Super Bowl Goes to Space

I admit, I watched the Super Bowl with all its hype and consumerism. But who can pass up a good excuse for a party or miss a chance to see Springsteen? A couple of the advertisements caught my eye. One was a fun spot with astronauts tearing around on Titan with a space-age hot rod. The premise is old, but enjoyable nonetheless. If you didn’t get a chance to see it, here it is:

Also, a trailer for the new Star Trek movie aired during the game, with more hot rods:
Continue reading “Super Bowl Goes to Space”

Comet C/2007 N3 Lulin – A Twist In The Tail

Comet C/2007 N3 Lulin - J. Brimacombe

[/caption]

When Chi-Sheng Lin of Taiwan’s Institute of Astronomy captured three images on July 11, 2007 with something strange in them, it was first believed he’d picked up just another asteroid. But, by July 17 astronomers in Table Mountain Observatory, California were noticing a coma 2-3″ across, with a bright central core. That’s not an asteroid… That’s a comet! And now it’s a comet that’s doing something very strange…

By the end of 2008, Comet C/2007 N3 Lulin had steadily began to brighten and now is within easy reach of binoculars for all observers. How bright is it? At last estimate it is between magnitude 6 and 7. That means just a little too faint to be seen unaided, but bright enough to be spotted easily with just the slightest of visual aids. Our own Nancy A. did an article on this not long ago!

But there’s something going on with N3 Lulin, right now… Something very different. There’s a twist in the tail! Check this out…

Comet C/2007 N3 Lulin (negative luminance) - J. Brimacombe
Comet C/2007 N3 Lulin (negative luminance) - J. Brimacombe

While imaging N3 Lulin for UT Readers, Dr. Joe Brimacombe used a negative luminance frame to take a closer look at what’s going on and discovered something quite out of the ordinary. First off, you’ll notice an anti-tail – quite rare in itself – but if you take a look about halfway down the ion/dust tail, you’ll see a very definite twist in the structure. It it rotating? Exactly what’s causing it? Torsional stress? Is it possible that the kink in the tail is an instability resulting from currents flowing along the tail axis? Right now there’s absolutely no information available about what’s going on in the tail – because what you’re seeing is perhaps one of the most current pictures of the comet that can be found!

Chart Courtesy Heaven's Above
Chart Courtesy Heaven's Above
If you’re interested in viewing Comet C/2007 N3 Lulin for yourself and would like some help locating it, there’s a wonderful resource that’s easy to use. Just go to Chris Peet’s Heaven’s Above website and make use of the tools there. It will give you easy to follow charts and all you need is just a pair of binoculars to spot this comet for yourself. Don’t sit inside… Do it!

My sincere thanks to Dr. Joseph Brimacombe of Northern Galactic for not only his superb imaging – but his sublime sense of curiosity which caught this anomaly!

R Coronae Borealis At Faintest

R Coronae Borealis Field - J. Brimacombe

[/caption]

For those of you who like observing curiosities, it’s time to take a look at R Coronae Borealis. As you may have guessed from the single letter designation, R is a variable star, but it’s not just any old variable – it’s the prototype of its class. What exactly is an R CorBor star, what does it do and why is taking the time to check it out now so important? Then step inside and find out…

R Coronae Borealis stars (RCB) type stars are one of the oldest known classes of variable star. In just a period of a few weeks, they can drop in brightness by factors of thousands and what they do is totally unpredictable. Within months, they recover again to their maximum brightness… But why? While astronomers don’t fully understand the evolutionary origin and the physical mechanism behind what drives R CorBor types, they do know the stars pulsate – generating a sort of sooty dust cloud just above the surface. Like an old-fashioned oil lamp with its wick turned up too high, when R Cororonae Borealis stars burn their fuel, they smoke up their exterior – just like the lamp smokes its glass chimney and dims the light. What remains on the glass? That’s right. Carbon. And the surfaces of RCB stars are unusually poor in hydrogen, and rich in carbon and nitrogen. Chances are very good that R CorBor stars are actually the remnants of more fully evolved stars.

Just a few days ago, M. Templeton of the American Association of Variable Star Observers (AAVSO) released Special Notice #145:

“R Coronae Borealis, the prototype of the R CrB class, is apparently at or near historic minimum; a number of observers have put this star below m(vis)=14.0 since early November 2008, and both visual and instrumental measures are now indicating R CrB is near or below V=14.5. R CrB began its current fading episode around JD 2454288 (2007 July 6 +/- 1 day), and faded from m(vis) ~ 6.0 to below m(vis) ~ 12.0 by JD 2454325 (2007 August 12). The star has continued to fade for the past 17 months. Current visual observations by a number of AAVSO visual observers estimate the star to be around m(vis) 14.3-14.5, and V-band CCD observations suggest the star may be at or near V=15.0. BAAVSS observer J. Toone also visually estimated the star is at m(vis) ~ 14.9 (via baavss-alert). Both visual estimates and instrumental photometry of R CrB are strongly encouraged at this time.

The duration of the current episode and its depth are similar to that observed during the previous extreme fading episode which began circa JD 2438200 (June 1963) and continued with only one brief interruption until circa JD 2439100 (December 1965). During the 1963-1965 event, a few AAVSO observers estimated that R CrB reached m(vis) around 14.9-15.0, although the average visual estimate remained around 14.2-14.3 at minimum. The current episode seems to have reached the same depth; there is no way to tell whether the fade will continue, although the light curve has been flat or trending weakly downward for several months. As J. Toone pointed out, the current magnitude is very close to if not fainter than the historic minimum for this star.”

Of course, nearing magnitude 15 isn’t within the territory of binoculars or small telescopes – but it is within the grasp of many of our amateur astronomer UT readers with larger equipment, clear skies and the willingness to seize the opportunity to record this historic astronomical event. (I dislike the term “amateur” – it only means you don’t get paid for it, folks… Not that you’re any less serious or talented!) One such astronomer is Dr. Joseph Brimacombe, who took up the gauntlet immediately. Although Joe hails from Australia where R Coronae Borealis isn’t visible, today’s astronomy world is far different than it used to be. Thanks to the magic of the Internet, he immediately set about the task of capturing the star on January 30, 2009 via a robotic telescope located in New Mexico and shared his results with us.

R Coronae Borealis True Color - J. Brimacombe
R Coronae Borealis True Color - J. Brimacombe

R CrB Chart - AAVSO
R CrB Chart - AAVSO
For those wishing to also participate in the quest for R Coronae Borealis, you’ll find it located at the following (J2000) coordinates: RA: 15 48 34.40 , Dec: +28 09 24.0 and you may use this field chart provided by the AAVSO to further refine your observations. If R is too faint for your equipment now? Don’t worry. It’s a variable star and within a few months it will return to its easily spotted magnitude 6 self – and a very delightful red star in binoculars. As always, be kind to science and contribute! Please promptly submit all observations to the AAVSO using the name “R CRB” and take part in astronomy history!

My many thanks to Joe Brimacombe of Northern Galactic for his superb talents and to the AAVSO for keeping us on alert!

Russia Wants to Build New Space Station, Extend Life of ISS to 2020

The Mir space station hangs above the Earth in 1995 (photo by Atlantis STS-71, NASA)

[/caption]

The Russian space agency (Roscosmos) has announced that it will lobby Moscow with a proposal that would see the construction of a new Russian space station in low-Earth orbit. Also, the agency has expressed a desire to extend the operational lifespan of the International Space Station (ISS) until 2020 (the outpost is set for retirement in 2015). Building a Russian space station will aid Russia’s desire to kick-start their lunar program, possibly acting as a staging post for future missions to Mars…

The ISS has been a hot topic over the last few months, but not always for the right reasons. Its construction is behind schedule by at least five years, primarily due to the Columbia disaster in early 2003 plus some funding problems in the Russian space agency. However, despite its problems, the ISS was 76% complete as of July 2008 and it is set for completion in 2010. This may be the case, but the station is scheduled to be retired in 2015, meaning science on the completed ISS only has a period of five years before it is de-orbited and sent the same way as Mir in 2001 (i.e. down).

Could the ISS be modified to travel to Mar<span>s</span>? Credit: NASA/Ian O'Neill
The thought of disposing of the ISS so soon has led to some speculative “alternative uses” for the ISS; one of the most outlandish being the conversion of the ISS into some kind of International Space Ship, retrofitting the station with rockets and sending it to the Moon and/or Mars to act as a manned mothership for planetary activities. Although this excites my science fiction imagination, this possibility seems unlikely (it would be cool though…).

It seems that Roscosmos has made their feelings clear about the whole situation, making an announcement on Thursday wanting to drum up support for an ISS extension to 2020 and start the construction of a Russian replacement space station, forming the back bone of Roscosmos’ ambitions to set up a base on the Moon and then make a manned expedition to the Red Planet.

We will soon propose to our government a project to construct a low-orbit complex, which could serve as a foundation for the implementation of the lunar program and later on – the Mars program,” Alexei Krasnov, director of manned flight programs at Roscosmos, said in a news conference in Moscow on January 29th. “These are our intentions, but we are working hard to ensure that these plans get adequate financial and legislative support from the government.”

The Russian space agency has often been criticised for having ambitions exceeding their budgets, but this is an interesting proposition. The biggest obstacle (apart from the funding bit) would be to convince the other ISS member states to continue funding the mission. “We are considering the extension of ISS service life at least until 2020, but this decision must be adopted by the governments of all 15 countries participating in the project,” Krasnov said.

The idea of having a Russian space station is not very hard to imagine, after all, Roscosmos has the experience of designing, constructing and living on the Mir space station (with the assistance of the Shuttle-Mir Program intended to forge a collaboration between the US and Russia in the run-up to “Phase 2” of the space relationship: constructing the ISS), and they have a very robust existing launch system. All this will be a valuable infrastructure toward supporting the construction of a new manned outpost.

Although this announcement sounds very exciting for Russia, the space agency is beset with financial woes of its own; the idea of embarking on an expensive space station project probably wont be entertained for very long…

Source: RIA Novosti

China Building Huge 500-Meter Radio Telescope

Artist concept of the FAST Telescope. Credt: Physicsworld.com

[/caption]

Official ground-breaking ceremonies took place for a gigantic new 500 meter diameter radio telescope in China which will allow astronomers to detect galaxies and pulsars at unprecedented distances. The $102 million facility, known as the Five-hundred-meter Aperture Spherical Telescope (FAST), will have a collecting area more than twice as big as the 305 meter diameter radio telescope at Arecibo Observatory in Puerto Rico, which has been the world’s largest since it opened in 1964. Not only that, the new telescope will also have the ability to change its shape and move the position its focus.

Like the Arecibo telescope, the new telescope will sit in a natural depression that already is close to the shape of the collecting surface, simplifying the support structure and shielding the telescope from stray human-generated radio waves. The location is quite remote, about 170 km by road from the Guizhou Province’s provincial capital Guiyang, making it unusually radio-quiet, says Nan Rendong, FAST chief scientist and a researcher from the National Astronomical Observatories at the Chinese Academy of Sciences, in an article in Physicsworld.com.

The site’s potential for long, uninterrupted observations — coupled with the telescope’s huge size, which will give it twice the sensitivity of Arecibo — means that researchers there will be able to detect objects like weak, fast-period pulsars that are too faint to be measured accurately by smaller instruments.

Groundbreaking ceremonies for FAST. Credit: Physicsworld.com
Groundbreaking ceremonies for FAST. Credit: Physicsworld.com

“The FAST science impact on astronomy will be extraordinary,” Nan said, adding that although the telescope is located in China, once it is completed in 2014 it will be open to astronomers from around the world.

A system of motors attached to its 4600 panels will allow astronomers to change its shape from a sphere to a paraboloid, making it easier to move the position of the telescope’s focus. This will allow the south-pointing telescope to cover a broad swathe of the sky — up to 40 degrees from its zenith, compared to the 20-degree-wide strip covered by Arecibo.

At first, however, the telescope will only be sensitive to low-frequency radio waves, less than 3 GHz. Arecibo’s bandwidth, by contrast, stretches up to 10 GHz.

A planned second phase of construction will extend FAST’s range to 5 GHz, but a date for the upgrade has not yet been set.

Source: Physicsworld.com

Ares I-X 2009 Test Flight Progress: Pyrotechnic Stage Separation

A full-scale separation test of the forward skirt extension for the Ares I-X flight test at its facility in Utah (NASA/ATK)

[/caption]

The successful test of NASA’s Ares I-X Forward Skirt Extension on Thursday represents a “major milestone” in the development of the launch system, according to Alliant Techsystems (ATK). The “skirt extension” in question is a solid ring of aluminium (or aluminum) connecting the first stage with the upper stages of the rocket.

This summer, the first flight of the Constellation Program is scheduled to blast off from a Cape Canaveral launch pad. The ATK pyrotechnics deep in the Utah Desert has proven to NASA that a key portion of this test flight will go as planned, allowing the reusable portion of the Ares I to return to Earth for recovery…

To say 2008 was a turbulent year for the Constellation program is an understatement. Although there have been a number of successful tests (including the test firing of the jettison motor, launch abort system and an old Shuttle engine; plus parachute tests), political tensions, criticism of the technology and budget uncertainty have all taken their toll. The future of the Constellation Program is in doubt (or shaky at best) and there’s not many media headlines with anything positive to say. So, when there is a successful test of any Ares component, it is certainly worth reporting, in an attempt to redress the good-news/bad-news balance and give credit where credit is due.

Artist impression of the Ares I-X at the launchpad, plus labelled sections of the rocket (NASA)
Artist impression of the Ares I-X at the launchpad, plus labelled sections of the rocket (NASA)
So, last week, ATK successfully tested the explosive charges that will perform the most important task of the test launch of the Ares I-X. The Forward Skirt Extension is located between the first and second stages of the rocket (pictured left). This 1.8 metre (6 ft) long by 3.7 metre (12 ft) diameter aluminium cylinder will allow the first stage booster to separate at the frustum (a cone-shaped connector that attaches the first stage to the larger diameter upper stage). During the launch, separation will occur at an altitude of around 40 km (130,000 ft).

This section will also be important as it will need to store the recovery parachutes for the first stage and it will need to support the mass of the upper stages (plus payload) during launch. It is for this reason that the skirt is forged from one solid lump of aluminium and reinforced with a unique internal support structure, housing three main parachutes.

Data from the charge detonation will be used to measure the shock generated, understanding how this might affect the Ares I-X mission and future Ares I launches. Thursday’s test appears to have achieved this as well as severing the forward skirt extension.

Roll on summer, I’m looking forward to seeing the Ares X-I first stage parachute to Earth

Source: NASA

Two Rockets Fly Through Auroral Arc

In this image from a similar test in 2003, a rocket carried a payload designed to measure high-frequency wave signals related to aurorae. Credit: Chuck Johnson and Astronomy.com

[/caption]
Early Thursday morning, two sounding rockets simultaneously flew through the veil of an aurora collecting data from both the top and bottom edges of the arc. A team from the University of Iowa waited for precise conditions before launching two different NASA Black Brant rockets from the Poker Flat Research Range near Fairbanks, Alaska just before 1 a.m. Alaska Standard Time. Other rockets have flown through aurorae previously, but this is the first time two rockets were used together. As part of the Auroral Current and Electrodynamics Structure (ACES) mission, the flights will provide insight on the structural subtleties of the aurora, details that researchers may have missed when previous measurements were done using only a single vehicle.

A two-stage Black Brant IX rocket launched at 12:49 a.m. and reached an altitude of more than 226 miles and flew for just under 10 minutes. At 12:50 a.m., a single-stage Black Brant V launched, reaching an altitude of nearly 83 vertical miles, flying for roughly eight minutes.

Principal Investigator Scott Bounds of the University of Iowa said the payloads of each ACES rocket performed well during flight, and the ACES team will begin to analyze all of the data collected, which should keep them busy for the next year. Bounds said this information will help refine current models of aurora structure, and provide insight on the high-frequency waves and turbulence generated by aurorae.

A Black Brant Rocket.  Credit: NSROC
A Black Brant Rocket. Credit: NSROC

The rockets have been poised for launch since January 14, waiting for the right conditions. A stable, thin arc was required for the experiment to perform optimally and finally that arc appeared early on Jan. 29.

Source: University of Alaska, Fairbanks

Virgo

Virgo

[/caption]

As one of the zodiacal signs, Virgo resides directly on the ecliptic plane and was one of the original 48 constellations charted by Ptolemy. It spans 1294 degrees and is the second largest constellation in the sky. Virgo also contains the point where the celestial equator crosses the ecliptic plane – the the autumn equinox. Between 9 and 15 stars make up its asterism and it contains 96 Bayer Flamsteed designated stars within its confines. Virgo is bordered by the constellations of Bootes, Coma Berenices, Leo, Crater, Corvus, Hydra, Libra and Serpens Caput. It is visible to all observers located at latitudes between +80° and ?80° and is best seen at culmination during the month of May.

There are two annual meteor showers associated with constellation Virgo. The Virginids peak on or about April 10th of each year and will appear to come from a point in the sky near Gamma. This is a relatively active and predictable meteor shower and you can expect to see about 10 meteors per hour on the average during a dark night from a dark location. The second is the Mu Virginids, which peak on or about April 25th. This is also a fairly reliable meteor shower and you can expect to see 7 to 10 meteors per hour on the average coming from an area near the Virgo/Leo border.

In mythology, Virgo is meant to represent the “Virgin”, but who exactly this woman is has never been established – only that she plays an important cultural role. Virgo is often portrayed carrying two sheaves of wheat, one of which is marked by the bright star Alpha – Spica – and it is the only astrological sign represented by a female. Perhaps she is Astraea, the virgin daughter of Zeus who was known as the goddess of justice. After all, Libra, the scales of justice is nearby!

Let’s begin our tour of Virgo with its brightest star – Alpha – the “a” symbol on our map. Alpha Viriginis is best known as Spica. Located 262 light-years away from Earth, 1.0 magnitude Spica glows with the combined light of four unresolved stars and has a visual luminosity 2100 times that of the Sun. As a rotating ellipsoidal variable, the four stars cause complex changes in luminosity by distorting the shape of the brightest components. The dominant star – Spica A – has a mass 11 times that of the Sun and fluctuates in physical size as it varies in brightness. The primary star is at maximum when smallest, giving it the highest photospheric surface temperature. Spica B has a mass of 7 suns. As a spectral type B, these two components produce more light in ultraviolet due to exceedingly high surface temperatures. Spica has two distant telescopic companions – magnitude 12 to the north-northeast, and magnitude 10.5 to the east-northeast.

Now head towards Beta – the “B”. Named Zavijava (sounds like something you’d get at Starbuck’s doesn’t it?) and located about 36 light years away from our solar system, this star holds a very special place in history because of its position in the sky. Since it is so near the ecliptic plane, it can frequently be occulted by the Moon, occasionally a planet, and even the Sun. In Zavijava’s case, it had the honor of being the star Einstein used during the solar eclipse of September 21, 1922 to determine the speed of light in space! What’s more, according to studies, Beta Virginis could host two or three Jupiter-sized planets – either brown dwarf stars in wide orbits or true planetary objects.

Ready for Gamma Virginis? That’s the “Y” symbol. Best known as Porrima, this binary star of nearly matched magnitudes was an easy object for amateur astronomers, but now the smaller apparent distance between the stars requires a larger telescope. Because of its relatively quick orbital period of 168.93 years, you’ll sometimes hear Porrima referred to as the “Shrinking Star”. At the time of this writing (early 2009), the pair is only separated by about .04″ and it will be another 11 years before they have moved apart enough again to be easily split with a small telescope!

Because there are massive amounts of deep sky objects in Virgo, annotating a map would be so cluttered it would be difficult to read. Let us begin first with the chart we have above which highlights the brighter objects in Virgo – ones easily seen with binoculars and small telescopes. Ready to dance?

Our first target will be Messier 104 (RA 12 : 40.0 Dec -11 : 37). Now, shake your fist at Spica… Because that’s all it takes to find the awesome M104, eleven degrees due west. (If you still have trouble finding M104, don’t worry. Try this trick! Look for the upper left hand star in the rectangle of Corvus – Delta. Between Spica and Delta is a diamond-shaped pattern of 5th magnitude stars. Aim your scope or binoculars just above the one furthest south.) Also known as the “Sombrero Galaxy” this gorgeous 8th magnitude spiral galaxy was discovered by Pierre Mechain in 1781, added by hand to Messier’s catalog and observed independently by William Herschel as H I.43 – who was probably the first to note its dark inclusion. The Sombrero’s rich central bulge is comprised of several hundred globular clusters and can be hinted at in just large binoculars and small telescopes. Large aperture telescopes will revel in this galaxy’s “see through” qualities and bold, dark dustlane – making it a seasonal favorite!

Now, let’s take a look at one of the brightest members of the Virgo Cluster – Messier 49. Located about eight degrees northwest of Delta Virginis almost directly between a pair of 6th magnitude stars (RA 12 29 46 Dec +07 59 59), the giant elliptical galaxy M49 holds the distinction of being the first galaxy in the Virgo cluster to be discovered – and only the second beyond our local group. At magnitude 8.5, this type E4 galaxy will appear as an evenly illuminated egg shape in almost all scopes, and as a faint patch in binoculars. While a possible supernova event occurred in 1969, don’t confuse the foreground star noted by Herschel with something new! Although most telescopes won’t be able to pick this region apart, there are also many fainter companions near M49, including NGC 4470. But a sharp-eyed observer named Halton Arp noticed them and listed them as Peculiar Galaxy 134 – one with “fragments!”

Next up, Messier 87 (RA 12 : 30.8 Dec +12 : 24). It’s a radio-source galaxy so bright it can be seen in binoculars – 8.6 magnitude M87, about two fingerwidths northwest of Rho Virginis. This giant elliptical galaxy was discovered by Charles Messier in 1781 and cataloged as M87. Spanning 120,000 light-years, it’s an incredibly luminous galaxy containing far more mass and stars than the Milky Way Galaxy – gravitationally distorting its four dwarf satellites galaxies. M87 is known to contain in excess of several thousand globular clusters – up to 150,000 – and far more than our own 200.

In 1918, H. D. Curtis of Lick Observatory discovered something else – M87 has a jet of gaseous material extending from its core and pushing out several thousand light-years into space. This highly perturbed jet exhibits the same polarization as synchrotron radiation – a property of neutron stars. Containing a series of small knots and clouds as observed by Halton Arp at Palomar in 1977, he also discovered a second galaxy jet in 1966 erupting in the opposite direction. Thanks to these two properties, M87 made Arp’s “Catalog of Peculiar Galaxies” as number 152. In 1954 Walter Baade and R. Minkowski identified M87 with radio source Virgo A, discovering a weaker galactic halo in 1956. Its position over an x-ray cloud extending through the Virgo cluster make M87 a source of an incredible amount of x-rays. Because of its many strange properties, M87 remains a target of scientific investigation. The Hubble Space Telescope has shown a violent nucleus surrounded by a fast rotating accretion disc, whose gaseous make-up may be part of a huge system of interstellar matter. As of today, only one supernova event has been recorded – yet M87 remains one of the most active and highly prized study galaxies of all. Capture it tonight!

virgo1

Now we’re heading for our more detailed map and the galaxy fields of Virgo about four fingerwidths east-southeast of Beta Leonis. As part of Markarian’s Chain, this set of galaxies can all be fitted within the same field of view with a 32mm eyepiece and a 12.5″ scope, but not everyone has the same equipment. Set your sights toward M84 and M86 and let’s discover!

Good binoculars and small telescopes reveal this pair with ease as a matched set of elliptical galaxies. Mid-sized telescopes will note the western member of the pair – M84 – is seen as slightly brighter and visibly smaller. To the east and slightly north is larger M86 – whose nucleus is broader, and less intensely brilliant. In a larger scope, we see the galaxies literally “leap” out of the eyepiece at even the most modest magnifications. Strangely though, additional structure fails to be seen. As aperture increases, one of the most fascinating features of this area becomes apparent. While studying the bright galactic forms of M84/86 with direct vision, aversion begins to welcome many other mysterious strangers into view. Forming an easy triangle with the two Messiers and located about 20 arc-minutes south lies NGC 4388. At magnitude 11.0, this edge-on spiral galaxy has a dim star-like core to mid-sized scopes, but a classic edge-on structure in larger ones.

At magnitude 12, NGC 4387 is located in the center of a triangle formed by the two Messiers and NGC 4388. NGC 4387 is a dim galaxy – hinting at a stellar nucleus to smaller telescopes, while the larger ones will see a very small face-on spiral galaxy with a brighter nucleus. Just a breath north of M86 is an even dimmer patch of nebulosity – NGC 4402 – which needs higher magnifications to be detected in smaller scopes. Large apertures at high power reveal a noticeable dust lane. The central structure forms a curved “bar” of light. Luminosity appears evenly distributed end to end, while the dust lane cleanly separates the central bulge of the core. East of M86 are two brighter NGC galaxies – 4435 and 4438. Through average scopes, NGC 4435 is easily picked out at low power with a simple star-like core and wispy round body structure. NGC 4438 is dim, but even large apertures make elliptical galaxies a bit boring. The beauty of NGC 4435 and NGC 4438 is simply their proximity to each other. 4435 shows true elliptical structure, evenly illuminated, with a sense of fading toward the edges… But 4438 is quite a different story! This elliptical galaxy is much more elongated. A highly conspicuous wisp of galactic material can be seen stretching back toward the brighter, nearby galaxy pair M84/86.

Ready for bright galaxy Messier 58 (RA 12 : 37.7 Dec +11 : 49)? It’s a spiral galaxy actually discovered by Messier in 1779! As one of the brightest galaxies in the Virgo cluster, M58 is one of only four that have barred structure. It was cataloged by Lord Rosse as a spiral in 1850. In binoculars, it will look much like our previously studied ellipticals, but a small telescope under good conditions will pick up the bright nucleus and a faint halo of spiral galaxy structure – while larger ones will see the central concentration of the bar across the core. Chalk up another Messier study for both binoculars and telescopes and let’s get on to something really cool!

Around a half degree southwest are NGC 4567 and NGC 4569. L. S. Copeland dubbed them the “Siamese Twins,” but this galaxy pair is also considered part of the Virgo cluster. While seen from our viewpoint as touching galaxies, no evidence exists of tidal filaments or distortions in structure, making them a line of sight phenomenon and not interacting members. While that might take little of the excitement away from the “Twins,” a supernova event has been spotted in NGC 4569 as recently as 2004. While the duo is visible in smaller scopes as two, with soft twin nuclei, intermediate and large telescopes will see an almost V-shaped or heart-shaped pattern where the structures overlap. If you’re doing double galaxy studies, this is a fine, bright one! If you see a faint galaxy in the field as well, be sure to add NGC 4564 to your notes. Moving about a degree north will call up face-on spiral galaxy M89, which will show a nice core region in most telescopes. One half degree northeast is where you will find the delightful 9.5 magnitude M90 – whose dark dust lanes will show to larger telescopes.

Virgo contains many, many more fine objects – so be sure to get a detailed star chart and spend some time with this great constellation!

Sources:
Wikipedia
SEDS
Chandra Observatory
Charts Courtesy of Your Sky.

In Depth Observing – M81 and M82

Are you interested in taking a more in-depth look at observing? Then why not wait until the Moon sets this weekend and have a look at two splendid galaxies for any size optics – Messier 81 and Messier 82. If you’ve ever been curious about exactly what can be seen in a particular sized telescope, what else is in the area and what the story is behind these two, then come on in…

Welcome, Traveller. Our celestial journey resumes to the north, in the realms of Ursa Major: the Great Bear. “Let my lamp at midnight hour, Be seen in some high, lonely tower. Where I may oft outwatch the Bear.” Our sojourn will take us to a place of intrigue. A realm where two galaxies hold each other in cosmic grip. A place where a single gem of spiral perfection is mounted against a setting of broken interaction. Here we continue our observing quest in exploration of Bode’s Galaxies – twin jewels of the circumpolar north sky – M81 and M82…

Discovered in December, 1774 by JE Bode at Berlin, these two deep sky favourites hold secrets between themselves. Photographed as early as March, 1899, this pair is central to a group of galaxies encompassing the northern circumpolar constellations of Ursa Major and Camelopardalis. Modern photos (such as at the above taken by Karel Teuwen), show the superb spiral structure of the M81. At some 36,000 light years in diameter, it is one of the densest known galaxies. One third of the mass is concentrated at the core. Its glow is the combined luminosity of twenty billion suns…

Often mistaken in the small telescope for an edge-on spiral, M81’s neighbor – M82 – shows no sign of “swirling”. As a true space “oddity”, the light from M82 journeying back to our eyes is polarized. This galaxy probably contains a super-massive magnetic field. Not only is M82 polarized visually, it is also a powerful radio source. Within its broken structure lay huge masses of dust accompanied by the radiance of stars possessing unusual spectral qualities. These facts lead scientists to believe that a violent outburst may have occurred within the galaxy as recently as 1.5 million years ago… About the time when our own adventurous ancestral species began seeking patterns in the night sky!

It is estimated M82’s defining event released the energy equivalent of several million exploding suns. “Shock waves” emanating from the galaxy greatly resemble synchrotron radiation. This phenomenon was first discovered in association with planetary nebula M1 – but within the M82, on an enormous scale. Can you image a super nova remnant the size of an entire galactic core region?

Roughly every one hundred million years, M81 and M82 make a “pass” at one another. Immensely powerful gravitation arms reach out and intertwine to produce a spectacular embrace. It is theorized that during the last go-round, M82 raised rippling density waves which circulated throughout M81. The result? Possibly the most perfectly formed spiral galaxy in all of space!

M81 is among the nearest and brightest spiral galaxies, visible even with binoculars at dark sites. It is also is one of the nearest to our Local Galaxy Group, being only some 12 million light-years from our own celestial backyard. As with almost all spiral-structured galaxies, star formation is continuing to take place inside this grand galaxy along the arms. When shown in specific wavelengths of light (like the above photo take by Dietmar Hager, F.R.A.S.) it can be evidenced as pink areas of light where the HII regions exist – while the blue areas are home to countless new stars. It is this incredible energy that makes Messier 81 such a breath-taking spectacle…

But M81’s influence left M82 a broken galaxy. Filled with exploded stars and colliding gas, a galaxy so violent it emits X-rays. Reactions induced by colliding dust and gas caused the birth of these numerous brilliant stars. Stars capable of creating extremely dense atoms… Some of which are now excited by the kind of extreme motion that induces immense magnetic fields.

The end may already be envisioned. Scientists speculate within a few billion years, out of the two, there shall be one… Indistinguishable but for the welter of radiation only such an embrace can create. It is known this same fate awaits our own galaxy. Billions of years from now, our own galaxy and its’ largest neighbor – the Great Spiral in Andromeda – will perform this same duet.

Let’s not talk about just this fascinating galactic duet, however. For the M81 and M82 also have some very unusual playmates! Neighboring galaxy NGC3077 displays some of the same “peculiarities” as its larger companion, M82. At 6,000 light years in diameter, NGC3077 is little more than a third the size of its prototype. Southwest of Spiral M81, is yet another “odd ball”. Like NGC3077, NGC2976 is a dwarf. At less than 1/5th the size of M81, NGC2976 is some 7,000 light years across. A value only three times the distance between our own Sun and the nearby, spectacular Great Nebula in Orion!

Three faint, irregular galaxies are also associated with our galactic pair. The NGC2366 jumps the border into Camelopardalis. IC2574 is found just a bit southeast of the M81 and is a real “toughie” for most telescopes. A smaller system known as Ho II was discovered in 1950 by astronomer E. Holmberg. Even farther into Camelopardis is the large spiral NGC2403, also thought to be a member of the M81/82 “family” of galaxies. As one of the two galaxy groups closest to our own Milky Way system (the other lies in Sculptor), this region presents a fascinating opportunity for study by the backyard astronomer. Why, the main pair can even be seen through 6x35mm binoculars!

So, while we have a relatively dark skies left for a few days, let us turn our telescopes toward study. Drawing an imaginary line between Phecda and Dubhe, we extend that just one step further into space… And Galaxy Quest continues!

Some Basic Information:

Like many galaxies seen at right angles to the Milky Way’s galactic plane, M81/M82 Galaxy Group members are best observed during Spring just after skydark. Of course, these galaxies may be observed year-round from the temperate northern hemisphere, but best views are had when found in the middle third of the sky. Despite the brightness and susceptibility of the main pair, amateurs take it as a source of some pride to readily locate the pair in what amounts to a rather nondescript region of sky.

M81 Ursa Majoris, Type: Spiral Galaxy, Magnitude: 7.0, Apparent Size: 26×14′ RA: 09 55.6, Dec:69 04, Optimal Scope Size: 150mm.

M82 Ursa Majoris, Type: Irregular Galaxy, Magnitude: 8.4, Apparent Size: 11×5′ RA: 09 55.8, Dec:69 41, Optimal Scope Size: 150mm.

NGC2976 Ursa Majoris, Type: Irregular Galaxy, Magnitude: 10.2, Apparent Size: 5×2′ RA: 09 47, Dec:67 54, Optimal Scope Size: 250mm.

NGC3077 Ursa Majoris, Type: Elliptical Galaxy, Magnitude: 9.9, Apparent Size: 5×4′ RA: 09 59, Dec:68 58, Optimal Scope Size: 250mm.

IC2574 Ursa Major, Type: Irregular Galaxy, Magnitude: 10.6, Apparent Size: 13×5′ RA: 10 28, Dec:68 25, Optimal Scope Size: 400mm.

NGC2366 Camelopardalis, Type: Irregular Galaxy, Magnitude: 10.9, Apparent Size: 8×3′ RA: 07 29, Dec:69 13, Optimal Scope Size: 325mm.

NGC2403 Camelopardalis, Type: Spiral Galaxy, Magnitude: 8.4, Apparent Size: 18×9′ RA: 07 36.9, Dec:65 36, Optimal Scope Size: 200mm.

Our Telescopes:

80mm Orion ShortTube Refractor mounted on an Orion Skyview Deluxe Equatorial Mount. Eyepieces include 35/25/15/10mm Orion Ultrascopics, 3x Apochromatic and 2x Shorty Barlow Lenses. This scope is capable of revealing stars to magnitude 12.0 with direct vision. It cleanly resolves matched double stars to 1.5 arc seconds of apparent separation. Under optimal seeing conditions, it can reveal all deepsky studies found in the Messier catalogue. (Optimal seeing is defined as unaided and direct perception of stars to magnitude 5.5 overhead and clean resolution of matched double stars at Dawes limit.)

Celestron 114 Newtonian Reflector with CG3 Equatorial Mount. 10 and 25mm, Celestron SMA, 17mm Orion Sirius Plossl, 9 and 26mm Meade Series 4000 eyepieces plus 2X Orion “Shorty” Barlow. This scopes performance is comparable to the 80mm achromat in double star resolution but is able to go half a magnitude deeper in stellar reach.

150mm Orion Argonaut Maksutov-Cassegrain mounted on an Orion Skyview Deluxe Equatorial Mount. Eyepieces include 35/25/15/10mm Orion Ultrascopics, 3x Apochromatic and 2x Shorty Barlow Lenses. This scope is capable of revealing stars to magnitude 13.4 with direct vision. It cleanly resolves matched double stars to .8 arc seconds in apparent separation. Under optimal conditions, almost all studies described by William Herschel may be found in the night sky.

Meade 318mm Starfinder Newtonian Reflector on Altazimuth Dobsonian Mount. 2 inch 32mm Televue plus 17mm Orion Sirius Plossl, 9 and 26mm Meade Series 4000 eyepieces and 2X Orion “Shorty” Barlow. This “lightbucket” actually resolves matched double stars to .5 arc seconds. Stars to magnitude 15.0 may be held direct under good conditions. It is capable of revealing virtually all members of Dreyer’s New General Catalog plus a number of Index catalog (IC) studies as well!

At the Eyepiece:

M81 & M82:

So Traveller, shall we start with the 80mm? Here we find the M81 shows an obvious starlike core, with bright and extended core region blending into the beginnings of faint spiral arms. Although this showpiece galaxy flares to all directions on eye movement (which basically doubles any scope aperture), it appears somewhat “flattened”, showing a better defined frontier to the west. On nights of superb transparency (and at low magnification – 40x), the broad extensions of the galaxy’s spiral arms may be seen clearly with strongly averted vision. And surprisingly, some five arc minutes north of the galaxy’s core, a faint condensation may be detected. But the limits of small aperture leave the observer wanting more…

So, let’s increase to 114mm… At 53X, we find M81 as a lovely, soft “disc” with an intense core. By increasing the power to 90X, its true spiral form begins to show. Meanwhile, the central portion of the galaxy takes on a very concentrated appearance, and the outer frontiers fade gently away. Still, no “definitive” view of this superfine study, however.

Time to check out the view in the 150mm…

At 52x, spiral galaxy M81 sports a very bright, star-like central core. It’s core is large, elongated, and displays a considerable luminosity gradient from core-central to faint spiral arms. At this magnification, extended spiral arms require but the slightest aversion of the sight. As large as M81 is, it’s still helpful to bump up the magnification. At 70x, averted vision reveals a certain subtle “spiral-sweep” about the core region. The core itself orients more or less north-south and extends perhaps 5 by 10 arc-minutes in apparent size. This sweep of the core region is larger than many galaxies. A pair of 12th magnitude stars lie just off axis to the southwest. Careful inspection shows that the galaxy as a whole orients toward the more westerly of these two field stars. Under less than optimal conditions, less than half of M81 is susceptible to direct vision. But under optimal conditions, we are rewarded with fine views of large faint splotches of outlying luminosity. Through a six inch instrument, this grand galaxy needs to be doted over to be truly appreciated. While the core is easy, M81’s spiral arms are quite faint and need a good night of seeing to reveal themselves as something more than vague “mounds of luminosity”.

Increasing the aperture again to 310mm, let’s go to the eyepiece…

At minimum magnification (60X), the M81 does indeed remind one of a miniature “Andromeda” galaxy. The intense core, the sense of spiral arms folding round, all say “Grand Spiral”. But let’s head to a “higher power” (170X) and rock out structure. At this magnification, indications of dark dustlanes begin to exist at the outer edges. The central formation of the galaxy itself is impenetrable. More than two-thirds of its’ structure holds even concentration and makes the core area intense. It is toward the elongated edges that our attention is drawn with direct vision. Here are the classic “spiral arms” we’ve been looking for! At the highest of magnifications (312x), they fold themselves very close to the body of the M81, with each “tip” extending both above and below the central structure evenly. At the outermost fringes of these arms, averted vision reveals the mottling of distant clusters, and a sense of “trailing away” that give this well-endowed spiral real “class”!

Now, let’s go back to the 80mm and examine the M82…

On shifting the field to the more northern M82, we immediately catch the dark vertical break that splits this edge on west of the galaxy’s irregular core. Direct inspection of the galaxy fails to show more than where the break occurs – since little of luminosity can be seen further west of the discontinuity. Both the northern and southern frontiers are well defined and quite linear – even under marginal conditions. Aversion of the sight shows a bit of an extended halo outside the bounds of the flanking frontiers. We also note that the eastern extension shows a well defined “daggerlike” blade and tip.

At 114mm, that first view at low power (36X) screams “edge-on”! But, with patience and practice, delicate detail with averted vision begins to form, and the dark break becomes perceivable. Increasing the magnification to 90X makes this division more apparent, and causes the M82 to appear “spindle-shaped”… much like a child’s dirty kite string wrapped round a stick. Very little in the way of structure is seen, other than the fact than it’s lumpy.

Let’s move to 150mm…

M82 stretches out perhaps 10 arc-minutes east and west like a knife splitting the sky. It’s core is not of the luminous star-like variety… A gradual brightening is seen from one end of the galaxy to the center and back again to the opposite extreme. Unlike M81, the change is very gradual. A curious kneadiness or mottling is apparent – especially to the west. This edge-on irregular galaxy is broken by a dark lane along its southern frontier. The lane is not visible – only the sharpness by which it truncates the galaxy. In addition, a more obvious cleft of darkish matter divides the trailing half of the core. Overall, the visible part of the galaxy covers a region perhaps 2 by 8 arc-minutes in apparent size. A pair of 11th magnitude stars are visible west-southwest. In many ways M82 is more interesting than M81. It’s beauty lies in subtle variations of surface brightness which defy notions of pattern and verbal description.

Shall we seek in the 310mm? Then let’s find some answers…

At moderate magnifications (90X), M82 begins revealing structure to direct vision. The dark “break” one third of the way across its’ breadth is fully apparent, and the thickening portions along the body of the galaxy itself warrant closer investigation. Moving now to higher magnification (170X), we get the structure we were looking for… The galaxy no longer can be called “edge-on”, and clotted appearance of what must be thousands upon thousands of clusters make this one truly fine. The central portion bears no nucleus… pardon the descriptor, but it looks like cottage cheese! Toward one end, the dark division holds the lump of galactic mass in a gravity “lock”, and bleeds away into what almost appears with averted vision to be several open clusters. At the other end of the M82, all thoughts of resolution stop. Here the galactic matter appears to be “smeared”… as if the inner concentration of stars might perhaps be calmer, somehow. A very fine galaxy… It has earned its’ classification as irregular.

NGC2976:

Continuing with our study, we break away from this splendid galactic pair, and move onward toward yet another… This galaxy “lives” within a large house of 10th and 11th magnitude stars south-southwest of M81. The peaked-roof of the house lies to the east. And its’ name? NGC2976…

Starting with our 80mm refractor, this galaxy is difficult, but positively located within the same “house-shape” of stars. The sense of large apparent size remains present. Quite diffuse overall with slight condensation, it requires extreme aversion. Despite a dearth of structure, the galaxy hints at north-south orientation with a possibly better defined frontier to east.

Moving now to the 114mm newtonian reflector, we find it is detectable at 114mm in aperture… but that is all it is. A soft, elongated smudge that requires averted vision just to make out form.

Through 150mm at 52x and under 5.0 ULM conditions, NGC2976 appears large and diffuse. Maybe 3×5 arc minutes of the galaxy is possible with a southeast to northwest orientation. It displays a large, but dim core region. This gives it a sense of structure.

On eye movement, the galaxy flares to all directions, but less so to the southwest. It’s core region appears quite large, football shaped and diffuse. Bumping the magnification to 70x gives the core a somewhat edge-on appearance. At 120x the low surface brightness of this large galaxy causes it to completely dissolve.

At 310mm in aperture, the NGC2976 does not rock out detail in an expected fashion either, Now we are talking about being able to hold this galaxy direct, which means averted should bring out structure… What structure?! A tear drop, grainy-looking patch on the night with a bright star at the edge, tapering off into a chain of stars… That’s it. No sense of a nucleus…. no apparent fading at frontiers.

Time to move on? You bet! Let’s head off to capture another…

NGC3077:

Going to the 80mm, we find this galaxy easily located but lacking structure under direct perception. NGC3077 is small and diffuse, with faint extensions north and south. Sense of vague truncation (flattening) to east along with a soft, but perceptible degree of central condensation. Extreme aversion of the eye is needed to make out any of these details.

Now, moving on to the 114mm we find the NGC3077 is also detectable… as a very dim glow of galactic light with extreme averted vision, and one pinpoint star nearby.

Shifting our view points to 150mm we find at 52x and a 5.0 sky, this vaguely football-shaped galaxy is easily located but lacks obvious structure. There is a subtle sense of east-west orientation. Perceptible flaring appears on eye movement to all directions -except north. This lack of northern flaring hints at a dark lane that direction. A very faint star-like point can occasionally be seen near the center of the nebulosity. A slight amount of central condensation is possible but the lack of a defined core region means a very loose and diffuse appearance.

At 70x, the faint starlike-nucleus occasionally seen at 52x becomes a bit more consistent. The beginnings of a core region also emerges. At 120x a roundish blue core region with a soft, “unstarlike” nucleus can be seen, but the bulk of the galaxy is lost to sight for lack of photons…

Going to the 310mm dobsonian at differing ranges of magnification changes the picture just slightly. The most pleasing view is at 180X. Here we see an egg-shaped elliptical… evenly lighted, but there is a certain amount of degeneration at the edges… a sense that the light is being eroded away. Several field stars are also visible. A chain of three varying magnitudes to one side, and an elongated rectangular structure to the other.

Ready to rock on? Then let’s head toward a particularly difficult study…

IC2574:

IC2574 is next. Welcome only to large aperture telescopes! Once again, a faint, elongated, lumpy bar of light. This one shows “lobes” of concentration at either end of it’s structure. Not only does this one appear as “lumpy”… but there are a great many field stars that accompany it… like very precise open clusters! They are vague… and when the dob presents you with vague light in the presence of pinpoint stars, we would venture to say that this galaxy is accompanied by some nebulosity.

Right? Wrong? It’s a study… and we’re not through yet. So let’s head on back to our galaxy hunt, and see what else we can find. Another faint member of this group stretches across the border into Camelopardis. It is also a rather difficult study… But that’s why we’ve brought along the power of aperture.

NGC2366:

Between apparent size and surface brightness, the NGC2366 is best left to the larger scope. Detectable as low as 48X as a tiny, grainy bar of light, the best view comes at 170X. At this magnification, the NGC2366 takes on structure. Several areas of light concentration are seen, making it appear as though it has three centers. Adding the barlow and increasing to 340X pulls the picture in much closer, losing hard edge clarity, but reveals at one end, a notch occurs in the galaxy… Much like a crescent wrench. Opposite of this “notch” is also what may either be a small open cluster, or perhaps a bit of wayward galactic material. Going back to 170X is much more comfortable, and the lumpy figure of the NGC2366 most definitely has earned its’ classification as an “irregular” galaxy!.

NGC2403:

On to our last study, the NGC2403… This one is definitely a “all scopes” kinda’ galaxy!

In the 80mm there is nothing diffuse about this galaxy. Orienting northwest to southeast, it displays a well-developed northwest spiral extension and surprisingly little to the southeast. (Giving NGC2403 a very “cometlike” appearance.) This baby is definitely overdeveloped. No starlike core, just a general brightening toward the center. Bright stars flanking it complicate the view. It’s not hard to be both baffled and impressed by this bright galaxy way out in the reaches of Camelopardis.

Easily found and recognizable in the 114mm at 17mm as a spiral, the little scope pulls out a stellar core and definately sense of fading toward the frontiers.

Moving up to 150mm, we find that although NGC2403 fails to rival Bode’s Galaxies in terms of brightness and structure, it makes a good run for it. The galaxy is large, conspicuous and possesses a well-defined northern frontier, starlike core and extended core region. It also presents mostly edge-on (cigar-shaped) and shows well even under marginal 5.0 ULM skies.

At 70x, two faint spiral extensions are possible, with the western extension more obvious than the east. This gives the sense of the core region being offset in that direction. At 120x, a tiny blue nucleus can just be held with slight aversion. Complicating the view of this galaxy are a series of bright 7th and 8th magnitude stars flanking it along the southern frontier.

314mm time? Oh, yeah… Now here is some superior structure! Mottling begins even with as little magnification as 60X. Adequately large enough to be studied at lower magnifications, we find the view at 90X the most pleasing. Concentrated, egg-shaped nucleus… one soft “horseshoe” of a dark dust lane, and hints of globular clusters that cry out for more. Comply? Of course. Let’s set 170X on it… We have what appears to be globular structure in a very “open” looking arm. Not only here, but several knots exist throughout the NGC2403. And yet again, we “make out” something that looks like a small, attendant open cluster. No nearby bright stars at magnification as markers, the field is nothing more than some fine chains… But who cares? Cuz’ this is one fine galaxy!!

Parting Thoughts:

And so we have journeyed eight million light-years across the night together. And still I would stay with you, Traveller. For a hundred billion more. “The Bear that sees star setting after star… In the blue brine, descends not to the deep.” The stars, the night, and the far flung universes awaits you …

My many thanks to Karel Teuwen and Deitmar Hager, F.R.A.S. of Northern Galactic for their outstanding images and I would like to gratefully acknowledge Jeff Barbour for being a major contributor to both the studies and writing that went into this article. It’s nice to be able share the view through an 80mm refractor and 150mm SCT from 3,000 miles away!

Weekend SkyWatcher’s Forecast: January 30 – February 1, 2009

Greetings, fellow SkyWatchers! The Moon is back again, but what a terrific target for winter studies. Why not get out your binoculars and telescopes as we take a look at strange and unusual places like the Serpent Sea, the Marsh of Sleep and the Lakes of Time, Death and Dreams? If you haven’t wished upon a star lately, then there’s a serious reason to take a look at Sirius this weekend! Step outside in the dark with me where we’ll explore a little history, a little mystery, and just plain have us some fun…

Friday, January 30, 2009 – Tonight’s early evening Moon is high enough to warrant study. During the last lunar cycle, we reviewed maria large enough to be seen unaided, but many more can be revealed telescopically. Magnify the Crisium region and let’s look around. Along the eastern side near the lunar limb is Mare Marginis, whose position between the nearside and farside will never allow us to see more than a thin gray line. Thanks to the lunar orbiters, we know it has an irregular border and shallow lava fill, which lead scientists to believe Marginus wasn’t created from an impact. Located southeast is Mare Undarum , the ‘‘Sea of Waves.’’ This highly elevated part of the Crisium basin is about the size of Massachusetts, and it probably filled with lava around the time of the Imbrium impact. Northeast, and separated by a mountain range, is Mare Anguis, or the ‘‘Serpent Sea.’’ This Vermont-sized area of lunar landscape formed differently and may be home to a vast number of lava tubes.

crisium_region

Now look to Crisium’s northwest for a new feature, Lacus Bonitatis , or the ‘‘Lake of Goodness.’’ With features similar to those of maria, this small, irregularly shaped area has as much ‘‘coastline’’ as the Black Sea! Further south is Palus Somni, the ‘‘Marsh of Sleep.’’ This curious feature is an upland area. Relatively flat—but very uneven—its high albedo (surface reflectivity) makes it a rewarding study. Last on tonight’s tour is Sinus Concordiae , the ‘‘Bay of Harmony.’’ Essentially part of the maria that spawned it, this inlet leads toward higher ground. Concordiae’s small bay is roughly the size of Pedro Bank in Jamaica. Like its earthly counterpart, it may have mountain peaks that are just barely covered – but by lava flow, not seawater. Be sure to list your evening’s observations in your lunar notes. We’ll return in the months ahead here for more!

‘‘Everything has a natural explanation. The moon is not a god, but a great rock.’’ — Anaxagoras (475 BC)

hamSaturday, January 31, 2009 – What a busy date in astronomy history! In 1958 the United States. launched its first satellite – Explorer 1 – which discovered the bands of radiation now referred to as the Van Allen Belts . In 1961 the Mercury-Redstone 2 launched, carrying Ham the chimpanzee to fame. Cabin pressure failed during the suborbital flight, but inside his pressure suit, Ham remained safe and performed his tasks with a reaction time only a half second slower than on the ground, proving primates could function in space! (And a few years later, astronauts started drinking and shooting at each other, proving that humans could function like primates.) Ham lived for another 17 years, and the celebrated chimp gave many performances – even guest starring in movies!

Luna 9 was launched in 1962 and 72 hours after its launch became the first craft to successfully touch down on the Moon and broadcast television from Oceanus Procellarum . Even Apollo 14 was Luna-bound today in 1971! Alvan Graham Clark , Jr, made history at the eyepiece on this date in 1862. While watching Sirius and testing an 18″ refractor his family built, Clark uncovered the intense star’s faint companion – Sirius B. Friedrich Bessel had proposed its existence back in 1844, but this was the first visual confirmation.

sirius_chumack

Try your own hand at the ‘‘Scorching One.’’ Alpha Canis Majoris has an amazing magnitude of -1.42. Next to Alpha Centauri , 8.7 light-year distant Sirius is the closest visual star, but it’s not standing still. Part of the Ursa Major moving stream, Sirius has changed position by one and half times the apparent width of the Moon in just 2,000 years! Telescopically, this main-sequence gem is dazzling white, tinged with blue and diffracts a rainbow of colors. For many of us, beautiful iridescence is all we’ll ever see, but a small telescope (114-150mm) under perfectly steady skies will reveal the secretive companion. In 20 years it will reach maximum separation of 11.500, so keep watching to Sirius’ southeast when you observe – perhaps you’ll spot B!

berknerSunday, February 1, 2009 – On this day we celebrate the 1905 birth of Lloyd Berkner, the first person to measure Earth’s ionosphere. His work with radar led to an understanding of radio wave propagation. He also served as administrator at Green Bank National Radio Astronomy Observatory. For his achievements in space science, NASA awarded Berkner the Distinguished Public Service Medal.

The broad crescent Moon dominates the early evening sky. Tonight we’ll explore new features as we start in the lunar north with Mare Humboldtianum spanning 350 kilometers, this inconspicuous multi-ringed feature depends on libration for best views.

hope

Further south along the limb is Lacus Spei (the Lake of Hope), a diminutive feature so small it could be crossed at walking speed in 10 hours! West of Humboldtianum and Spei is a pair of lighter areas devoid of features— Lacus Temporis (the Lake of Time). These two small overlapping basins were filled by the same lava flow, thus forming this small mare. How long to walk across Temporis? Twice as much ‘‘Time’’ as ‘‘Hope’’!

Relocate Mare Frigoris (the Cold Sea) and look south along the terminator for Lacus Mortis (the Lake of Death) and its counterpart Lacus Somniorum (the Lake of Dreams). Is there a connection here? You betcha! These two basin areas were filled from a basaltic flow, which might have united them, but a small mountain range kept them apart.

‘‘There is something haunting in the light of the Moon; it has all the dispassionateness of a disembodied soul, and something of its inconceivable mystery.’’ –Joseph Conrad

By the way, we believe Werner Heisenberg died on this day in 1976, but no one is certain.

Until next week? Ask for the Moon… But keep on reaching for the stars!

This week’s awesome images are: The Crisium Region (credit—Greg Konkel), Ham
the Chimpanzee (credit—NASA), Sirius (credit—John Chumack), Lloyd Berkner (public image) and Hope, Time, Death, and Dreams (credit—Greg Konkel). We thank you so much for sharing your splendid talents with us!