With Love from Universe Today

This image from the Mars Global Surveyor shows a heart-shaped crate amid other 'box of chocolates' shapes. Credit: Malin Space Science Systems

[/caption]

Here’s an image from the Mars Global Surveyor that looks like a box of chocolates, with different shaped landforms, including a heart-shaped one. We’d like to take this opportunity on Valentine’s Day to express our love and appreciation to our readers, for allowing us to share the latest in space and astronomy news with you. And it’s true, you never know what you’re going to get; what news story is going to break or what amazing images we’ll share. But our heartfelt thanks for your readership, your comments, and for your regular visits to our website.

You can see the full image MGS Mars image here — which also includes some other heart-shaped craters and other unique landforms — and below is a rose-shaped pair of interacting galaxies, just for you.


A pair of interacting galaxies called Arp 273. The larger of the spiral galaxies, known as UGC 1810, has a disk that is distorted into a rose-like shape by the gravitational tidal pull of the companion galaxy below it, known as UGC 1813. This image is a composite of Hubble Wide Field Camera 3 data taken on December 17, 2010, with three separate filters that allow a broad range of wavelengths covering the ultraviolet, blue, and red portions of the spectrum. Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA)

Kuiper’s Color Close-Up

[/caption]

The pale-orange coloration around the 39-mile (62-km) -wide Kuiper crater on Mercury is evident in this image, a color composition made from targeted images acquired by NASA’s MESSENGER spacecraft on September 2, 2011.

The color may be due to compositional differences in the material that was ejected during the impact that formed the crater.

Kuiper crater is named after Gerard Kuiper, a Dutch-American astronomer who was a member of the Mariner 10 team. He is regarded by many as the father of modern planetary science.

“Kuiper studied the planets… at a time when they were scarcely of interest to other astronomers. But with new telescopes and instrumentation, he showed that there were great things to discover, which is as true today as it was then.”

– Dr. Bill McKinnon, Professor of Planetary Sciences at Washington University in St. Louis

Airless worlds like Mercury are constantly bombarded with micrometeoroids and charged solar particles in an effect known as “space weathering”. Craters with bright rays — like Kuiper — are thought to be relatively young because they have had less exposure to space weathering than craters without such rays.

See the original image release on the MESSENGER site here.

Image credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

Space Timelapse: Temporal Distortion by Randy Halverson

Randy Halverson has released a new timelapse video of the night sky shot at the White River in central South Dakota during September and October 2011. There are also some shots from Arches National Park in Utah, and Canyon of the Ancients area of Colorado during June 2011.

And if you’re really interested in Randy’s timelapse videos, you can purchase an extended cut version here.

A Swirling Oasis of Life

A 150-km (93-mile) - wide eddy in the southern Indian Ocean. (NASA/Terra-MODIS)

[/caption]

A serpentine eddy swirls in the southern Indian Ocean several hundred kilometers off the coast of South Africa in this natural-color image, acquired by NASA’s Terra satellite on December 26, 2011.

The blue color is created by blooms of phytoplankton, fertilized by the nutrient-rich deep water drawn up by the 150-km-wide eddy.

The counter-clockwise anticyclonic structure of the eddy may resemble a hurricane or typhoon, but unlike those violent storms eddies bring nourishment rather than destruction.

“Eddies are the internal weather of the sea,” said Dennis McGillicuddy, an oceanographer at the Woods Hole Oceanographic Institution in Massachusetts.

And also unlike atmospheric storms, ocean eddies can last for months, even up to a year. The largest ones can contain up to 1,200 cubic miles (5,000 cubic kilometers) of water.

The nutrient-drawing power of eddies can supply the relatively barren waters of the open ocean with nutrients, creating “oases in the oceanic desert,” according to McGillicuddy.

Read more about the WHOI study of eddies here.

The eddy imaged here likely peeled off from the Agulhas Current, which flows along the southeastern coast of Africa and around the tip of South Africa. Agulhas eddies tend to be among the largest in the world.

The image below shows the eddy in context with the surrounding area:

Eddy off the coast of South Africa. December 26, 2011. (NASA/Terra-MODIS)

MODIS (or Moderate Resolution Imaging Spectroradiometer) is a key instrument aboard NASA’s Terra (EOS AM) satellite. Terra MODIS views the entire Earth’s surface every 1 to 2 days, acquiring data in 36 spectral bands. These data improve our understanding of global dynamics and processes occurring on the land, in the ocean, and in the lower atmosphere.

Read more on NASA’s Earth Observatory site here.

NASA Earth Observatory image created by Jesse Allen, using data obtained from the Land Atmosphere Near real-time Capability for EOS (LANCE).

Tough Cuts for Planetary Science In NASA’s 2013 Budget Proposal

The cover of NASA's 2013 Budget Propsal

[/caption]

As expected, NASA’s 2013 budget request calls for an overall decrease in funding, with especially tough cuts to planetary science and education. The budget proposal of $17.7 billion is a decrease of 0.3% or $59 million from the 2012 budget and puts NASA at its lowest level of funding in four years. President Obama’s budget request for NASA includes a flat budget through 2017, with no out-year growth even for inflation.

Using the phrase “very difficult fiscal times” countless times, NASA Administrator Charles Bolden tried to put an upbeat spin on the bad news during a press conference on the budget on February 13.

“We are having to make tough decisions because these are very difficult fiscal times,” he said. “However this is a stable budget that allows us to support a diverse portfolio and continues the work we started last year.”

Overview of NASA's budget request.

While the proposal includes continued funding for the agency’s human space programs —including $4 billion for space operations and $4 billion for human activities for the International Space Station, nearly $3 billion for the heavy-lift Space Launch System and Orion MPCV, along with $830 million for the commercial crew and cargo — planetary science took a huge hit, especially the Mars science program, considered by many to be the “crown jewel” of NASA’s planetary program.

Mars exploration would be cut by a whopping 38.5 percent, going from $587 million this year to $361 million in 2013. As predicted NASA has pulled out of the Exo-Mars collaboration with the European Space Agency, for dual Mars missions in 2016 and 2018, with no future flagship missions even in the offing, beyond the $2.5 billion Mars Science Laboratory rover, now on its way to Mars.

“Flagship missions are essential for the nation,” said Bolden when asked about what could be expected for future missions, “but we just could not afford to do another one right now given the budget an these difficult fiscal times.”

The Science Mission Directorate budget, which includes planetary exploration, astronomy and Earth environment monitoring, would receive $4.911 billion in 2013 instead of the $5.07 billion it received in 2012.

The NASA education budget was cut $36 million, down from $136 million in 2012 to $100 million in 2013.

The only bright spot for potential future planetary missions is that a small amount of funding was included in the 2013 budget to look into the re-start of making Plutonium-238, the power source for outer-planet missions. However, the cut to exploration missions means there is no funding for any new missions to potentially use the power source, such as a spacecraft to study the moons of Jupiter or a Uranus orbiter, two projects that were a high priority in the Decadal Survey released by the science community in 2011. The reduction might also affect ongoing missions such as the remaining Mars Exploration Rover, Opportunity, the Mars Reconnaissance Orbiter, and the Cassini spacecraft orbiting Saturn. Those missions will be reviewed by NASA later this year.

This cut to planetary science has already been decried by many including the Planetary Society, which said the new proposal pushes planetary science “to the brink.”

“The priorities reflected in this budget would take us down the wrong path,” said Bill Nye, CEO of the Planetary Society. “Science is the part of NASA that’s actually conducting interesting and scientifically important missions. Spacecraft sent to Mars, Saturn, Mercury, the Moon, comets, and asteroids have been making incredible discoveries, with more to come from recent launches to Jupiter, the Moon, and Mars. The country needs more of these robotic space exploration missions, not less.”

The James Webb telescope, notorious for its cost overruns and delays, would get $627.6 million for 2013, up from $518.6 million in 2012 and $476.8 million in 2011. Many see JWST as responsible for draining money away from planetary science. JWST won’t launch until 2018 at the earliest.

Bolden said since NASA “replanned” JWST, they receive an accounting each month and so far the mission has been on-budget and on-time as far as meeting goals. “Through diligence and really paying attention to the budget and timeline, I think we can get this mission done,” Bolden said.

Two other bright spots in the budget was that funding for Earth observation satellites would be the same as 2012, at about $1.8 billion and the Space Technology program would get $699 million, up from the $569 million Congress approved for 2012.

As far as the human side, most officials were pleased with the numbers. The commercial Space Federation put out a statement saying that the “Commercial Crew program will enable American providers to free us from dependence on the Russian Soyuz for access to the International Space Station, a facility that American taxpayers have invested nearly $100 billion to build. NASA currently pays Russia more than $60 million per seat to access the Space Station, a price that is expected to rise above $70 million in the next few years.”

Executive Director Alex Saltman added, “With the Shuttle fleet retiring last year, Americans look forward to the day when we return our astronauts to space on American rockets. We are pleased that the Administration is requesting the funding necessary to make that happen. Now it’s Congress’s job to help put America back in space.”

As bad as the budget seems, according to some sources, things could have been much worse. The White House Office of Management and Budget had earlier asked NASA to submitted budget proposals at a 5, 10 or 15 percent cut. They may have been lucky to get only a .3% cut.

Here’s NASA’s upbeat video about the new budget:

For more information:
NASAs 2013 Budget webpage
NASA 2013 Budget Request Estimates(pdf)
2013 Budget Presentation (pdf)

‘Stealth Merger’ of Dwarf Galaxies Seen in New Images

[/caption]

Space may be vast, but accidents can still happen, like when galaxies “collide,” usually resulting in the smaller one having its stars scattered by the larger one. New high-resolution images of two dwarf galaxies merging together have now been obtained by astronomers, providing a more detailed look at something which could only barely be seen before. While the larger galaxy of the two, NGC 4449, is easily visible, its smaller companion was little more than just a faint smudge until now.

The new study comes from an international team of astronomers led by David Martínez-Delgado of the Max Planck Institute for Astronomy in Heidelberg. Their paper will be published in an upcoming issue of Astrophysical Journal Letters.

When the galaxies collide, the smaller one essentially gets torn apart by the larger one. As explained by Aaron Romanowsky, an astronomer at the University of California, Santa Cruz (UCSC), “This is how galaxies grow. You can see the smaller galaxy coming in and getting shredded, eventually leaving its stars scattered through the halo of the host galaxy.”

The remains of the smaller galaxy appear as a dense stream of stars in the outer regions of the larger one. It was initially seen as just a faint smudge in digitized photographic plates from the Digitized Sky Survey project. Because this smaller galaxy, or what’s left of it, is so difficult to see, the merging process has been referred to as a “stealth merger.”

The new images, taken by the Black Bird Observatory and Subaru Telescope, show the merger in such detail that individual stars can be seen. “I don’t think I’d ever seen a picture of a galaxy merger where you can see the individual stars. It’s really an impressive image,” said Romanowsky.

NGC 4449 is about 12.5 million light-years from Earth and is part of a group of galaxies found in the constellation Canes Venatici. It is similar to one of our own Milky Way’s satellite galaxies, the Large Magellanic Cloud.

While larger galaxies merging with other large galaxies are commonly seen, it has been more difficult to find examples of smaller galaxies doing the same thing. Romanowsky continues: “We should see the same things at smaller scales, with small galaxies eating smaller ones and so on. Now we have this beautiful image of a dwarf galaxy consuming a smaller dwarf.”

In addition, the companion galaxy was also independently discovered by astronomers at the University of California, Los Angeles (UCLA). Their own paper will be published in the February 9, 2012  issue of Nature.

The paper is available here. See also the Subaru Telescope press release here.

Scientists Find New Clues About the Interiors of ‘Super-Earth’ Exoplanets

Artist's conception of "Super-Earth" exoplanet Kepler-22b, which is about 2.4 times larger than Earth. Credit: NASA.

[/caption]

As we learned in science class in school, the Earth has a molten interior (the outer core) deep beneath its mantle and crust. The temperatures and pressures are increasingly extreme, the farther down you go. The liquid magmas can “melt” into different types, a process referred to as pressure-induced liquid-liquid phase separation. Graphite can turn into diamond under similar extreme pressures. Now, new research is showing that a similar process could take place inside “Super-Earth” exoplanets, rocky worlds larger than Earth, where a molten magnesium silicate interior would likely be transformed into a denser state as well.

Simply put, the magnesium silicate undergoes what’s called a phase change while in the liquid state. The scientists were able to replicate the extreme temperatures and pressures that would be found inside those exoplanets by using the Janus laser at the Lawrence Livermore National Laboratory and OMEGA at the University of Rochester. A powerful laser pulse generated a shock wave as it passed through the samples. Changes in the velocity of the shock and the temperature of the sample indicated when a phase change was detected.

Interestingly, the different liquid states of the silicate magma in the experiments showed different physical properties under high pressures and temperatures, even though they were still of the same composition. Due to varying densities, the different liquid states tended to want to separate, much like oil and water.

The findings should help to better understand the interiors of terrestrial-type exoplanets, whether they are “Super-Earths” or smaller, like Earth or Mars.

Lead scientist Dylan Spaulding, at the University of California, Berkeley, states: “Phase changes between different types of melts have not been taken into account in planetary evolution models. But they could have played an important role during Earth’s formation and may indicate that extra-solar ‘Super-Earth’ planets are structured differently from Earth.”

The paper was published in the February 10, 2012 edition of the journal Physical Review Letters.

Flawless Maiden Launch for Europe’s New Vega Rocket

On 13 February 2012, the first Vega lifted off on its maiden flight from Europe's South American Spaceport in French Guiana and deployed 9 science satellites. Credits: ESA - S. Corvaja

[/caption]

Europe scored a major space success with today’s (Feb. 13) flawless maiden launch of the brand new Vega rocket from Europe’s Spaceport in Kourou, French Guiana.

The four stage Vega lifted off on the VV01 flight at 5:00 a.m. EST (10:00 GMT, 11:00 CET, 07:00 local time) from a new launch pad in South America, conducted a perfectly executed qualification flight and deployed 9 science satellites into Earth orbit.

Vega is a small rocket launcher designed to loft science and Earth observation satellites.

Liftoff of Maiden Vega Rocket on Feb. 13, 2012 on VV01 flight from ESA Spaceport at French Guiana. Credit: ESA

The payload consists of two Italian satellites – ASI’s LARES laser relativity satellite and the University of Bologna’s ALMASat-1 – as well as seven picosatellites provided by European universities: [email protected] (Italy), Goliat (Romania), MaSat-1 (Hungary), PW-Sat (Poland), Robusta (France), UniCubeSat GG (Italy) and Xatcobeo (Spain).

On 13 February 2012, the first Vega lifted off on its maiden flight from Europe's Spaceport in French Guiana. Credits: ESA - S. Corvaja

Three of these cubesats were the first ever satellites to be built by Poland, Hungary and Romania. They were constructed by University students who were given a once in a lifetime opportunity by ESA to get practical experience and launch their satellites for free since this was Vega’s first flight.

The 30 meter tall Vega has been been under development for 9 years by the European Space Agency (ESA) and its partners, the Italian Space Agency (ASI), French Space Agency (CNES). Seven Member States contributed to the program including Belgium, France, Italy, the Netherlands, Spain, Sweden and Switzerland as well as industry.

Vega's first launch, dubbed VV01, occurred on Feb 13, 2012 from Europe's Spaceport in Kourou, French Guiana. It carried nine satellites into orbit: LARES, ALMASat-1 and seven Cubesats. Credits: ESA - J. Huart
ESA can now boast a family of three booster rockets that can service the full range of satellites from small to medium to heavy weight at their rapidly expanding South American Spaceport at the Guiana Space Center.

Vega joins Europe’s stable of launchers including the venerable Ariane V heavy lifter rocket family and the newly inaugurated medium class Russian built Soyuz booster and provides ESA with an enormous commercial leap in the satellite launching arena.

“In a little more than three months, Europe has increased the number of launchers it operates from one to three, widening significantly the range of launch services offered by the European operator Arianespace. There is not anymore one single European satellite which cannot be launched by a European launcher service,” said Jean-Jacques Dordain, Director General of ESA.

“It is a great day for ESA, its Member States, in particularly Italy where Vega was born, for European industry and for Arianespace.”

Dordain noted that an additional 200 workers have been hired in Guiana to meet the needs of Europe’s burgeoning space programs. Whereas budget cutbacks are forcing NASA and its contractors to lay off tens of thousands of people as a result of fallout from the global economic recession.

LARES, ALMASat-1 and CubeSats satellites integration for 1st Vega launch.
Credits: ESA, CNES, Arianespace, Optique Video du CSG, P. Baudon

ESA has already signed commercial contracts for future Vega launches and 5 more Vega rockets are already in production.

Vega’s light launch capacity accommodates a wide range of satellites – from 300 kg to 2500 kg – into a wide variety of orbits, from equatorial to Sun-synchronous.

“Today is a moment of pride for Europe as well as those around 1000 individuals who have been involved in developing the world’s most modern and competitive launcher system for small satellites,” said Antonio Fabrizi, ESA’s Director of Launchers.

ESA’s new Vega rocket fully assembled on its launch pad at Europe’s Spaceport in Kourou, French Guiana.

New Comet Discovered by Amateur Astronomer

Image of Comet C/2012 C2 (Bruenjes) made from ten 60 sec. exposures on Feb. 11, 2012. (Fred Bruenjes)

[/caption]

“Friday, February 10th 2012 just felt like the perfect night for a comet to be discovered by an amateur astronomer,” writes Fred Bruenjes on his astronomy blog. And, this past Friday night, that’s exactly what Fred did.

Here’s how he did it:

Using custom-written software to operate a 14″ Meade LX200GPS telescope in his self-built observatory in Warrensburg, Missouri, Fred set his system up to capture images of the sky on that cold evening, not allowing himself to be chased inside by the low temperatures or the bright, rising moon. After some technical difficulties with his dSLR, Fred managed to acquire some quality images. While making a cursory look through the blink data, Fred was surprised to spot a faint burry object visible moving across three frames. A check of online databases of known objects brought up no positive hits — this was something that hadn’t been seen before.

Raw-color discovery image. (Fred Bruenjes)

Fred describes the “eureka” moment on his blog:

A check of known objects in the region had a lot of results in the area, but all were moving eastward while my fuzzy was moving westward. Rocks don’t make U-turns. This was really getting exciting. I had Jen, my better half, an accomplished astro imager, take a look at the images and before I could point out the faint smudge she exclaimed “That’s a comet!”

Still, Fred notes, “it wasn’t a slam-dunk.” The images were faint and there could have been other causes of blurry spots in digital images. But a check of the raw color data revealed a greenish coloration to the object’s glow, which is indicative of cyanogen and carbon emission — typical hallmarks of comets. “Very encouraging,” Fred added.

Another night’s observation was needed. If it was a comet, it would appear again along its expected trajectory. Of course, with an unidentified comet there would be no known orbit, so Fred had to manually extrapolate its position. When he trained his telescope onto his calculated coordinates the following evening and began taking images, there it was… the same faint, fuzzy green blur from the previous night, slowly appearing in the darkening sky right where it should be.

“Oh. Wow. It was dead nuts at where it was supposed to be,” Fred writes. “Wow. This thing is for real! It’s at about this time that it begins to sink in that a lifelong quest has just been fulfilled. I just crossed another thing off the bucket list!”

Fred spent the next hour gathering images to send in to the IAU’s Minor Planet Center, in the hopes of having the object cataloged so that others could locate and observe it. He didn’t have to wait long; within five minutes the object was listed on the Near-Earth Object Confirmation Page, and dubbed C/2012 C2 (Bruenjes), in honor of its discoverer.

Now that’s just got to feel good.

Comet Bruenjes is an NEO currently about 0.555 AU away from Earth. Its exact size and orbital period isn’t known, and it may even be a returning comet or piece from a larger one… the official report isn’t out yet. It appears to have a fairly inclined orbit relative to the ecliptic, based on the current diagram created by JPL’s Small-Body Database.

Currently plotted orbit of C/2012 C2 (Bruenjes) (NASA/JPL)

The comet’s total magnitude is 16.6, so it is dim and not visible to the naked eye. Fred told Universe Today in an email: “it’s in the constellation Aries, about six degrees north of Jupiter. Just after sunset in the Northern hemisphere it’s high in the southwest, nearly overhead.”

Stay tuned for more updated information on this newly-discovered member of our solar system. And congratulations to Fred Bruenjes, comet-hunter extraordinaire!

Read Fred’s full story on his astronomy site here.

Images © 2012 Manfred Bruenjes. All rights reserved. Used with permission.

 

Far Above the World

Astronaut Bruce McCandless untethered above the Earth on Feb. 12, 1984. (NASA)
Astronaut Bruce McCandless untethered above the Earth on Feb. 12, 1984. (NASA)

[/caption]

28 years ago today, NASA astronaut Bruce McCandless left the relative safety of Challenger’s payload bay and went untethered into orbit around Earth, venturing farther than anyone ever before.

The historic photo above was taken when McCandless was 320 feet from the orbiter — about the length of an American football field, or just shy of the width of the International Space Station.

The free-flying endeavor was possible because of McCandless’ nitrogen-powered jet-propelled backpack, called a Manned Maneuvering Unit (MMU). It attached to the space suit’s life-support system and was operated by hand controls, allowing untethered access to otherwise inaccessible areas of the orbiter and was also used in the deployment, service and retrieval of satellites.

Astronaut Dale Gardner using the MMU during STS-51A in Nov. 1984 to travel to the Westar VI satellite. (NASA)

The MMU used a non-contaminating nitrogen propellant that could be recharged in the orbiter. It weighed 140 kg (308 lbs) and has a built-in 35mm camera.

After the Challenger disaster, the MMU was deemed too risky and was discontinued. But for a brief period of time in the early ’80s, humans had the means for really “soaring to new heights”.

Image credits: NASA