Monoceros

The constellation of Monoceros was originally charted on a work done by Petrus Plancius in the early 1600s for its biblical references, but its first historical reference appears in Jakob Bartsch’s star charts created of 1624 where it was listed as Unicornu. There is also a possibility, according to Heinrich Wilhelm Olbers and Ludwig Ideler’s work with older astrological charts, that Monoceros could have been referred to as “the Second Horse” – while historian Joseph Justus Scaliger also makes reference to it in his (mid 1500s) work with Persian astrological records. Regards of its origins, Monoceros was adopted as one of the 88 modern constellations by the International Astronomical Union in 1930 and remains on the charts today. It is a relatively dim constellation that consists of 4 main stars in its primary asterism and contains 32 Bayer Flamsteed designated stars within its confines. Monoceros spans approximately 482 square degrees of sky and is bordered by the constellations of Canis Minor, Gemini, Hydra, Lepus, Orion and Puppis. It is visible to all observers located at latitudes between +75° and ?85° and is best seen at culmination during the month of February.

There is one annual meteor shower associated with Monoceros which peaks on or about December 10 of each year – the Monocerids: The radiant for this meteor shower occurs near the border of Gemini and averages about 12 meteors per hour at maximum fall rate. It is best viewed when there is little to no Moon to interfere with the faint streaks and activity is at its most when the constellation reaches the zenith.

Because Monoceros is a relatively “new” constellation, there isn’t any mythology associated with it – but the Unicorn itself has a long history of mystery. You’ll not find this creature mention anywhere in mythology, but everywhere else! The unicorn is mention in the Bible, in accounts of natural history, in Chinese lore, Ethiopian artwork, medieval stories and religious art. It is depicted as a one-horned horse, thought to have existed somewhere at the edge of the known Earth.. and it still exists roaming the edges of the celestial sphere just between the northern and southern ecliptic plane. Fable or folklore? No matter which, it’s filled with many great and starry delights!

Let’s begin our binocular tour of Monoceros with its primary star – Alpha Monocerotis – the “a” symbol on our map. Hanging out in space some 144 light years from Earth, it’s not the brightest star in the constellation, nor is it particular special. Alpha is just another orange/yellow helium-fusing giant star, not a whole lot different than ours. Averaging about 11 times larger than our Sun and putting out about 60 times more light, Alpha’s hydrogen fuel tank went to empty about 250 million years ago. Now it just waits quiety, waiting for its helium shell to fade away… ready to spend the rest of its life as just another dense white dwarf star.

Now, take a look at Beta Monocerotis – the “B” symbol on our map. If you think it’s slightly brighter – you’re right. That’s because Beta has some help from two other stars, too! Put your telescope Beta’s way and discover what Sir William Herschel called “one of the most beautiful sights in the heavens”. This fantastic triple star star system is located about 690 light years from our solar system. As you watch it slowly drift by the eyepiece, you’ll know the names of the stars by which leave sight first… from west to east they are A, B and C. In this circumstance, it is believed the B and C stars orbit each other and the A star orbits this pair. All three are about 34 million years old and all three are dwarf stars. Close to each other in magnitude, this trio of hot, blue/white B3 stars each run a temperature of about 18,500 Kelvin and shine anywhere from 3200 down t0 1300 times brighter than our own Sun and spinning on their axis up to 150 times faster. A real triple treat!

For binoculars, have a look at visual double star Delta Monocerotis – the “8” symbol on our map. Located 115 light years from our solar system, this cool pair is worth stopping by – just to see if you can resolve it with your eyes alone! Don’t forget to try Epsilon Monocerotis, too. The backwards “3” on our map. Larger, steady binoculars may separate it and it’s easy for a smaller telescope. This is a very pretty gold and yellow combination binary star, seperated by about two magnitudes. You’ll find it on a number of observing lists. While there, take a look just two degrees northwest of Epsilon for T Moncerotis. This is a great Cepheid variable star with a period of 27 days and a magnitude range of 6.4 to 8.0. Those are the kinds of changes you can easily notice!

Our first deep sky binocular and telescope target will be magnificent Messier 50 (RA 07:03.2 Dec -08:20). This splendid open star cluster averages around magnitude 6 and was logged on April 5, 1772 by Charles Messier in his catalog on deep sky objects. Located about about 3,200 light years from Earth, it spans about 20 light years of space and contains about 200 stars. Inside this 78 million year old cloud is at least one red giant star – located just a little bit south of central. Can you spot it? How about the smattering of yellows amid the blue/whites?

Now head for equally bright NGC 2301 (6:51.8 Dec +00:28). This easily resolvable chain of stars can be seen in binoculars, but requires a telescope to resolve its individual members. Smaller telescopes will notice at least 30 members, while larger aperture can detect many more from this 80 member galactic star cluster. Located about 2500 light years away, be sure to see if you notice color in the stars here, too. This intermediate age open cluster has been studied for short-term variable stars and chemically peculiar stars. You’ll find this one on many challenging observing lists, too!

Time to hop to NGC 2244 (RA 6:32.4 Dec +04:52). The “Rosette Nebula” is a fine target for either telescopes or larger binoculars at a combined magnitude of 5. But, remember, combined magnitude isn’t true brightness! You’ll find the nebula here is quite faint and requires a good, dark, Moon-less sky. NGC 2244 is a star cluster embroiled in a reflection nebula spanning 55 light-years and most commonly called “The Rosette.” Located about 2500 light-years away, the cluster heats the gas within the nebula to nearly 18,000 degrees Fahrenheit, causing it to emit light in a process similar to that of a fluorescent tube. A huge percentage of this light is hydrogen-alpha, which is scattered back from its dusty shell and becomes polarized. While you won’t see any red hues in visible light, a large pair of binoculars from a dark sky site can make out a vague nebulosity associated with this open cluster. Even if you can’t, it is still a wonderful cluster of stars crowned by the yellow jewel of 12 Monocerotis. With good seeing, small telescopes can easily spot the broken, patchy wreath of nebulosity around a well-resolved symmetrical concentration of stars. Larger scopes, and those with filters, will make out separate areas of the nebula which also bear their own distinctive NGC labels. No matter how you view it, the entire region is one of the best for winter skies.

Now for NGC 2264 (RA 6:41.1 Dec +09:53). Larger binoculars and small telescopes will easily pick out a distinct wedge of stars. This is most commonly known as the “Christmas Tree Cluster,” its name given by Lowell Observatory astronomer Carl Lampland. With its peak pointing due south, this triangular group is believed to be around 2600 light-years away and spans about 20 light-years. Look closely at its brightest star – S Monocerotis is not only a variable, but also has an 8th magnitude companion. The group itself is believed to be almost 2 million years old. The nebulosity is beyond the reach of a small telescope, but the brightest portion illuminated by one of its stars is the home of the Cone Nebula. Larger telescopes can see a visible V-like thread of nebulosity in this area which completes the outer edge of the dark cone. To the north is a photographic only region known as the Foxfur Nebula, part of a vast complex of nebulae that extends from Gemini to Orion.

Northwest of the complex are several regions of bright nebulae, such as NGC 2247, NGC 2245, IC 446 and IC 2169. Of these regions, the one most suited to the average scope is NGC 2245 (RA 6:32.7 Dec +10:10), which is fairly large, but faint, and accompanies an 11th magnitude star. NGC 2247 is a circular patch of nebulosity around an 8th magnitude star, and it will appear much like a slight fog. IC 446 is indeed a smile to larger aperture, for it will appear much like a small comet with the nebulosity fanning away to the southwest. IC 2169 is the most difficult of all. Even with a large scope a “hint” is all!

Now, get out there and capture NGC 2261 (RA 6:39.2 Dec +08:44). You’ll find it about 2 degrees northeast of star 13 in Monoceros. Perhaps you know it better as “Hubble’s Variable Nebula”? Named for Edwin Hubble, this 10th magnitude object is very blue in appearance through larger apertures, and a true enigma. The fueling star, the variable R Monocerotis, does not display a normal stellar spectrum and may be a proto-planetary system. R is usually lost in the high surface brightness of the “comet-like” structure of the nebula, yet the nebula itself varies with no predictable timetable – perhaps due to dark masses shadowing the star. We do not even know how far away it is, because there is no detectable parallax!

There are many other wonderful objects in Monoceros just waiting for you to discover them… So get a good star atlas and go hunting the Unicorn!

Sources: Chandra Observatory, Wikipedia
Chart Courtesy of Your Sky.

Cheers! Japanese Brewery Produces Space Beer… But What’s the Point?

What could be more premium than space beer? (Sapporo Breweries)

[/caption]For the first time, beer brewed totally from barley grown in space can be enjoyed on terra firma. The Japanese-owned Sapporo Brewery is one of the oldest beer producers in the nation, so it seems fitting that the company would want to diversify into the next frontier. Although the beer wasn’t actually brewed in space, the barley ingredient was grown there. Through a joint program between Sapporo, the Russian Academy of Science and Okayama University in Japan, the small amount of barley was grown on board the ISS as part of a project to research the cultivation of foodstuffs in Earth orbit.

100 litres of Space Beer has been produced as a result of the successful microgravity barley farming effort, and a lucky 60 people will have the exclusive chance to taste the beer in Tokyo next month. Unfortunately, the Space Beer is not yet commercially available, so put that pint glass away…

Back in May, I was very excited to write about the first space beer brewing success, and Sapporo’s plans to manufacture 100 bottles of beer brewed from barley grown in space. However, my excitement quickly dissipated when I realised astronauts wouldn’t actually be drinking a cool one in orbit, and I became even less impressed when it turned out that the vast majority of the world wouldn’t actually have a chance of tasting it (unless, of course, you are in Tokyo and win the Sapporo space beer tasting lottery in January).

On further inspection, the prospect of drinking any carbonated product in microgravity becomes very unappealing. After all, bubbles don’t rise through a beer to form a nice head of foam in space; the bubbles remain suspended in the liquid. When you swallow the weightless mix of beer and CO2 you have the rather antisocial “wet burp” scenario to contend with, making you very uncomfortable and extremely unpopular with your crewmates. Drinking and driving the Shuttle isn’t an option, and that’s not because flying a spaceship whilst intoxicated is a bad idea. It’s because you’d have a hard job keeping beer in your stomach and not all over the cabin. Ewww.

So, space beer is best served at 1-G, on Earth, and the managing director for strategy at Sapporo Breweries is very excited about how special this brewing effort is. “There’s really no beer like it because it uses 100 per cent barley. Our top seller is the Black Label brand, using additional ingredients such as rice. This one doesn’t, and is really a special beer,” said Junichi Ichikawa.

So what’s the point? Is this just a marketing gimmick, or does it have a purpose? I’m sure Sapporo are very impressed with this achievement, but what sets Space Beer apart from the stuff I’ll be drinking down the pub later?

As Ichikawa mentions, the barley used is only space produce, and there are no other ingredients (such as rice). However, I think we should ask whether there are plans to use water samples from the brand new urine recycler STS-126 installed during Space Shuttle Endeavour’s “home improvements” mission in the brewing process. I think this would make Space Beer more complete (besides, recycled wee tastes pretty good. Apparently).

The science behind growing stuff in space is also a great achievement as barley was one of several types of plant to be grown in orbit. Wheat, lettuce and peas were also grown earlier in the year and harvested. There are also plans to grow potatoes in space. All these projects aid the future of manned space travel; once we can sustain ourselves by cultivating our own produce, the dependence on Earth slowly diminishes. The operations on the ISS are a testament to these endeavours, and growing seeds and vegetables in orbit, along with recycling waste water is a tremendous achievement. Also, there appears to be no discernible difference in the DNA of plants grown in space when compared with those grown on Earth (in which case I’d expect no difference in taste between Space Beer and local pub beer anyway).

If you read the last paragraph and linked the future plans to grow potatoes in space with another alcoholic beverage, Cosmonaut Boris Morukov (who spent 11 days on the ISS) has a sobering message for any space man or woman wanting to set up their own distillery to get around the “wet burp” issue: “I think we would try to grow potatoes as food, not for vodka production.”

That said, where mankind goes, alcohol is sure to follow, it’s only a matter of time when we start seeing space bars popping up in orbit, on the Moon and Mars (especially if space tourism becomes a major industry)…

Original source: Telegraph, Sapporo

Constellation Development Pushes Ahead: Rocket Test Fire, Component Assembly

The solid rocket test fire on Thursday, and the Ares rocket patch (NASA/Spaceflight Now)

[/caption]Despite being the subject of some bad news of late, development of the Ares rocket system and Orion crew module pushes ahead. In the Utah Desert on Thursday, the oldest ever Shuttle engine was tested. The seven-year old rocket (two years past its “guarantee”) performed a 123 second burn, simulating how long it would be in use during an optimal Shuttle launch. You may be asking, what does this have to do with Ares? Data from the Shuttle engine tests will be applied to the design of the Ares 1 rocket system, aiding engine nozzle design and boosting the robustness of the future Constellation Project. Environmental change measurements caused by pressure and sound during the firing will also be assessed.

While the Utah Desert rumbles with the sound of rockets, over at NASA’s Langley Research Center, in Hampton, Virginia, the Orion crew module and tower-like launch abort system simulators are rapidly being constructed toward the goal of full-scale Ares I-X atmospheric tests in 2009…

NASA Langley technicians work to attach the external panels for the Ares I-X crew module simulator (NASA/Sean Smith)
NASA Langley technicians work to attach the external panels for the Ares I-X crew module simulator (NASA/Sean Smith)
This test is an example of the aggressive testing program NASA pursues to assure flight safety,” said David Beaman, manager of the Reusable Solid Rocket Booster Project Office at NASA’s Marshall Space Flight Center, about Thursday’s rocket test in the Utah Desert. “It also allows us to gather information on how motors with different ages perform.”

These are significant tests for NASA, as the space agency certifies the use of the reusable shuttle solid rocket engines for five years past the date of manufacture. This most recent test was carried out on a seven-year old shuttle engine, and it appeared to function exactly as it should, if not better. This test was ground-breaking as the engine used was the oldest of its kind to be ignited.

During a shuttle launch, each solid rocket booster generates an average thrust of 2.6 million pounds for 123 seconds. The seven-year old engine surpassed this average, generating 3.3 million pounds for slightly over two minutes. The data from this test firing will be used in the continuing development of the Ares I engine and rocket nozzle.

Development of the Constellation Program doesn’t stop at exciting rocket tests, the Orion crew module is slowly taking shape too. The next hurdle for NASA engineers is to prepare Orion for full-scale launch tests beginning in 2009, including more work on assembling the Orion pad launch-abort simulator. The two-minute full-scale launches will carry an Ares test vehicle (called the Ares I-X) to an altitude of 25 miles to test the first stage performance and first stage separation, plus the parachute recovery system.

Kevin Brown, project manager for the Ares I-X Crew Module/Launch Abort System (CM/LAS) project commented on the complexity of the task in hand, saying a lot of people from NASA and external contractors are working in tandem to arrive at a common goal, on schedule. “We have a team doing fabrication and assembly work in conjunction with an off-site contractor, and we have another team readying to install about 150 sensors once the crew module and launch abort tower are completed,” he said.

All going well, next years tests will be successful, acting as a key stepping stone toward the first crewed launch to the International Space Station in 2015 and then carrying explorers to the Moon in 2020…

Sources: Spaceflight Now, Science Daily

Exploding Colorado Fireball, 100 Times Brighter than the Moon (Video)

Cloudbait Observatory all-sky camera image of the bright explosion on Dec. 6th at 1:28 am MST. No larger image available (Chris Peterson)

[/caption]Last night, the Colorado skies played host to a dazzling fireball event. The meteor blasted through the atmosphere, detonated and outshone the Moon by 100 times. It is therefore expected that there were many eyewitnesses, and the Cloudbait Observatory (5 km north of the town of Guffey, CO) is appealing to people to report their accounts of the fireball. Fortunately, the observatory managed to capture an all-sky camera video of the early morning explosion.

The Colorado fireball comes shortly after a similar event over Canada on November 20th, where over two dozen meteorite fragments have been recovered from agricultural land. We wait in anticipation to see if this huge Colorado fireball produced any similar fragments, but eyewitness accounts will be critical to aid such a search…

In the early hours of this morning, a large explosion dominated the Colorado skies. It was yet another large meteor ploughing through the atmosphere, ending its journey in an energetic detonation. Fortunately this event didn’t suffer from the same affliction the Sudan 2008 TC3 meteoroid impact back on October 7th (i.e. lack of observers), and put on a show much like last month’s Saskatchewan fireball (and the October Ontario meteor). All in all, North America is having a great meteor season with no lack of observers, eye witnesses and all-sky cameras.

Discussing last night’s Colorado fireball, astronomer Chris Peterson describes the event: “In seven years of operation, this is the brightest fireball I’ve ever recorded. I estimate the terminal explosion at magnitude -18, more than 100 times brighter than a full Moon.”

Video of the Colorado fireball (Chris Peterson)
Video of the Colorado fireball (Chris Peterson)
Peterson was using video recorded by Cloudbait Observatory’s all-sky camera, dedicated to meteor spotting, when the surprise magnitude -18 burst lit up the skies.

Although the all-sky camera caught the fireball in the act, more information is needed about its location and altitude. There is every possibility that this fireball produced fragments that landed on the surface (much like last month’s Canadian fireball). For meteorite hunters to find these pieces, eye-witnesses need to contact the Cloudbait Observatory to file their reports.

Additional details of the event (from Cloudbait):
* Camera name: Cloudbait (map)
* Camera description: Cloudbait Observatory
* Camera coordinates: N38.786111 W105.483611
* Camera altitude: 2768 meters
* Total events for this site: 15906
* Event time: 2008-12-06 01:06:28 MST
* Image coordinates: (0.407,0.251) – (0.516,0.179)
* Azimuth: 79.8 – 117.9
* Altitude: ???
* Approximate duration: 1.0 seconds (28 video frames)
* Fireball: Yes

Source: Space Weather

“Stairways” on Mars Lead to Clues on Cyclical, Moderate Climate

Rhythmic bedding in sedimentary bedrock within Becquerel crater on Mars is suggested by the patterns in this image from NASA's Mars Reconnaissance Orbiter. Image credit: Image credit: NASA/JPL-Caltech/University of Arizona

[/caption]
We see evidence on Mars’ surface of a violent past: massive volcanic eruptions, catastrophic floods, and a surface scarred with craters. But new images of rock formations on Mars resembling stairs suggest Mars at one time had a regular pattern of predictable and even moderate climate cycles persisting for millions of years. Three-dimensional images from the HiRISE camera on the Mars Reconnaissance Orbiter show patterns in thick stacks of sedimentary rock layers, formed by a cyclical climate that is likely tied to the wobble of Mars on its axis.

Combining several images of the rock formations from different perspectives, scientists were able to produce three dimensional images, as well as a dramatic flyby movie of the layered sediments. Based on a pattern of layers within layers found at an area called Becquerel crater, the scientists propose that each layer was formed over a period of about 100,000 years and that these layers were produced by cyclical climate changes. The outcrops have been eroded into mounds on the floors of the craters, with many of the layered deposits showing a stair-stepped shape. Each layer has exactly the same thickness.

Sequences of cyclic sedimentary rock layers exposed in an unnamed crater in Arabia Terra, Mars. (Credit, both images: Topography, Caltech; HiRISE Images, NASA/JPL/University of Arizona)
Sequences of cyclic sedimentary rock layers exposed in an unnamed crater in Arabia Terra, Mars. (Credit, both images: Topography, Caltech; HiRISE Images, NASA/JPL/University of Arizona)

Every 10 of the “staircase” layers are bundled into a larger unit, which the team, led by Kevin Lewis of the California Institute of Technology, calculates was laid down over a million-year period, and Becquerel contains 10 of these bundles. One million years is the same duration as the periodic variations in Mars’ tilt, suggesting that climate variations induced by the tilt produced the layering. Each bundle, then, represents climate processes as the planet tilted. This tilt periodically cooled the equatorial region and warmed the poles as they received more sunlight.

“Due to the scale of the layers, small variations in Mars’s orbit are the best candidate for the implied climate changes,” said Kevin Lewis of the California Institute of Technology, who led the study. “These are the very same changes that have been shown to set the pacing of ice ages on the Earth and can also lead to cyclic layering of sediments.”

This image shows sedimentary-rock layering in which a series of layers are all approximately the same thickness. Image credit: NASA/JPL-Caltech/University of Arizona
This image shows sedimentary-rock layering in which a series of layers are all approximately the same thickness. Image credit: NASA/JPL-Caltech/University of Arizona

The tilt of Earth on its axis varies between 22.1 and 24.5 degrees over a 41,000-year period. The tilt itself is responsible for seasonal variation in climate, because the portion of the Earth that is tipped toward the sun–and that receives more sunlight hours during a day–gradually changes throughout the year. During phases of lower obliquity, polar regions are less subject to seasonal variations, leading to periods of glaciation.

Mars’s tilt varies by tens of degrees over a 100,000-year cycle, producing even more dramatic variation. When the obliquity is low, the poles are the coldest places on the planet, while the sun is located near the equator all the time. This could cause volatiles in the atmosphere, like water and carbon dioxide, to migrate poleward, where they’d be locked up as ice.

“It’s easy to be fooled without knowing the topography and measuring the layers in three dimensions,” said Alfred McEwen of the University of Arizona, Tucson, principal investigator for the camera and a co-author of the paper. “With the stereo information, it is clear there’s a repeating pattern to these layers.”

Sources: JPL, Caltech

Report: Early Warning System Needed for LHC

Replacement parts for the LHC arrived over the weekend. Repair costs are thought to top £14 million ($20 million) (CERN)

[/caption]
The replacement parts for the damaged components of the Large Hadron Collider (LHC) are arriving, and cautious estimates push the recommissioning date back to July 2009. We now know the repair job will cost several million dollars (£14 million according to a recent report) and scientists have identified the cause of the September 19th quench that kick-started an explosive helium leak, buckling and ripping the heavy supercooled magnets from their mounts. But how can this be avoided in the future? After all, the LHC is the most complex experiment ever constructed, there are a huge number of variables that could spell disaster when the LHC is switched back on again. The “S34 Incident” was triggered by a small electrical fault, what can prevent this from happening in the future?

According to the official report, the LHC requires an additional “early warning system” that will be tailored to detect small electrical shorts, hopefully shutting the system down before any further damage to the LHC blocks the search for the Higgs boson again…

It looks like official reports are being published thick and fast. Yesterday, I reported on two CERN reports that contained further details behind the problems faced by the engineers and physicists working on the repair of the LHC. One report suggested that it was an option to push back the date of LHC commissioning until 2010, whereas the other identified July 2009 as a good date to begin circulating protons once more. Now, a BBC news item has exposed some more facts behind the future of the LHC, indicating an early warning system is being considered to prevent an accident like the S34 Incident from happening again.

Obvious buckling of the accelerator magnets (CERN)
Obvious buckling of the accelerator magnets (CERN)
The incident, known as a “quench”, was caused by an electrical short between two of the 1200 electromagnets that make up the ring of the particle accelerator. This seemingly small fault was anything but; it initiated the rapid release of a tonne of helium, buckling and breaking the magnets between Sectors 3-4. Describing what happened, LHC project leader Professor Lyn Evans said, “Basically, they have been pulled off their feet and the interconnects have been broken.”

The electrical fault occurred right at the end of the commissioning process, even after the first protons had circulated around the long accelerator ring on September 10th. At the time, the LHC had seven of its eight sectors powered up to full energy, but the quench occurred right at the end of the process. “We are extremely disappointed, especially as we had already commissioned seven of the eight sections of the LHC up to full energy,” Evans said. “This was the last sector to be commissioned and this was really the very last electrical circuit. I must say it felt like a real kick in the teeth.”

If the experiments had continued as planned, scientists would be analysing the ground-breaking particle collision data by now, but it looks like CERN will be taking an even more cautious approach form here on in. “You can think of the LHC as a Formula 1 racing car. It’s a complex tool, a complex machine,” commented Dr Francisco Bertinelli, one of the engineers repairing the magnets. “We will not run it from zero to top speed over one afternoon. We will build up our confidence and lower our risks.”

Generally, although frustrated, scientists are very excited about the future for the LHC. Prof. Tejinder Verdee of Imperial College London reminds us why this is only a minor glitch in the grand scheme of things: “This science has the potential to alter the way we see nature and the way nature operates at a fundamental level so this potential still remains, albeit a few months delayed. The great science is still out there ahead of us, which is greatly motivating.”

The unravelling of the fabric of the Universe has just been delayed and the physics revolution can wait a few more months…

Source: BBC

US Space Missions

Missions

The United States has launched dozens of missions into space. Most people can only recall two with ease: Apollo 11 because it landed on the moon, though few can tell you its Apollo 11, just that Neil Armstrong landed on the Moon and the shuttle Challenger because it exploded so dramatically.

Over the course of 6 decades NASA, and its predecessor NACA, has launched 30 missions within projects Mercury and Gemini, not to mention the countless flights made by the five space shuttles. Every mission flown had at least on ‘first’: first in low Earth orbit, first in orbit, first to orbit the Moon, first American in space, and so on. In order to carefully list the accomplishments of each mission would take several hundred pages, so here on Universe Today we have compiled a list of links to articles about each mission. To shorten the list even further, we cut out some of the missions that were scrubbed or did not launch.

You will also find some links to unmanned flights like the Voyager project, Cassini, and the Mars rovers.

Be sure to follow as many of the links below as possible. You will discover many new and interesting facts about the American space program.

Uncrewed Space Flight

Crewed Spaceflight

Weekend SkyWatcher’s Forecast – December 5-7, 2008

Greetings, fellow SkyWatchers! Are you ready to spend a weekend with the Moon? If you have children or grandchildren around, there’s a feature that you won’t want to miss that’s sure to ignite their imaginations and give them a real thrill! Even though the nights are getting downright cold for most of the northern hemisphere, we’re here to warm them up with some great double stars and lunar challenge craters we think you’ll enjoy. Dress warm, grab your optics, and let’s go….


Friday, December 5, 2008 – With only 20 days left until the holiday, astronomers have recently discovered a unique feature on the lunar surface. While accepted for many years as a natural feature of selenography, modern photography coupled with today’s high-powered telescopes have discovered an area near the lunar North Pole being used as a runway by a man in a red suit piloting an unusual spacecraft. Be sure to spark the imaginations in your young viewers as you show them the Alpine Valley!

Tonight your stellar destination is K-type star, 51 Andromedae (RA 01 37 59 Dec +48 37 41). You’ll find it as the northernmost star in the A-shape which forms the constellation – it is considered to be the Lady’s foot. Located 174 light-years away, star 51’s claim to fame is being one of the few well-evolved stars for which we know the exact parallax. While this is interesting enough in itself, the true beauty of this region is simply the field which accompanies this 3.5 magnitude star. Go tonight and enjoy it in binoculars or at low power!


Saturday, December 6, 2008 – Tonight there are craters galore to explore: Plato, Aristotle, Eudoxus, Archimedes… But let’s head to the deep, deep, south as we go out on the limb for Klaproth and Casatus. Differing by only eight kilometers in width, this pair of extreme features is well worth all the magnification skies will allow!

With deep sky studies improbable for the next few days, why don’t we try taking a look at another interesting variable star? RT (star 48) Aurigae is a bright Cepheid that is located roughly halfway between Epsilon Geminorum and Theta Aurigae. This perfect example of a pulsating star follows a precise timetable of 3.728 days, and varies by close to one full magnitude.

Located 1600 light-years away, RT was discovered in 1905 by T. H. Astbury of the British Astronomical Association. Like all Cepheids, it expands and contracts rhythmically – for reasons science is not completely sure of. Yet, we do know that it takes about 1.5 days for it to expand to its largest and brightest; and then 2.5 days for it to contract, cool, and dim.

Sunday, December 7, 2008 – Today is the birthday of Gerard Kuiper. Born 1905, Kuiper was a Dutch-born American planetary scientist who discovered moons of both Uranus and Neptune. He was the first to know that Titan had an atmosphere, and he studied the origins of comets and the solar system.

Tonight on the south shore of the emerging Mare Nubium, look for ancient craters Pitatus and Hesiodus right on the terminator. During this phase, something wonderful can happen! If you are at the right place at the right time, sunlight will shine briefly through a break in Hesiodus’ wall and cast an incredible ray across the lunar surface! If you don’t catch it, you can still enjoy one of the few concentric craters on the Moon.

When you are done with your lunar observations, turn the scope toward lovely Gamma Andromedae (RA 02 03 53 Dec +42 19 47).

Visible to the unaided eye and known as Almach, this 2nd magnitude K-type star is perhaps one of the most beautiful of all double stars for a small telescope. Believed to have been discovered in 1788 by J. T. Mayer, one of the reasons this particular star is considered extraordinary is its color contrast. The primary star is a warm, golden yellow, while the 5th magnitude secondary is notably green. But that’s not all…

In 1842, Otto Struve noticed the secondary was itself a binary star – its secondary is only a magnitude less bright, and quite blue. This pair has a highly elliptical orbit of about 61 years. While they last reached maximum separation in 1982, even in 2008 they can be split easily with larger optics. But that isn’t all either! The third component is also a spectroscopic binary which has a rotational period of just under three days! Be sure to catch the quadruple Almach system… It may be 260 light-years away, but tonight you’ll find it as close as your telescope!

Until next week… Ask for the Moon, but keep on reaching for the stars!

This week’s awesome images are: Santa’s Landing Strip – Credit: Wes Higgins, 51 Andromedae – Credit: Palomar Observatory, courtesy of Caltech, Klaproth and Casatus – Credit: Wes Higgins, RT Aurigae – Credit: Palomar Observatory, courtesy of Caltech, Pitatus and Hesiodus – Credit: Wes Higgins and Gamma Andromedae: Almach – Credit: Palomar Observatory, courtesy of Caltech. Thank you so much!

First Images Emerge of Damage to the LHC, Replacements Arrive

A series of problems forced LHC shutdown (CERN/LHC)

[/caption]On September 19th, CERN announced that the Large Hadron Collider had suffered a major incident, known as a “quench”. An electrical short between two of the superconducting magnets had kick-started a helium coolant leak inside the tunnels housing the accelerator ring. The quench caused the magnets to rapidly heat up, severely damaging them. The violent release of coolant ripped equipment from their concrete anchors, ensuring a huge repair operation would need to be carried out. However, it was a while before engineers were able to access the damage and the news wasn’t good: The LHC would be out of commission until the spring of 2009 at the earliest. That was such a sad day.

The first replacement magnet for sector 3-4 arrived at CERN last Saturday (CERN)
The first replacement magnet for sector 3-4 arrived at CERN last Saturday (CERN)
Late last month, CERN Director-General Robert Aymar gave a presentation to the 84th Plenary Meeting of the European Committee for Future Accelerators, showing the first public images of the quench aftermath, an accident that has become known as the “S34 Incident”.

In addition to these images, there are suggestions that there may be no particle collisions next year. Although the most recent report doesn’t appear to back up these plans, and replacement parts have started to arrive at the facility (above), it looks like the first collisions probably won’t happen until July 2009 at the earliest (that’s four months later than previously estimated)…

Obvious damage to concrete, where a magnet has been lifted off its mount (the red boxes) that secured it to the floor (CERN)
Obvious damage to concrete, where a magnet has been lifted off its mount (the red boxes) that secured it to the floor (CERN)
It looks like the September 19th quench between Sectors 3-4 of the LHC ring is now being referred to as the “S34 Incident“. And what an incident it was. Fortunately nobody was injured during the quench, but the LHC wasn’t so lucky. For a rundown of the official account of the S34 Incident, I’ll hand over to Robert Aymar’s November 28th presentation (page 15):

Within the first second, an electrical arc developed and punctured the helium enclosure, leading to release of helium into the insulation vacuum of the cryostat. The spring-loaded relief discs on the vacuum enclosure opened when the pressure exceeded atmospheric, thus relieving the helium to the tunnel. They were however unable to contain the pressure rise below the nominal 0.15 MPa absolute in the vacuum enclosures of subsector 23-25, thus resulting in large pressure forces acting on the vacuum barriers separating neighboring subsectors, which most probably damaged them. These forces displaced dipoles in the subsectors affected from their cold internal supports, and knocked the Short Straight Section cryostats housing the quadrupoles and vacuum barriers from their external support jacks at positions Q23, Q27 and Q31, in some locations breaking their anchors in the concrete floor of the tunnel. The displacement of the Short Straight Section cryostats also damaged the “jumper” connections to the cryogenic distribution line, but without rupture of the transverse vacuum barriers equipping these jumper connections, so that the insulation vacuum in the cryogenic line not degrade.

–Robert Aymar, Status of CERN Activities, page 15.

The first image (pictured above) clearly shows the extent of the concrete damage that occurred during the huge pressure forces generated by the leaking helium, ripping the electromagnets off their supports (the red boxes in the photo) and shattering the floor.

Obvious buckling of the accelerator magnets (CERN)
Obvious buckling of the accelerator magnets (CERN)

In this second image, the extent of the damage is pretty clear. Assuming the accelerator beam-line used to be straight (unfortunately, there is no “before” picture), the violent displacement of a huge magnet (weighing several tonnes) is obvious.

Later in the presentation, Aymar points out that 5 quadrupole and 24 dipole magnets need to be repaired and around 57 magnets have to be removed to be cleaned. This will be a huge task, one that will last many months. According to one eagle-eyed blogger at High Energy PhDs, a previous report presented a few days before the Aymar report signalled that there may be no high energy particle collisions until 2010. Jorg Winnenger outlined two possibilities for the LHC: 1) Partial operations in 2009, allowing only low-energy particle acceleration to await full-scale repairs through the 2009-10 winter shutdown, or 2) Forget 2009 operations and work toward full-scale experiments in 2010. Aymar’s more recent report did not mention these scenarios, simply stating, “the LHC will restart operation in the next spring.”

replacement parts were inspected at CERN over the weekend (CERN)
Early progress: replacement parts were inspected at CERN over the weekend (CERN)
This might be a little optimistic, as other quarters are signalling a July 2009 “cool-down” before operations can begin.

Judging by the mixed signals, we’ll have to wait patiently until it is clear as to when the LHC is expected to recover. Either way, it will be a long, painstaking and expensive task that needs to be completed as soon as possible. I really hope we don’t have to wait until 2010 until restart.

Good luck to all involved in the LHC repairs.

Sources: US/LHC Blog, CERN Photos, Stephanie Majewski, High Energy PhDs

How Old is the Milky Way?

Artist's illustration of the Milky Way. Credit; NASA

If you were going to throw a birthday party for the Milky Way, how many candles would you put on the cake? What is the age of the Milky Way? Well, even though this is a difficult question to answer, either way you slice the cake you need a lot of candles. If you were to put a candle for each year the Milky way has aged, then you’d need between 10 and 13.6 billion candles. That would be mighty difficult to blow out all in one go.

The oldest stars in the Milky Way are 13.4 billion years, give or take 800 million years. This is somewhat close to what the age of the Universe is (which hovers around 13.7 billion years). By measuring the age of these stars, and then calculating the interval between their formation and the death of the previous generation of stars, we can come to an approximate age of the Milky Way as 13.6 billion years. Here’s a good article on how this process works.

The age of the Milky Way is determined by measuring the amount of beryllium present in some of the oldest known stars in the Milky Way. Hydrogen, helium and lithium were all present right after the Big Bang, while heavier elements are produced in the interiors of stars and dispersed via supernovae. Beryllium-9, however, is produced by collisions of cosmic rays with heavier elements.

Since beryllium is formed in this way, and not in supernovae, it can act as a “cosmic clock” of sorts. The longer the duration between the first stars that created heavier elements and the stars that make up globular clusters in the early Milky Way, the more beryllium there should be from the exposure to galactic cosmic rays. By measuring the beryllium content of the oldest stars in the Milky Way, the age of the Milky Way can be approximated.

This method is kind of like using radioactive decay of carbon-14 on Earth to determine the age of fossils. Radioactive decay of uranium-238 and thorium-232 gives an age of the Milky Way as similar to that of measuring the abundance of beryllium.

The age of the Milky Way is a tricky question to answer, though, because we can say that the oldest stars are 13.4 billion years old but the galaxy as we know it today still had to form out of globular clusters and dwarf elliptical galaxies in an elegant gravitational dance. If you want to define the age of the Milky Way as the formation of the galactic disk, our galaxy would be much younger. The galactic disk is not thought to have formed until about 10 – 12 billion years ago.

Here’s an article on how the bulge in the Milky Way may have formed earlier than the rest. Also, we’ve recorded a show all about the Milky Way on Astronomy Cast.

Source: ESO News Release