Podcast: The Milky Way

Artist illustration of the Milky Way. Image credit: NASA

[/caption]

The Milky Way is our home. An island of stars in a universe of other galaxies. But you might be surprised to learn that astronomers have only known the Milky Way’s true nature for just a century. Let’s learn the history of discoveries about the Milky Way, and what today’s science tells us. And let’s peer into the future to learn the ultimate fate of our galaxy.

Click here to download the episode

Milky Way – Show notes and transcript

Or subscribe to: astronomycast.com/podcast.xml with your podcatching software.

Astronomers Find New Evidence for Dark Energy

Dark Energy's stretching effect. Credit: U of Hawaii

[/caption]
A team of astronomers has found what they say is the clearest detection to date of dark energy in the universe. Scientists at the University of Hawaii compared an existing database of galaxies with a map of the cosmic microwave background radiation (CMB), and were able to detect dark energy’s effect on vast cosmic structures such as superclusters of galaxies, where there is a high concentration of galaxies, and supervoids, areas in space with a small number of galaxies. “We were able to image dark energy in action, as it stretches huge supervoids and superclusters of galaxies,” said Dr. István Szapudi said, from U of Hawaii’s Institute for Astronomy.

The discovery in 1998 that the universe was actually speeding up in its expansion was a surprise to astronomers. Dark energy refers to the fact that something must fill the vast reaches of mostly empty space in the Universe in order to be able to make space accelerate in its expansion. Dark energy works against the tendency of gravity to pull galaxies together and so causes the universe’s expansion to speed up.But the nature of dark energy and why it exists is one of the biggest puzzles of modern science.

The team from the University of Hawaii made the discovery by measuring the subtle imprints that superclusters and supervoids leave in microwaves that pass through them. Superclusters and supervoids are the largest structures in the universe.

“When a microwave enters a supercluster, it gains some gravitational energy, and therefore vibrates slightly faster,” explained Szapudi. “Later, as it leaves the supercluster, it should lose exactly the same amount of energy. But if dark energy causes the universe to stretch out at a faster rate, the supercluster flattens out in the half-billion years it takes the microwave to cross it. Thus, the wave gets to keep some of the energy it gained as it entered the supercluster.”

“Dark energy sort of gives microwaves a memory of where they’ve been recently,” postdoctoral scientist Mark Neyrinck said.

Comparing superclusters (red circles) and supervoids (blue circles) with the CMB.  Credit:  U of Hawaii
Comparing superclusters (red circles) and supervoids (blue circles) with the CMB. Credit: U of Hawaii

When the team compared galaxies against the CMB, they found that the microwaves were a bit stronger if they had passed through a supercluster, and a bit weaker if they had passed through a supervoid.

“With this method, for the first time we can actually see what supervoids and superclusters do to microwaves passing through them,” said graduate student Benjamin Granett.

The signal is difficult to detect, since ripples in the primordial CMB are larger than the imprints of individual superclusters and supervoids. To extract a signal, the team averaged together patches of the CMB map around the 50 largest supervoids and the 50 largest superclusters that they detected in extremely bright galaxies drawn from the Sloan Digital Sky Survey, a project that mapped the distribution of galaxies over a quarter of the sky.

The astronomers say there is only a one in 200,000 chance that the evidence they detected would occur by chance.

Original News Source: U of Hawaii press release

Area Beneath Phoenix Lander Is Changing

Snow Queen is changing! Credit: NASA/JPL/Caltech/U of Arizona

[/caption]
The bright, hard surface feature beneath the Phoenix Mars Lander has visibly changed from when it was first imaged shortly after the lander touched down on the Red Planet. Scientists believe the area, called “Snow Queen” could possibly be ice. Thruster exhaust blew away surface soil covering Snow Queen as Phoenix landed, exposing a hard layer with several smooth, rounded cavities. Phoenix’s Robotic Arm Camera (RAC) took its first close-up image of the area under the lander on May 31, the sixth sol of the mission. Now, more than 60 days since landing, cracks as long as 10 centimeters, or about four inches, have appeared in Snow Queen. A seven-millimeter (less than one-third inch) pebble or clod not seen there before has popped up on the surface, and some smooth texture has subtly roughened. These changes have been occurring slowly. “Images taken since landing showed these fractures didn’t form in the first 20 sols of the mission,” Phoenix co-investigator Mike Mellon of the University of Colorado, Boulder, said. “We might expect to see additional changes in the next 20 sols.”

Mellon said long-term monitoring of Snow Queen and other icy soil cleared by Phoenix landing and trenching operations is unprecedented for science. It’s the first chance to see visible changes in Martian ice at a place where temperatures are cold enough that the ice doesn’t immediately sublimate, or vaporize, away. Phoenix scientists discovered that centimeter-sized chunks of ice scraped up in the Dodo-Goldilocks trench lasted several days before vanishing.

“I’ve made a list of hypotheses about what could be forming cracks in Snow Queen, and there are difficulties with all of them,” Mellon said.

One possibility is that temperature changes over many sols, or Martian days, have expanded and contracted the surface enough to create stress cracks. It would take a fairly rapid temperature change to form fractures like this in ice, Mellon said.

Another possibility is the exposed layer has undergone a phase change that has caused it to shrink. An example of a phase change could be a hydrated salt losing its water after days of surface exposure, causing the hard layer to shrink and crack. “I don’t think that’s the best explanation because dehydration of salt would first form a thin rind and finer cracks,” Mellon said.

May 31 image of ice under Phoenix.  Credit:  NASA/JPL/Caltech/U of Arizone
May 31 image of ice under Phoenix. Credit: NASA/JPL/Caltech/U of Arizone

“Another possibility is that these fractures were already there, and they appeared because ice sublimed off the surface and revealed them,” he said.

As for the small pebble that popped up on Snow Queen after 21 sols — it might be a piece that broke free from the original surface or it might be a piece that fell down from somewhere else. “We have to study the shadows a little more to understand what’s happening,” Mellon said.

Meanwhile, scientists and engineers for the mission are studying the icy soil on Mars, examining how it interacts with the scoop on the lander’s robotic arm, trying different techniques to deliver a sample to the TEGA or Thermal and Evolved Gas Analyzer instrument.

“It has really been a science experiment just learning how to interact with the icy soil on Mars — how it reacts with the scoop, its stickiness, whether it’s better to have it in the shade or the sunlight,” said Phoenix Principal Investigator Peter Smith of the University of Arizona.

Last weekend, the team tried two different methods to pick up and deliver a sample of icy soil to one of the ovens in TEGA. In both cases, most of the sample stuck inside the lander’s scoop, with only a small amount of soil getting into the oven. All the data received from the lander – both images and other data — indicated that not enough soil had been funneled into the oven to prompt the oven to close and begins its analysis.

The team plans to keep gaining experience in handling the icy soil while continuing with other Phoenix studies of the soil and the atmosphere.

Smith said, “While we continue with determining the best way to get an icy sample, we intend to proceed with analyzing dry samples that we already know how to deliver. We are going to move forward with a dry soil sample.”

Original News Source: Phoenix News site

Two Galaxies Walk Into a Bar…

COSMOS Survey. Credit: NASA, ESA, K. Sheth, P. Capak and N. Scoville

[/caption]

Two galaxies walk into a bar. The young, regular spiral galaxy and the mature, barred spiral both order a drink. But the bartender only gives a drink to the barred spiral galaxy. The regular spiral galaxy says, “Hey, why didn’t I get my drink?” The bartender replies, “You’re too young, plus we don’t serve your type.”

Extremely lame joke, I know. But now that I have your attention, one of the latest studies conducted by the Hubble Space Telescope show that barred spiral galaxies were less plentiful 7 billion years ago than they are today. This confirms the idea that bars are a sign of galaxies getting older and reaching full maturity; they are no longer in their “formative years.” Using Hubble’s Advanced Camera for Surveys, astronomers say this study of the history of bar formation provides clues to understanding when and how spiral galaxies form and evolve over time.

And if anyone can come up with a better “two galaxies walk into a bar” joke, post it in the comments below. The winner gets a free subscription to Universe Today.

Hubble looked at more than 2,000 spiral galaxies in the Cosmic Evolution Survey (COSMOS). A team led by Kartik Sheth of the Spitzer Science Center at the California Institute of Technology discovered that only 20 percent of the spiral galaxies in the distant past possessed bars, compared with nearly 70 percent of their modern counterparts.

Bars have been forming steadily over the last 7 billion years, more than tripling in number. “The recently forming bars are not uniformly distributed across galaxy masses, however, and this is a key finding from our investigation,” said Sheth. “They are forming mostly in the small, low-mass galaxies, whereas among the most massive galaxies, the fraction of bars was the same in the past as it is today.”

The findings have important implications for galaxy evolution. “We know that evolution is generally faster for more massive galaxies: They form their stars early and fast and then fade into red disks. Low-mass galaxies are known to form stars at a slower pace, but now we see that they also made their bars slowly over time,” he said.

Artist's illustration of the Milky Way.  Credit;  NASA
Artist's illustration of the Milky Way. Credit; NASA

Our own Milky Way Galaxy was recently determined to have a central bar. Our galaxy is another massive barred spiral, and its central bar probably formed somewhat early, like the bars in other large galaxies in the Hubble survey. “Understanding how bars formed in the most distant galaxies will eventually shed light on how it occurred here, in our own backyard,” Sheth said.

COSMOS covers an area of sky nine times larger than the full Moon, surveying 10 times more spiral galaxies than previous observations. In support of the Hubble galaxy images, the team derived distances to the galaxies in the COSMOS field using data from Hubble and an assortment of ground-based telescopes.

Astronomers believe bars form when stellar orbits in a spiral galaxy become unstable and deviate from a circular path. “The tiny elongations in the stars’ orbits grow and they get locked into place, making a bar,” explained team member Bruce Elmegreen of IBM’s research Division in Yorktown Heights, N.Y. “The bar becomes even stronger as it locks more and more of these elongated orbits into place. Eventually a high fraction of the stars in the galaxy’s inner region join the bar.”

Bars are perhaps one of the most important catalysts for changing a galaxy. They force a large amount of gas towards the galactic center, fueling new star formation, building central bulges of stars, and feeding massive black holes.

“The formation of a bar may be the final important act in the evolution of a spiral galaxy,” Sheth said. “Galaxies are thought to build themselves up through mergers with other galaxies. After settling down, the only other dramatic way for galaxies to evolve is through the action of bars.”

Yes, there’s always lots of action in bars. Especially when two galaxies walk in.

Original News Source: HubbleSite

Coronado PST – Personal H-Alpha Solar Telescope

Coronado PST - Courtesy of OPT

[/caption]Are you interested in taking an in-depth look at our nearest star in a specific wavelength of light? H-alpha has a wavelength of 656.281 nanometers and is visible in the red part of the electromagnetic spectrum. A hydrogen-alpha filter is an optical filter designed to transmit a narrow bandwidth of light generally centered on the H-alpha wavelength. These special filters are great, but they are difficult to use because of temperature and f-ratio requirements… not to mention expense! If you’ve ever been curious as to whether or not a Coronado PST was worth the price, then follow along.

At around $500, the Coronado Personal Solar Telescope isn’t an investment you take lightly for such limited use. Because almost all telescopes and binoculars can be outfitted with a relatively inexpensive white light solar filter, it’s almost an extravagance to view in this manner – or is it? For those who are able to afford specific Ha filters to fit their existing refractor telescopes, the luxury provides an incredible wealth of details unseen in white light – but also opens up a world of over-heating and sensitive adjustments. It’s a scary thought to trust your permanent vision to a tiny piece of glass, but human curiosity is what it is. There are those of us who want and need more…

So enter the Coronado H-Alpha Personal Solar Telescope. For years I’ve wanted to get my hands on an h-alpha solar filter and the thought of having a dedicated solar telescope was simply too good to pass up. The refractor telescopes I own were meant for nighttime viewing and I knew this milled aluminum beauty was meant for only one thing – the Sun. But would this amazingly small little gold telescope give me everything that I had hoped for? All I needed was a sunny day…

Setting up a Coronado PST was everything it was promised to be. It is no more difficult to use than a spotting scope and the built-in “Sun Finder” is definitely a bit easier than using the shadow-aim method. Happy as a little clam, I draped a black towel over my head and bent to the eyepiece. I kept sliding the focus up and down, but was met with nothing but a rotten, blurry image. Where’s this great solar telescope, huh? Where’s the excitement? I was disapointed at first.

But it wasn’t the telescope’s fault… It was mine.

PST Image - Lorenzo Mezzimi
PST Image - Lorenzo Mezzimi
What I had forgotten about was using an h-alpha telescope wasn’t the same as using an astronomical refractor. Because solar features that are visible in h-alpha light are moving at high velocities, you “tune” rather than focus the image. Duh! Once I caught on to sensitive adjustments, a whole new world opened up right before my eyes. Where I had once seen the Sun with a crisp, razor sharp edge, I now saw the soft glow of the chromosphere. White light (depending on which filter I used) gave the Sun a blue-white or flat yellow appearance – but now it glows vibrant red and the chromosphere is like a network of fine lace that covers the entire surface! Tiny streamers of material would show here and there and the appearance of looking at something “living” was incomparable. There’s clouds of gas up there!

Over a period of several months, the Coronado PST and I have done a lot of exploring. I’ve learned to identify plages and fibrils. I’ve seen prominences and filaments. What sunspots there are have taken on a whole new dimension. The PST has awakened my curiosity to what can be observed with even more sophisticated equipment! Was it worth what it cost?

Every last cent…

Note to Readers: The Coronado Personal Solar Telescope used for this review was purchased at Oceanside Photo and Telescope – an exclusive Coronado dealer.

US Signs International Deal to Collaborate on Lunar Missions

Astronaut Eugene Cernan from Apollo 17, the last mission to the Moon (NASA)

[/caption]
NASA has signed a landmark agreement to collaborate with emerging space-faring nations for the exploration of the Moon. This collaboration will include Canada, Germany, India, Italy, Japan, South Korea, Britain and France in the aim to work with NASA developing new technologies and send a series of robotic exploratory missions to pave the way for a manned return mission. The director of NASA’s planetary science division points out that these eight member states are keen to send their first astronauts to the lunar surface. Whilst some may view this collaboration as an attempt by NASA to ‘spread the cost’ of space travel (especially in the current climate of budget cuts), the main point of this deal is to make manned missions to the Moon more of an international effort. This will give smaller space agencies more opportunities, boost the quality of the science that can be achieved and possibly lead us to some answers about how life formed on Earth 4 billion years ago…

The deal was brokered at NASA’s Ames Research Center, Moffett Field, California, last Thursday, and it is expected to be finalized tomorrow. The meeting took place during the largest Moon-specific conference since the US Apollo missions, highlighting the recent drive to get man back to the lunar surface. NASA had already allocated significant funding toward four manned landers, but scientists have asked for eight, so an international collaboration is required so adequate science can be carried out.

At the centre of this renewed vigour is the quest to understand how life was kick-started on Earth. From recent analysis of Apollo rocks brought back to Earth in the 1970’s, it is thought that the early Solar System was a violent place. Scientists believe this planetary chaos may be the root cause of life on Earth; analysing the lunar surface is critical so a better picture may be created of the Earth-Moon system billions of years ago.

What’s happening right now is that a revolution in planetary science is going on. We are taking these small pieces and we are starting to put together the puzzle, and we are surprised by what we find.” – James Green, Director of NASA’s Planetary Science Division.

Why is the Moon so special anyway? Surely most of the answers can be found down here on Earth? Well, that’s not entirely correct. The Moon is an open history book of the Solar System’s evolution. Its surface has not been altered by plate tectonics, volcanoes or atmospheric erosion processes (unlike the terrestrial surface); ancient events are etched in its rock, waiting to be read by future lunar explorers. This was the conclusion reached by National Research Council of the National Academy of Sciences last year. From the evidence stored in lunar rock, it is hoped that the “terminal cataclysm hypothesis” may be proven or disproved. This theory suggests that Uranus and Neptune once orbited within the orbit of Jupiter. The cataclysm occurred when the powerful Jovian gravitational field flung the smaller gas giants to the outer reaches of the Solar System.

But where is the Earth-Moon connection? This turmoil in the Solar System will have displaced huge numbers of asteroids and comets, scattering them toward the inner planets. This event may have been the trigger of the “late heavy bombardment” between 3.8 to 4 billion years ago which coincided with the formation of life on Earth. This period of time can be studied in great depth on the Moon.

This increased interest in lunar science and the emergence of Japan, China and India create an opportunity NASA will not want to miss. This new international collaboration may be exactly what NASA needs to invigorate funding and help us understand how life was sparked on our blue planet.

Source: Mercury News

Friday’s Total Solar Eclipse can be Watched on the Internet

A solar eclipse at totality (NASA/F. Espenak)

[/caption]

If you’ve ever wanted to see a solar eclipse, this might be the time to do it. It is a very rare chance to see an eclipse at totality because the Moon’s shadow is so small and, more often than not, it falls on sparsely populated regions of the planet. Often eclipse hunters are resigned to planning expensive trips to these locations, sometimes only to be disappointed by poor weather. But there’s an answer. This Friday’s eclipse will swing over Canada, the tip of Greenland, parts of Russia, China and Mongolia, including the Gobi desert, although nothing can replace actually travelling to one of these locations to witness this celestial event, NASA will transmit the eclipse live over the Internet. Excellent, now we can do some eclipse-chasing without leaving our armchairs…

Back in 1999, the south of the UK was fortunate to witness a total solar eclipse. I remember the excitement this caused on August 11th during that short British summer. Totality could be experienced in the southern-most county of Cornwall, but my hometown, Bristol, would see more than 90% totality. Although it wasn’t perfect, I decided to stay at home as the weather forecast for Cornwall wasn’t good, Bristol was better. Ultimately I wanted to see the “diamond ring” of the edge of the Sun peaking over the limb of the Moon. So, I kitted myself out. I constructed a rudimentary eclipse projector with a pair of binoculars and purchased a new tripod for my camera so I could photograph the projected image via the binocular set-up. I was good to go. But as with all British summers, I couldn’t rely on the weather. It turned out the weather front that was forecast for Cornwall had blown north ahead of schedule, blanketing my city and most of Cornwall. Alas, the eclipse was wasted on most of mainland Britain…

Path of totality on Friday (NASA)
Path of totality on Friday (NASA)

That’s the problem with trying to view the eclipse, often it will be in the wrong location at the right time, or the right location at the wrong time. Of course many eclipse hunters have luck on their side and are able to enjoy totality with clear skies, but for most of us have to make do with photos and videos taken by other people after the event. Not quite the same.

This Friday’s eclipse will be like most others, but this time it will start in Canada, pass over Greenland, Russia, China and Mongolia. If you are based in the USA, you might catch a glimpse of the event at sunrise in northeastern Maine. However, dedicated eclipse chasers like NASA astrophysicist Fred Espenak will be travelling to northern China to witness the event. But it hasn’t been easy. As the Olympics are starting next week in Beijing, travel expenses have sky-rocketed, plus fuel prices can only make things worse. Many Chinese eclipse tours can cost $3,000-$6,000 and if you fancied a trip to the High Arctic on a Russian icebreaker, expect to pay $23,000.

So we don’t miss out, NASA will be transmitting the live eclipse (presumably via their homepage www.nasa.gov) starting well before its peak at 7:09 am EDT. Also, museums like the Exploratorium in San Francisco have special eclipse events scheduled so we can all have the chance of seeing the event as it happens. Again, it’s not the same as experiencing it yourself, but at least you can guarantee clear skies via the Internet…

Source: AP

Summer Showers: The Delta Aquarid and Capricornid Meteors Sparkle This Week’s Skies

FireBall at Ayres Rock - Credit: Joe Brimacombe

[/caption]

“A drop fell on the apple tree, Another on the roof; A half a dozen kissed the eaves, And made the gables laugh. A few went out to help the brook, That went to help the sea. Myself conjectured, Were they pearls, What necklaces could be!” As you drink in the words of Emily Dickinson, get ready for two showers of another type this week: meteor showers.

Beginning this evening, July 27, the Delta Aquarid meteor shower will peak with an average of 25 “shooting stars” per hour for maximum activity with many of them leaving yellowish trails. While there is no specific parent comet for the shower, many believe they are the product of periodic Comet 96P/Machholz 2 – which disintegrated in 1994. Will this cause the activity to be stronger or not? No one really knows for sure. Fall rate activity is always dictated by the precise moment the Earth turns into the meteoroid stream and no specific location or time can ever be precise.

But don’t be discouraged if it’s cloudy tonight. This whole week will be a grand time to watch for meteors as the Capricornid meteor shower peaks on July 29. This time we’re looking at about 15 to 20 meteors per hour, but a shower that also has a reputation for bolides. Who among us doesn’t get a thrill at watching a bright fireball pass overhead!

“Dazzling and clear shooting over our heads, A moment, a moment long it sail’d its balls of unearthly light over our heads, Then departed, dropt in the night, and was gone.”

Numerous astronomers have tried to identify the object responsible for the formation of the Alpha Capricornid stream, but no definitive parent has ever really been chosen because the stream is so broad. It may be Denning-Fujikawa, or it could be Honda-Mrkos-Pajdusakova, but I like to think it might be possible that Apollo asteroid Adonis is the case. Although there is radio evidence to support that, I still find something dreadfully romantic about spending an evening watching for meteors and what more romantic figure than Adonis?

“As I flit through you hastily, soon to fall and be gone, what is this chant, What am I myself but one of your meteors?” Over time, meteor showers have inspired poets and artist alike, just like these words from Walt Whitman. How long has it been since you read a poem, or contemplated the evening sky? With the Moon far gone from the early evening, why not take children or grandchildren out with you? Let them catch fireflies in a jar, like captured meteors to take their fancy. Try the words of May Justus: “One night a little firefly, Was looking at a star, And said – but no one heard him – “I wonder what you are.” Then, eager for adventure, And brave as he could be, He trimmed his little lantern, And flew away to see!”

Even if you don’t take such fanciful notions to viewing a meteor shower, there’s still no harm enjoying a pleasant summer evening outdoors and adding to your scientific studies. For the most part, activity will take place in the south/southeast, so face in that general direction. As always, around midnight is a preferable time to begin – but there could always be early arrivals. Make your evening comfortable by bringing a blanket to lay on, or a reclining chair. Little things like a thermos of lemonade, cookies, insect repellent and binoculars are always welcome. If you live near city lights, why not make it a special event and take a drive to the countryside? And take along the words of Melville: “Of thee we think, in a ring we link; To the shearer of ocean’s fleece we drink, And the Meteor rolling home.”

Behind the Power and Beauty of Northern Lights

Northern Lights. Credit: NASA

[/caption]
The Aurora Borealis or Northern Lights are stunningly beautiful. But they can also disrupt radio communications and GPS signals, and even cause power outages. What’s behind the ethereal Northern Lights that causes them to shimmer and dance with colorful lights while sometimes wreaking havoc with electrical systems here on Earth? Using a fleet of five satellites, NASA researchers have discovered that explosions of magnetic energy a third of the way to the moon power substorms that cause sudden brightenings and rapid movements of the aurora borealis, called the Northern Lights. “We discovered what makes the Northern Lights dance,” said Dr. Vassilis Angelopoulos of the University of California, Los Angeles. Angelopoulos is the principal investigator for the Time History of Events and Macroscale Interactions during Substorms mission, or THEMIS.

The cause of the shimmering in Northern Lights is magnetic reconnection, a common process that occurs throughout the universe when stressed magnetic field lines suddenly snap to a new shape, like a rubber band that’s been stretched too far.

“As they capture and store energy from the solar wind, the Earth’s magnetic field lines stretch far out into space. Magnetic reconnection releases the energy stored within these stretched magnetic field lines, flinging charged particles back toward the Earth’s atmosphere,” said David Sibeck, THEMIS project scientist at NASA’s Goddard Space Flight Center. “They create halos of shimmering aurora circling the northern and southern poles.”

An explosion of energy increases in the brightness and movement of Northern Lights. Credit: NASA/Goddard Space Flight Center
An explosion of energy increases in the brightness and movement of Northern Lights. Credit: NASA/Goddard Space Flight Center

The data was gathered by five strategically positioned Themis satellites, combined with information from 20 ground-based observatories located throughout Canada and Alaska. Launched in February 2007, the five identical satellites line up once every four days along the equator and take observations synchronized with the ground observatories. Each ground station uses a magnetometer and a camera pointed upward to determine where and when an auroral substorm will begin. Instruments measure the auroral light from particles flowing along Earth’s magnetic field and the electrical currents these particles generate.

See animation of magnetic reconnection.

During each alignment, the satellites capture data that allow scientists to precisely pinpoint where, when, and how substorms measured on the ground develop in space. On Feb. 26, 2008, during one such THEMIS lineup, the satellites observed an isolated substorm begin in space, while the ground-based observatories recorded the intense auroral brightening and space currents over North America.

These observations confirm for the first time that magnetic reconnection triggers the onset of substorms. The discovery supports the reconnection model of substorms, which asserts a substorm starting to occur follows a particular pattern. This pattern consists of a period of reconnection, followed by rapid auroral brightening and rapid expansion of the aurora toward the poles. This culminates in a redistribution of the electrical currents flowing in space around Earth.

Solving the mystery of where, when, and how substorms occur will allow scientists to construct more realistic substorm models and better predict a magnetic storm’s intensity and effects.

More about Themis.

Original News Source: NASA press release

Virgin Galactic’s WhiteKnightTwo Sees Sunlight for the First Time (Gallery)

Sir Richard Branson and designer Burt Rutan walk aside the Virgin Mothership "Eve" (VMS EVE) in Mojave, CA. on the eve of its official rollout on July 28, 2008 (Virgin Galactic)

[/caption]
Early this morning in the Californian Mojave Desert, Richard Branson and Burt Rutan unveiled the completed Virgin Galactic Mothership “Eve,” the first time this highly secretive project has seen the light of day. This is a significant moment for both Virgin Galactic and Scaled Composites, the company that built Eve, as it shows space tourism is only a heartbeat away. Now we await the completion of SpaceShipTwo that is expected to begin test flights with Eve by 2009.

The rollout represents another major milestone in Virgin Galactic’s quest to launch the world’s first private, environmentally benign, space access system for people, payload and science. – Virgin Galactic rollout press release (July 28th).


Eve is towed onto the airstrip at Mojave Air and Space Port (Virgin Galactic)
Eve is towed onto the airstrip at Mojave Air and Space Port (Virgin Galactic)

Eve is a large aircraft, with a wing span of 140 feet (42.7 meters), constructed from the world’s longest single carbon composite aviation component ever manufactured. Eve is basically a flying wing with two fuselages plus four efficient Pratt and Whitney PW308A engines attached. During operational flight sometime late 2009 or early 2010, it is hoped the mother ship will fly four times a day, carrying SpaceShipTwo up to 50,000 ft (9.5 miles) high. Once the aircraft reaches 50,000 ft, the spaceship will detach and ignite its rocket engines, blasting six fee-paying space tourists and two pilots to an altitude of around 360,000 feet (68 miles). This is considered to be the edge of space, allowing the SpaceShipTwo occupants five minutes of weightlessness before starting their journey back to Earth.

The cockpit of Eve (Virgin Galactic)
The cockpit of Eve (Virgin Galactic)

Today’s rollout onto the airstrip of Mojave Air and Space Port was witnessed by government officials, business partners and the future Virgin Galactic space tourists. Eve, named in honour of Branson’s mother, is the first WhiteKnightTwo aircraft of two that are on order with Scaled Composites. A total of five SpaceShipTwo’s are expected to complete the fleet.

Eve in the hangar (Virgin Galactic)
Eve in the hangar (Virgin Galactic)

Today’s press release also states: “Driven by a demanding performance specification set by Virgin Galactic, WhiteKnightTwo has a unique heavy lift, high altitude capability and an open architecture driven design which provides for maximum versatility in the weight, mass and volume of its payload potential. It has the power, strength and maneuverability to provide for pre space-flight, positive G force and zero G astronaut training as well as a lift capability which is over 30% greater than that represented by a fully crewed SpaceShipTwo.”

Artist impression of Eve dropping SpaceShipTwo at an altitude of 50,000 ft (Virgin Galactic)
Artist impression of Eve dropping SpaceShipTwo at an altitude of 50,000 ft (Virgin Galactic)

Fights with Virgin Galactic currently cost a hefty $200,000, but this ticket price is likely to fall in time. Over 200 tickets have already been sold. Initially, the company is offering sub-orbital space flights, but eventually Branson wants to push one stage further and begin offering tourists orbital space flight. The entrepreneur has even more optimistic ideas for his future space tourist empire including sending people into space during an aurora, space hotels and trips to the Moon. To be honest, I’d be excited to try out that rocket ride into space after the leisurely flight attached to WhiteKnightTwo

Sources: Virgin Galactic, ITWire