warm. Saturn’s moon Enceladus is known to have geysers of water erupting from its southern pole. It’s possible that it has vast reserves of superheated water beneath an ice crust.

And Saturn’s moon Titan has lakes and seas of hydrocarbons, thought to be the precursors of life. In fact, scientists think that Titan is very similar in composition to the Earth’s early history.

Hydrocarbons have even been detected across the surface of Saturn’s moon Hyperion.

There might not be life on Saturn, but there are enough intriguing locations to explore around the ringed planet to keep astronomers busy for years.

Here’s an article about exotic life that could live on Titan, and another that dismisses the possibility that there’s life on Enceladus.

This is an article from the Guardian about the possibility of life on Enceladus, and hydrocarbons on Hyperion.

We have recorded two episodes of Astronomy Cast just about Saturn. The first is Episode 59: Saturn, and the second is Episode 61: Saturn’s Moons.

How Old is Saturn?

Color view of Saturn. Image credit: NASA/JPL/SSI

Saturn formed with the rest of the planets 4.6 billion years ago, out of a spinning disk of gas and dust. This dust collapsed down to form the Sun, and planets formed out of the disk around it. This is why all of the planets orbit the Sun in the same direction.

That’s the easy question.

You can also check out these cool telescopes that will help you see the beauty of planet Saturn.

The more complicated question is, how old are Saturn’s rings? Some parts might be almost as old as the Solar System, but others are being continuously refreshed. The primary theory for the formation of Saturn’s Rings is that a 300 km moon was torn apart by Saturn’s gravity into the ring system that we see today. But that probably happened more than 4 billion years old.

But Saturn’s rings are bright, and almost made of pure water ice. Since infalling dust should have darkened the rings, they might be as young as 100 million years old. Or perhaps they are ancient, but regular collisions between ring objects keep them looking fresh and new.

One interesting note. Astronomers think that the composition of Saturn – 88% hydrogen and 11% helium with other trace elements – almost exactly matches the composition of the early solar nebula. Saturn is like a miniature version of the Solar System.

Here’s an article from Universe Today that discusses how Saturn’s rings could be as old as the Solar System, and another article about how gas giant planets might have consumed many of their moons early on in their history.

Ask an Astronomer has another answer to this question, and another look at the age of the rings from Geology.com.

We have recorded two episodes of Astronomy Cast just about Saturn. The first is Episode 59: Saturn, and the second is Episode 61: Saturn’s Moons.

Is There Water on Saturn?

Saturn's moon Enceladus behind the rings. Image credit: NASA/JPL/SSI

Saturn is almost entirely hydrogen and helium, but it does have trace amounts of other chemicals, including water. When we look at Saturn, we’re actually seeing the upper cloud tops of Saturn’s atmosphere. These are made of frozen crystals of ammonia.

You can also check out these cool telescopes that will help you see the beauty of planet Saturn.

But beneath this upper cloud layer, astronomers think there’s a lower cloud deck made of ammonium hydrosulfide and water. There is water, but not very much.

Once you get away from Saturn itself, though, the nearby area has plenty of water. Saturn’s rings are almost entirely made of water ice, in chunks ranging in size from dust to house-sized boulders.

And all of Saturn’s moons have large quantities of water ice. For example, Saturn’s moon Enceladus is thought to have a mantle rich in water ice, surrounding a silicate core. Geysers of water vapor were detected by NASA’s Cassini spacecraft, spraying out of cracks at Enceladus’ southern pole.

If you want to look for water at Saturn, don’t look at the planet itself, but there’s water all around it.

Here’s an article from Universe Today about the plume of water ice coming off of Enceladus, and how Saturn’s environment is driven by ice.

Here’s an article from NASA about the composition of ice at Saturn’s moon Rhea, and the discovery of liquid water on Enceladus.

We have recorded two episodes of Astronomy Cast just about Saturn. The first is Episode 59: Saturn, and the second is Episode 61: Saturn’s Moons.