After the Storm: Measuring the Structure and Temperature of a Quiescent Neutron Star

Accretion can cause neutron stars to flare violently

[/caption]So how do you take the temperature of one of the most exotic objects in the Universe? A neutron star (~1.35 to 2.1 solar masses, measuring only 24 km across) is the remnant of a supernova after a large star has died. Although they are not massive enough become a black hole, neutron stars still accrete matter, pulling gas from a binary partner, often undergoing prolonged periods of flaring.

Fortunately, we can observe X-ray flares (using instrumentation such as Chandra), but it isn’t the flare itself that can reveal the temperature or structure of a neutron star.

At the AAS conference last week, details about the results from an X-ray observing campaign of MXB 1659-29, a quasi-persistent X-ray transient source (i.e. a neutron star that flares for long periods), revealed some fascinating insights to the physics of neutron stars, showing that as the crust of a neutron star cools, the crustal composition is revealed and the temperature of these exotic supernova remnants can be measured…

During a flare outburst, neutron stars generate X-rays. These X-ray sources can be measured and their evolution tracked. In the case of MXB 1659-29, Ed Cackett (Univ. of Michigan) used data from NASA’s Rossi X-ray Timing Explorer (RXTE) to monitor the cooling of the neutron star crust after an extended period of X-ray flaring. MXB 1659-29 flared for 2.5 years until it “turned off” in September 2001. Since then, the source was periodically observed to measure the exponential decrease in X-ray emissions.

So why is this important? After a long period of X-ray flaring, the crust of a neutron star will heat up. However, it is thought that the core of the neutron star will remain comparatively cool. When the neutron star stops flaring (as the accretion of gas, feeding the flare, shuts off), the heating source for the crust is lost. During this period of “quiescence” (no flaring), the diminishing X-ray flux from the cooling neutron star crust reveals a huge wealth of information about the characteristics of the neutron star.

The cross section of a neutron star
The cross section of a neutron star
During quiescence, astronomers will observe X-rays emitted from the surface of the neutron star (as opposed to the flares), so direct measurements can be made of the neutron star. In his presentation, Cackett examined how the X-ray flux from MXB 1659-29 reduced exponentially and then levelled off at a constant flux. This means the crust cooled rapidly after the flaring, eventually reaching thermal equilibrium with the neutron star core. Therefore, by using this method, the neutron star core temperature can be inferred.

Including the data from another neutron star X-ray transient KS 1731-260, the cooling rates observed during the onset of quiescence suggests these objects have well-ordered crustal lattices with very few impurities. The rapid temperature decrease (from flare to quiescence) took approximately 1.5 years to reach thermal equilibrium with the neutron star core. Further work will now be carried out using Chandra data so more information about these rapidly spinning exotic objects can be uncovered.

Suddenly, neutron stars became a little less mysterious to me in the 10 minute talk last Tuesday, I love conferences

Related publications:

What is Geology?

The Earth's layers, showing the Inner and Outer Core, the Mantle, and Crust. Credit: discovermagazine.com
The Earth's layers, showing the Inner and Outer Core, the Mantle, and Crust. Credit: discovermagazine.com

Contrary to wide spread rumors, geology was not invented just to destroy your grade point average in high school. Many people do not understand the contributions that geology have made to our understanding of our planet and its history. Some aspects of geology are the only reason that we have continents, mountains, lakes, and all of the other topographic features of Earth.

Geology is such a vast area of study that you could not expect to research any one topic without hours of reading to fully understand it. A portion of those hours would be spent trying to track down the information that you need to read. To help you along those lines, we decided to place links to a great deal of the geologic information that we have here on Universe Today in one place. Below are several links, but we do not expect you to simply jump in. Here are a few of the facts that you can find more information about within those links.

Did You Know?
The Earth did not erupt as the planet it is today. It took the process of accretion millions of years to provide a the majority of the mass our planet has today. Our planet is furiously active underneath our feet. Earthquakes and other seismic activity are evidence of that.

Our planet has had a single continent at several different periods in its evolution. Each time multiple continents some and go and are currently moving together again. It is 6, 371 kilometers to the center of the Earth. No one has been able to bore more than 10% of the way there.

These are just a few of the thousands of geology facts that you will find in the links below. As you research you will that many of these links take you to other link pages. There are literally hundreds of articles to sift through. Pace yourself and enjoy your research.

Hunt is on for “Killer” Third Star in BD+20 307 Binary System

Exoplanet collision in BD+20 301. Possibly an Earth-like rocky exoplanet was involved? (Lynette Cook)

[/caption]

In September, it was announced the Chandra X-ray Observatory had spotted something very odd about BD+20 307. The binary system appeared to have a dusty disk surrounding it, indicative of a young, planet-forming system a fraction of the age of the Solar System. However, it was well known that the binary was actually several billion years old. It turns out that this disk was created by a rare planetary event; a cataclysmic planetary collision.

On Wednesday, at the AAS conference in Long Beach, I attended the “Extrasolar Planets” session to listen in on more results from Hubble about the exciting exoplanet discoveries in November… however, for me, the most captivating talk was about the strange, dusty old binary and the future detective work to be carried out to track down a planet killer…

The talks by astrophysicists working with the optical Hubble data were superb, showing off some of the science behind last years spate of direct observations of exoplanets, particularly the massive planet orbiting the star Fomalhaut, shaping a scattered disk of dust. However, there was no further news to report, apart from some cool numerical models the scientists will be using to characterize Fomalhaut b and a very interesting talk about the predicted lifetimes of exoplanets undergoing tidal stresses (which, unfortunately, I missed the first five minutes of as I got lost in the Long Beach Convention Center).

The one presentation that did pique my interest was Ben Zuckerman’s review of the progress being made in the study of BD+20 307. A few months ago, this piece of research caused a huge amount of interest as it provided the first piece of evidence of a huge, rocky planetary collision in the star system 300 light years away. Naturally, many news sources ran with article titles like: Is this what the Solar System would look like after Earth was hit by another planetary body? As Zuckerman pointed out, the fact that the group used an artist impression of a colliding Earth-like body (plus land masses and oceans, as pictured top) was no accident. BD+20 307 is certainly at an age when oceans might have formed and life–as Zuckerman morbidly conjectured–may have thrived. Not for any longer

Usually when we observe dust around a star, we can assume that it is a planet-forming star system that is fairly young. Conversely, as I found out to great depth in the conference, very old white dwarf systems can reveal a lot about their past planetary population when their dusty contaminants are studied. However, the dust contained in the BD+20 307 system is a puzzle. Astronomers had discovered a system, of comparable age to ours with a large amount of warm dust (T~500K). A system of that age will have long since expelled (via stellar wind pressure) or accreted any left-over dust from the planet-forming stages. Therefore, the only remaining explanation is that a rocky body collided with another, ejecting a huge amount of micron-sized warm dust particles.

So is this what the Solar System would look like after Earth is shattered by another planet? Possibly.

Zuckerman then pushed into some work being done to understand how the planetary collision could have happened in the first place. After all, the planets in our Solar System have settled into long-term stable orbits, any planet in BD+20 307 will have the same qualities. There were some questions as to whether the binary stars may have contributed to destabilizing the system, but Zuckerman quickly argued against this idea as the binary has such a tight orbit (with an orbital period of only 3.5 days), the destroyed planet will have found a stable orbit far from any gravitational variations.

So what could have caused the carnage in BD+20 307? We know that massive planetary bodies exert a huge gravitational pull on their host star and other planets in a system (i.e. Jupiter in the case of our Solar System), occasionally bullying (and sometimes capturing) them along the way. A small nudge in the wrong direction and planets could be knocked from their orbits, set on a collision course. So, much effort is now being put into a search for a third, faint star in BD+20 307. Perhaps it could be orbiting far away from the dancing binary, occasionally swinging past the planetary bodies, setting up the huge collision event.

This certainly seems reasonable, as 70% of binary star systems are found to have a third star. However, Zuckerman’s team have yet to find the “killer” third star and he appears confident that after careful analysis that there is no other stellar body within a 20 AU radius of the binary pair. Next, he intends to study the “wobble” of the centre of mass of the BD+20 307 binary to see if there is any gravitational anomaly as the mysterious “third star” tugs at the pair.

NASA Tests New Super-Thin High Alitude Balloon

Super pressure balloon in flight. Credit: NASA

[/caption]
High altitude balloons are an inexpensive means of getting payloads to the brink of space, where all sorts of great science and astronomy can be done. A new prototype of balloon that uses material as thin as plastic food wrap was successfully checked out in an 11-day test flight, and this new design may usher in a new era of high altitude flight. NASA and the National Science Foundation sponsored the test, which was launched from McMurdo Station in Antarctica. The balloon reached a float altitude of more than 111,000 feet and maintained it for the entire 11 days of flight. It’s hoped that the super-pressure balloon ultimately will carry large scientific experiments to the edge of space for 100 days or more.

The flight tested the durability and functionality of the scientific balloon’s novel globe-shaped design and the unique lightweight and thin polyethylene film. It launched on December 28, 2008 and returned on January 8, 2009.

“Our balloon development team is very proud of the tremendous success of the test flight and is focused on continued development of this new capability to fly balloons for months at a time in support of scientific investigations,” said David Pierce, chief of the Balloon Program Office at NASA’s Wallops Flight Facility at Wallops Island, Va. “The test flight has demonstrated that 100 day flights of large, heavy payloads is a realistic goal.”

This seven-million-cubic-foot super-pressure balloon is the largest single-cell, super-pressure, fully-sealed balloon ever flown. When development concludes, NASA will have a 22 million-cubic-foot balloon that can carry a one-ton instrument to an altitude of more than 110,000 feet, which is three to four times higher than passenger planes fly. Ultra-long duration missions using the super pressure balloon cost considerably less than a satellite and the scientific instruments flown can be retrieved and launched again, making them ideal very-high altitude research platforms.

CREAM team.  Credit: CREAM
CREAM team. Credit: CREAM

In addition to the super pressure test flight, two additional long-duration balloons were launched from McMurdo during the 2008-2009 campaign. The University of Maryland’s Cosmic Ray Energetics and Mass, or CREAM IV, experiment launched December 19, 2008, and landed January 6, 2009. The CREAM investigation was used to directly measure high energy cosmic-ray particles arriving at Earth after originating from distant supernova explosions elsewhere in the Milky Way galaxy. The payload for this experiment was refurbished from an earlier flight. The team released data and their findings from their first flight in August 2008.

The University of Hawaii Manoa’s Antarctic Impulsive Transient Antenna launched December 21, 2008, and is still aloft. Its radio telescope is searching for indirect evidence of extremely high-energy neutrino particles possibly coming from outside our Milky Way galaxy.

Source: NASA

Sagittarius

Sagittarius

[/caption]

The zodiacal constellation of Sagittarius resides on the ecliptic plane and was one of the original 48 constellations charted by Ptolemy to be later adopted as a modern constellation by the IAU. It spans 867 square degrees of sky and ranks 15th in constellation size. It has 7 primary stars in its main asterism and 68 Bayer Flamsteed designation stars within its confines. Sagittarius is bordered by the constellations of Aquila, Scutum, Serpens Cauda, Ophiuchus, Scorpius. Corona Australis, Telescopium, Indus, Microscopium and Capricornus. It is visible to all observers located at latitudes between +55° and ?90° and is best seen at culmination during the month of August.

The easily recogniged “tea pot” shape of Sagittarius was well known in mythology as being represented by the half-man, half-horse – the Centaur. According to some legends, he was the offspring of of Philyra and Saturn. Named Chiron, he turned himself into a horse to hide from his jealous wife and was eventually immortalized in the stars. He is often depicted as an archer as well, with his arrow pointed directly at the red heart of the Scorpion – Antares. Sagittarius may represent the son of Pan, who invented archery and was sent to entertain the Muses who threw a laurel wreath at his feet. No matter what identity you choose, one thing is for certain – there’s no mistaking the presence of the nearby Sagittarius arm of the Milky Way!

(Since the constellation of Sagittarius is simply slopping over with deep sky objects, creating a small, workable chart here would be very confusing. For this reason, I have only chosen a few of my favorite objects to highlight and I hope you enjoy them, too!)

Let’s begin our binocular tour of Sagittarius with its alpha star – the “a” symbol on our map. Located far south in the constellation, Alpha Sagittarii is far from being the brightest of its stars and goes by the traditional name of Rukbat – the “knee of the Archer”. It’s nothing special. Just a typical blue, class AB dwarf star located about 170 light years from Earth, but it often gets ignored because of its position. Have a look at Beta while you’re there, too. It’s the “B” symbol on our map. That’s right! It’s a visual double star and its name is Arkab – the “hamstring”. Now, power up in a telescope. Arkab Prior is the westernmost and it truly is a binary star accompanied by a 7th magnitude dwarf star and seperated by about 28 arcseconds. It’s located about 378 light years from Earth. Now, hop east for Arkab Posterior. It is a spectral type F2 giant star, but much closer at 137 light years in distance.

Now turn your attention towards Epsilon Sagittarii – the backwards “3” symbol on our chart. Kaus Australis is actually the brightest star in the bottom righthand corner of the teapot and the brightest of all the stars in Sagittarius and the 36th brightest in the night sky. Hanging out in space some 134 light years from our solar system, this A-class giant star is much hotter than most of its main sequence peers and spinning over 70 times faster on its axis than our Sun. This rapid movement has caused a shell to form around the star, dimming its brightness… But not nearly as dim as its 14th magnitude companion! That’s right… Epsilon is a binary star. The disparate companion is well seperated at 32 arc seconds, but will require a larger telescope to pick away from its bright companion!

Ready for more? Then have a look at Gamma – the “Y” symbol on our map. Alnasl, the “arrowhead” is two star systems that share the same name. If you have sharp eyes, you can even split this visual double star without aid! However, take a look in the telescope… Gamma-1 Sagittarii is a Cepheid 1500 light year distant variable star in disguise. It drops by almost a full stellar magnitude in just a little under 8 days! Got a big telescope? Then take a closer look, because Gamma-1 also shows evidence of being a close binary star, as well has having two more distant 13th magnitude companions, W Sagittarii B, and C separated by 33 and 48 arcseconds respectively. How about Gamma-2? It’s just a regular type-K giant star – but it’s only 96 light years from Earth!

Located just slightly more than a fingerwidth above Gamma Sagittarii and 5500 light-years away, NGC 6520 (RA 18 03 24 Dec -27 53 00) is a galactic star cluster which formed millions of years ago. Its blue stars are far younger than our own Sun, and may very well have formed from what you don’t see nearby – a dark, molecular cloud. Filled with dust, Barnard 86 literally blocks the starlight coming from our galaxy’s own halo area in the direction of the core. To get a good idea of just how much light is blocked by B 86, take a look at the star SAO 180161 on the edge. Behind this obscuration lies the densest part of our Milky Way! This one is so dark that it’s often referred to as the “Ink Spot.” While both NGC 6520 and B 86 are about the same distance away, they don’t reside in the hub of our galaxy, but in the Sagittarius Spiral Arm. Seen in binoculars as a small area of compression, and delightfully resolved in a telescope, you’ll find this cluster is on the Herschel “400” list and many others as well.

Are you ready for a whirlwind tour of the Messier Catalog objects with binoculars or a small telescope? Then let’s start at the top with the “Nike Swoosh” of M17.
Easily viewed in binoculars of any size and outstanding in every telescope, the 5000 light-year distant Omega Nebula was discovered by Philippe Loys de Chéseaux in 1745-46 and later (1764) cataloged by Messier as object 17 (RA 18 20 26 Dec -16 10 36). This beautiful emission nebula is the product of hot gases excited by the radiation of newly born stars. As part of a vast region of interstellar matter, many of its embedded stars don’t show up in photographs, but reveal themselves beautifully to the eye at the telescope. As you look at its unique shape, you realize many of these areas are obscured by dark dust, and this same dust is often illuminated by the stars themselves. Often known as “The Swan,” M17 will appear as a huge, glowing check mark or ghostly “2” in the sky – but power up if you use a larger telescope and look for a long, bright streak across its northern edge with extensions to both the east and north. While the illuminating stars are truly hidden, you will see many glittering points in the structure itself and at least 35 of them are true members of this region, which spans up to 40 light-years and could form up to 800 solar masses. It is awesome…

Keeping moving south and you will see a very small collection of stars known as M18, and a bit more south will bring up a huge cloud of stars called M24. This patch of Milky Way “stuff” will show a wonderful open cluster – NGC 6603 – to average telescopes and some great Barnard darks to larger ones. M24 is often referred to as the “Small Sagittarius Star Cloud”. This vast region is easily seen unaided from a dark sky site and is a stellar profusion in binoculars. Telescopes will find an enclosed galactic cluster – NGC 6603 – on its northern border. For those of you who prefer a challenge, look for Barnard Dark Nebula, B92, just above the central portion.

Now we’re going to shift to the southeast just a touch and pick up the M25 open cluster. M25 is a scattered galactic cluster that contains a cephid variable – U Sagittarii. This one is a quick change artist, going from magnitude 6.3 to 7.1 in less than seven days. Keep an eye on it over the next few weeks by comparing it to the other cluster members. Variable stars are fun! Head due west about a fist’s width to capture the next open cluster – M23. From there, we are dropping south again and M21 will be your reward. Head back for your scope and remember your area, because the M20 “Triffid Nebula” is just a shade to the southwest. Small scopes will pick up on the little glowing ball, but anything from about 4″ up can see those dark dust lanes that make this nebula so special. The “Trifid” nebula appears initially as two widely spaced stars – one of which is a low power double – each caught in its own faint lobe of nebulosity. Keen eyed observers will find that the double star – HN 40 – is actually a superb triple star system of striking colors! The 7.6 magnitude primary appears blue. Southwest is a reddish 10.7 magnitude secondary while a third companion of magnitude 8.7 is northwest of the primary.

Described as “trifid” by William Herschel in 1784, this tri-lobed pattern of faint luminosity broken by a dark nebula – Barnard 85 – is associated with the southern triple. This region is more brightly illuminated due to the presence of the star cluster and is suffused with a brighter, redder reflection nebula of hydrogen gas. The northern part of the Trifid (surrounding the solitary star) is fainter and bluer. It shines by excitation and is composed primarily of doubly ionized oxygen gas. The entire area lies roughly 5000 light-years away. What makes M20 the “Trifid” nebula, are the series of dark, dissecting dust lanes meeting at the nebula’s east and west edges, while the southernmost dust lane ends in the brightest portion of the nebula. With much larger scopes, M20 shows differences in concentration in each of the lobes along with other embedded stars. It requires a dark night, but the Trifid is worth the hunt. On excellent nights of seeing, larger scopes will show the Trifid much as it appears in black and white photographs!

You can go back to the binoculars again, because the M8 “Lagoon Nebula” is south again and very easy to see. Easily located about three finger-widths above the tip of the teapot’s spout (Al Nasl), M8 is one of Sagittarius’ premier objects. This combination of emission/reflection and dark nebula only gets better as you add an open cluster. Spanning a half a degree of sky, this study is loaded with features. One of the most prominent is a curving dark channel dividing the area nearly in half. On its leading (western) side you will note two bright stars. The southernmost of this pair (9 Sagittarii) is thought to be the illuminating source of the nebula. On the trailing (eastern) side, is brightly scattered cluster NGC 6530 containing 18 erratically changing variables known as “flare stars.” For large scopes, and those with filters, look for small patches of dark nebulae called “globules.” These are thought to be “protostar” regions – areas where new stars undergo rapid formation. Return again to 9 Sagittarii and look carefully at a concentrated portion of the nebula west-southwest. This is known as the “Hourglass” and is a source of strong radio emission.

This particular star hop is very fun. If you have children who would like to see some of these riches, point out the primary stars and show them how it looks like a dot-to-dot “tea kettle.” From the kettle’s “spout” pours the “steam” of the Milky Way. If you start there, all you will need to do is follow the “steam” trail up the sky and you can see the majority of these with ease.

At the top of the “tea kettle” is Lambda. This is our marker for two easy binocular objects. The small M28 globular cluster is quite easily found just a breath to the north/northwest. The larger, brighter and quite wonderful globular cluster M22 is also very easily found to Lambda’s northeast. Ranking third amidst the 151 known globular clusters in total light, M22 is probably the nearest of these incredible systems to our Earth, with an approximate distance of 9,600 light-years. It is also one of the nearest globulars to the galactic plane. Since it resides less than a degree from the ecliptic, it often shares the same eyepiece field with a planet. At magnitude 6, the class VII M22 will begin to show individual stars to even modest instruments and will burst into stunning resolution for larger aperture. About a degree west-northwest, mid-sized telescopes and larger binoculars will capture the smaller 8th magnitude NGC 6642 (RA 18 31 54 Dec -23 28 34). At class V, this particular globular will show more concentration toward the core region than M22. Enjoy them both!

Now we’re roaming into “binocular possible” but better with the telescope objects. The southeastern corner of the “tea kettle” is Zeta, and we’re going to hop across the bottom to the west. Starting at Zeta, slide southwest to capture globular cluster M54. Keep heading another three degrees southwest and you will see the fuzzy ball of M70. Just around two degrees more to the west is another globular that looks like M70’s twin. The small globular M55 is out there in “No Man’s Land” about a fist’s width away east/south east of Zeta .

Ready for a big telescope challenge? Then try your hand at one the sky’s most curious galaxies – NGC 6822. This study is a telescopic challenge even for skilled observers. Set your sights roughly 2 degrees northeast of easy double 54 Sagittarii, and have a look at this distant dwarf galaxy bound to our own Milky Way by invisible gravitational attraction…

Named after its discoverer (E. E. Barnard – 1884), “Barnard’s Galaxy” is a not-so-nearby member of our local galaxy group. Discovered with a 6″ refractor, this 1.7 million light-year distant galaxy is not easily found, but can be seen with very dark sky conditions and at the lowest possible power. Due to large apparent size, and overall faintness (magnitude 9), low power is essential in larger telescopes to give a better sense of the galaxy’s frontier. Observers using large scopes will see faint regions of glowing gas (HII regions) and unresolved concentrations of bright stars. To distinguish them, try a nebula filter to enhance the HII and downplay the star fields. Barnard’s Galaxy appears like a very faint open cluster overlaid with a sheen of nebulosity, but the practiced eye using the above technique will clearly see that the “shine” behind the stars is extragalactic in nature.

Now look less than a degree north-northwest to turn up pale blue-green NGC 6818 – the “Little Gem” planetary. Easily found in any size scope, this bright and condensed nebula reveals its annular nature in larger scopes but hints at it in scopes as small as 6″. Use a super wide field long-focus eyepiece to frame them both!

Be sure to get a good star chart and enjoy the constellation of Sagittarius to its fullest potential – there’s lots more out there!

Sources:
SEDS
Chandra Observatory
Wikipedia
Chart Courtesy of Your Sky.

Who Will Be the Next NASA Administrator?

While we’ve been overwhelmed with astronomical news from the AAS meetings this week, meanwhile back at the NASA ranch, Administrator Mike Griffin appears to be on his way to riding off into the sunset. He and all other political appointees from the Bush administration have submitted their letters of resignation as a matter of course, but it’s not expected that Griffin will be asked to stay on. Even though family and friends of Griffin’s have been petitioning to keep him on board, all indications are that Griffin will be replaced. His resignation is effective Jan. 20, the day Barack Obama is sworn in as the new president of the US. There are some lists developing of potential replacements. The trouble is, as happens most of the time, many of these lists are complete speculation. Keith Cowing over at NASA Watch is trying to keep track of it all, sorting out real from not-so-real. Then there’s another list, at Obamanasa.gov – and nothing about the authenticity of this site can be found — where you can actually vote for who you think would best serve as the new head of NASA. And guess who is currently (as of 11:30 am CST) leading the vote count: our very own good friend Phil Plait, the Bad Astronomer. Right now he has a comfortable lead (2,614 to 695) over – you’ll never guess: Wil Wheaton, aka Wesley Crusher on Star Trek the Next Generation. OK, you’re probably seeing the legitimacy of this list. But it’s fun, nonetheless, to speculate. So who is really in the running for the NASA Administrator job?

Charles Bolden. A former astronaut who, if chosen, would be the first black NASA administrator. He currently seems to lead the list of potential candidates.

Pete Worden. Currently the Director of NASA’s Ames Research Center, was Commander, 50th Space Wing, at Air Force Space Command, and a professor of Astronomy at the University of Arizona

Sally Ride. The first American woman to fly in space in 1983. She served on the commissions that investigated both the Challenger and Columbia accidents, and wrote an editorial in support of Obama during the presidential election.

Alan Stern. The principal investigator the New Horizons mission to Pluto. He was the associate administrator for the Science Mission Directorate at NASA headquarters, but left abruptly, and later criticized NASA for ongoing cost overruns in space and planetary science missions.

Wesley Huntress. A former NASA space science chief, was key in getting the Hubble Space Telescope and the Galileo probe to Jupiter launched.

Scott Hubbard. Known for turning around NASA’s Mars program after back-to-back failures in the late 1990s, Hubbard was a key member of the Columbia Accident Investigation Board. He went on to serve as a director of NASA’s Ames Research Center before leaving the agency for academia.

Don’t think this isn’t a big decision for Obama. The Government Accountability Office rated the impending retirement of NASA’s shuttle orbiter fleet as one of the top 13 issues the new president will have to deal with, and deal with soon. The administration is expected to nominate new NASA leadership before making any significant decisions regarding U.S. space policy and the future of the human spaceflight program.

So, who do you think should be the next NASA Administrator?

Source: Florida Today

Weekend SkyWatcher’s Forecast – January 9-11, 2009

Greetings, fellow SkyWatchers! It’s “Hunger Moon” weekend and if you’re starving for a little observing action, then get out the telescope and do some crater work. It’s time to spot the magnificent Piazzi and Mare Orientale! Even though bright skies will prohibit much viewing, there’s still lots of history to learn and things to find out. Ever wonder how Oceanus Procellarum got its name? Let’s wander out to the backyard together and find out….

Friday, January 9, 2009 – Tonight it’s time to get serious about lunar observing. Look to the southwestern limb along the terminator and take on a challenge crater named for our asteroid discoverer, Giuseppe Piazzi. Viewable in binoculars, this 101 kilometer-long, shallow oval comes to resolution through a telescope at high magnification. To Piazzi’s north is the walled plain Lagrange, which shares a common border and a whole lot more. During the Moon’s violent past, the impact that formed Mare Orientale basin to the northwest slung ejecta across the two older formations, forming ridges and valleys. Look closely at Piazzi’s northeast rim where areas of the original interior floor appear darker.

piazzi

Because of the Earthly viewing angle, we’re unable to determine the true width of this magnificent old crater with the broken and eroded rim, but we can tell the height of its most intact wall. Although it looks shallow, it stretches up above the floor 2,300 meters—as high as Scoglio della Metamorfosi (the Yosemite of Europe) in Valle di Mello, Italy. Bellissimo!

Tonight in 1839, Scottish astronomer Thomas Henderson (whose impressive list of 60,000 star positions earned him the title of Astronomer Royal of Scotland) became the first to measure the distance to a known fast-moving star using geometric parallax. Taking a cue from the terrestrial effect, where closer objects seem to move faster than those farther away, Henderson’s calculations were within 30% of modern measurements, and his intuition was absolutely spot on. Alpha Centauri is indeed the closest star to our own Solar System.

Saturday, January 10, 2009 – On this date in 1946, Lt. Col. John DeWitt, a handful of full-time researchers, and the U.S. Army’s Signal Corps were about to become the first group to successfully employ radar to bounce radio waves off the Moon. It might sound like a minor achievement, but let’s look into what it really meant.

Believed impossible at the time, scientists were hard at work trying to find a way to pierce Earth’s ionosphere with radio waves. Project Diana used a modified SCR-271 bedspring radar antenna aimed at the rising Moon. Radar signals were broadcast, and the echo was picked up in exactly 2.5 seconds. Discovering that communication was possible through the ionosphere opened the way to space exploration. Although a decade would pass before the first satellites were launched into space, Project Diana paved the way for these achievements, so send your own ‘‘wave’’ to the rising Moon tonight!

Let’s note the 1936 birth of Robert W. Wilson, the co-discoverer (along with Arno Penzias) of the cosmic microwave background. Although the discovery was a bit of a fluke, Wilson’s penchant for radio was no secret. As he once said, ‘‘I built my own hi-fi set and enjoyed helping friends with their amateur radio transmitters, but lost interest as soon as they worked.’’

Don’t you lose interest in the night sky just because the Moon is out! Look towards Cassiopeia, which contains the strongest known radio source in our own galaxy—Cassiopeia A. Although traces of the 300-year-old supernova can no longer be seen in visible light, radiation noise still emanates from 10,000 light-years away—an explosion still expanding at 16 million kilometers per hour! So, where is the source of this radio beauty? Just a little bit north of the constellation’s center star.

Sunday, January 11, 2009 – Rising opposite the setting Sun is a beautiful sight: the Hunger Moon, a name from Native American folklore. In the Northern Hemisphere, this was a time of snow and deep winter, when hunting was poor and wild dogs would roam by Moonlight searching for food. Let’s take a closer look.

The vast dark area on the western side is Oceanus Procellarum —the ‘‘Ocean of Storms.’’ Encompassing most of the northwest quadrant and stretching across 2,102,000 square kilometers of area, it rivals the Bering Sea in sheer size. No wonder the ancients considered it to be an ocean! Created by lava floods but never contained within an impact basin, it’s similar to Earth’s Siberian Traps—great upwellings of lava from our shared primeval history.

Oceanus Procellarum’s name could refer to its vivid volcanic past, but it originated from a myth claiming stormy weather ahead if it was visible during the second quarter. Although the Moon doesn’t play a role in our Earthly weather, what could cause such a myth to arise?

Factually, if skies are clear enough to see the Ocean of Storms during the night, they’ll allow heat to escape directly into our upper atmosphere. Rising air can cause clouds to form. Water vapor molecules cool and begin coalescing faster than they can be scattered by thermal energy, condensing and forming clouds where only one of two things can happen. Water molecules will either evaporate, changing back into vapor, or join to grow liquid drops, whose critical mass will fall back to Earth as either rain or snow.

On this date in 1787, Sir William Herschel was also looking at a moon, but not ours. This is the date he discovered two of Uranus’ many moons—Oberon and Titania!

Until next week, ask for the Moon… But keep on reaching for the stars!

This week’s awesome images are: Crater Piazzi by Alan Chu with inset by Roger Warner, Project Diana (historical image), “Light Echoes From Cassiopeia A” courtesy of Spitzer Space Telescope and the Full Moon is from NASA.

What a Relief! New Space Toilet Being Designed

New space toilet? Credt: Pink Tentacle

[/caption]
The International Space Station’s toilet has had its troubles, and Japan’s Aerospace Exploration Agency (JAXA) has decided they want to “eliminate” this problem for future astronauts and procure a new way to deal with human waste in space. They formed a space toilet research group and came up with an idea that is sure to revolutionize space travel. The wearable toilet. “Clean and easy to use, the envisioned space toilet is designed to be worn like a diaper around the astronaut’s waist at all times,” says an article on Pink Tentacle. Engineers hope to have this next-generation space toilet available to use in space within the next five years.

How does it work?

“Sensors detect when the user relieves him or herself, automatically activating a rear-mounted suction unit that draws the waste away from the body through tubes into a separate container,” the article says. It’s also a full feature toilet/shower almost like a bidet, as well as eliminating potential embarrassing situations in space. “In addition to washing and drying the wearer after each use, the next-generation space toilet will incorporate features that eliminate unwanted sound and odor.”

Plans are to test working prototypes of the space toilet in Japan’s Kibo lab aboard the ISS. The developers indicate their next-generation space toilet may also prove useful on Earth as well, such as in hospitals with bedridden patients.

The current ISS toilet sucks waste away like a vacuum cleaner. Use of that toilet requires practice before heading to space, particularly because an improperly seated user has the potential to create a messy situation.

Chiaki Mukai, head of JAXA’s Space Biomedical Research Office, is looking forward to the development of the new toilet. “Long-term stays in space place significant stress on the mind and body,” Mukai says. “The toilet plays a crucial role in maintaining good health in space.”

Source: Pink Tentacle

Latest Images From HiRISE (More Eye Candy)

Gullies on the dunes of Russell Crater on Mars. Credit: NASA/JPL/University of Arizona

[/caption]
I don’t know about the rest of you, but I could look at images from the HiRISE camera on the Mars Reconnaissance Orbiter all day…and there are days I have spent a great deal of time perusing through the gorgeous, high-resolution images. Here are just a few of the latest images the HiRISE team has released. This first one is one of the most stunning yet. It’s part of a dune field in a crater called Russell Crater (53.3S and 12.9E.) The dune field itself is roughly 30 kilometers long, and appears to have formed from windblown material trapped by the local topography. The image was taken in October 2008, during the Mars’ southern hemisphere’s deep winter, where temperatures are low enough to allow the carbon dioxide frost to be stable. Looking closely, you can see the frost, visible on the slopes that don’t get full sunlight. The team says this region is the target of a long term monitoring program by HiRISE.

And there’s more…

Features in Moreau Crater. Credit: NASA/JPL/UA
Features in Moreau Crater. Credit: NASA/JPL/UA

This image is of a so called “flow feature” within Moreux Crater, located at 42N and 44.6E on the edge of Mars’ highlands/lowlands boundary. The crater itself is roughly 135 kilometers in diameter. During an impact event that creates a crater, central uplifts or mounds form on the floor of the crater in craters larger than 7km in diameter. This image focuses on a portion of the Moreux central uplift that apparently broke off and slid away, forming a type of giant landslide. Interesting hummocks, swirls and ridges are found on the surface of the landslide. There are also distinct, almost circular depressions of unknown origin near the foot of the flow. Both light and dark toned dunes later formed on this landform.
Features in a volcano, Hecates Tholus.  Credit: NASA/JPL/UA
Features in a volcano, Hecates Tholus. Credit: NASA/JPL/UA

This image shows features on a volcano called Hecates Tholus. This volcano is located in the northern hemisphere of Mars and is the northernmost of three volcanoes within Elysium Planitia. The “braided” channels seen in this image appear to have formed by water carving into young lava flows. Like braided rivers on Earth, they consist of a network of small channels, often separated by small streamlined “islands.” The fact that they are braided and have streamlined islands has led scientists to interpret these landforms as being created by water (fluvial) rather than by volcanic activity, and perhaps even more than one water-related event created these features, since there are fine sediments and multiple channels.

The water that potentially formed the braided channels may have been released when hot lava came into contact with ground ice.

For more images, as well as more information on these images and high resolution versions, see the HiRISE site. But watch out, you might be there for awhile — there’s lots to look at!

Source: HiRISE

A Cheap Solution for Getting to Mars?

Two shuttles on the pads in September 2008.Credit: NASA

[/caption]
The space shuttles are slated to be retired in September of 2010. NASA put out a call recently to ask what should be done with the shuttles post-retirement, and many think they should be put in museums or on display in rocket parks. But futurist and entrepreneur Eric Knight, (founder of UP Aerospace and Remarkable Technologies) has a somewhat novel idea of what to do with the shuttles after they are done with their current duties: Send them to Mars. He says his formula is simple and will allow humans to travel to Mars in years, not decades.

Knight’s proposal, which he calls “Mars on a Shoestring,” outlines two shuttles going into Earth orbit, hooking them together with a truss and strapping on a powerful enough propulsion system. And that’s pretty much it. A pressurized inflatable conduit would connect the two orbiters so the astronauts could go back and forth between the two shuttles.

Then comes the really cool part; a way to provide artificial gravity during the trip to Mars. From Knight’s webpage:

• Once the propulsion stage has accelerated this entire system on its trek to Mars, the truss is detached from the two orbiters and the truss-propulsion assembly is jettisoned.

• The two orbiters then separate to a distance of a few hundred feet, but remain connected — top to top — by a tether cable that is spooled out.

• During the separation, the accordion-style inflatable crew-transfer conduit equally elongates.

• Once the orbiters are at their maximum fixed distance apart, they would simultaneously fire their reaction control systems to set the pair into an elegant pirouette — creating a comfortable level of artificial gravity for the crew’s voyage to the red planet.

It gets a little dicey once the shuttles arrive at Mars, however. How would these huge spacecrafts get to Mars surface? Knight’s only proposal is separating the orbiters and each having a REALLY huge parachute. Right now, the largest parachute that’s been successfully tested is 150 ft (45 m) in diameter.

However, in an interview we did with JPL’s Rob Manning for a previous article on Universe Today (see “The Mars Landing Approach: Getting Large Payloads to the Surface of the Red Planet), Manning says there’s currently no way and there’s not a parachute big enough to allow a big spacecraft, even a high lift vehicle like a shuttle to land successfully on Mars. The atmosphere is too thin to provide any drag.

From our earlier article:

“Well, on Mars, when you use a very high lift to weight to drag ratio like the shuttle,” said Manning, “in order to get good deceleration and use the lift properly, you’d need to cut low into the atmosphere. You’d still be going at Mach 2 or 3 fairly close to the ground. If you had a good control system you could spread out your deceleration to lengthen the time you are in the air. You’d eventually slow down to under Mach 2 to open a parachute, but you’d be too close to the ground and even an ultra large supersonic parachute would not save you.”

Supersonic parachute experts have concluded that to sufficiently slow a large shuttle-type vehicle on Mars and reach the ground at reasonable speeds would require a parachute one hundred meters in diameter.

“That’s a good fraction of the Rose Bowl. That’s huge,” said Manning. “We believe there’s no way to make a 100-meter parachute that can be opened safely supersonically, not to mention the time it takes to inflate something that large. You’d be on the ground before it was fully inflated. It would not be a good outcome.”

So, while Knight’s proposal is interesting and perhaps forward-thinking, it would need quite a bit of work to actually be feasible. He admits as much, saying “This thought paper is certainly not meant to be the technical be all, end all on the topic — but merely a springboard to new thought. The science and topics touched on herein are superficial; the concepts are simply provided to fuel the imagination and promote discussion.”

Knight said he was inspired by Robert Zubrin’s Mars Direct concept, and he also wanted to “repurpose” the space shuttle fleet.

“In all, I hope that my thought paper provides a catalyst for additional thinking as we ponder our place in the universe — and the methods to transport us to new frontiers.”

Who knows? Many successful endeavors start out as crazy ideas. But first, someone has to have the idea.

Source: Remarkable Technologies