Weekly SkyWatcher’s Forecast – March 19-25, 2012

NGC 2539 - Credit: Palomar Observatory Courtesy of Caltech

[/caption]

Greetings, fellow SkyWatchers! The week starts off with new Moon and the perfect opportunity to do a Messier Marathon. The planets continue to dazzle as we not only celebrate the Vernal Equinox, but the March Geminid meteor shower as well! If that doesn’t get your pulsar racing – nothing will. It’s time to get out your binoculars and telescopes and meet me in the backyard!

Monday, March 19 – Right now the Moon is between the Earth and the Sun, and you know what that means…New Moon! Tonight we’ll start in northern Puppis and collect three more Herschel studies as we begin at Alpha Monoceros and drop about four fingerwidths southeast to 19 Puppis.

NGC 2539 (Right Ascension: 8 : 10.7 – Declination: -12 : 50) averages around 6th magnitude and is a great catch for binoculars as an elongated hazy patch with 19 Puppis on the south side. Telescopes will begin resolution on its 65 compressed members, as well as split 19 Puppis – a wide triple. Shift about 5 degrees southwest and you find NGC 2479 (Right Ascension: 7 : 55.1 – Declination: -17 : 43) directly between two finderscope stars. At magnitude 9.6 it is telescopic only and will show as a smallish area of faint stars at low power. Head another degree or so southeast and you’ll encounter NGC 2509 (Right Ascension: 8 : 00.7 – Declination: -19 : 04) – a fairly large collection of around 40 stars that can be spotted in binoculars and small telescopes.

Tuesday, March 20 – Today is Vernal Equinox, one of the two times of the year that day and night become equal in length. From this point forward, the days will become longer – and our astronomy nights shorter! To the ancients, this was a time a renewal and planting – led by the goddess Eostre. As legend has it, she saved a bird whose wings were frozen from the winter’s cold, turning it into a hare which could also lay eggs. What a way to usher in the northern spring!

With the Moon still out of the picture, let’s finish our study of the Herschel objects in Puppis. Only three remain, and we’ll begin by dropping south-southeast of Rho and center the finder on a small collection of stars to locate NGC 2489 (Right Ascension: 7 : 56.2 – Declination: -30 : 04). At magnitude 7, this bright collection is worthy of binoculars, but only the small patch of stars in the center is the cluster. Under aperture and magnification you’ll find it to be a loose collection of around two dozen stars formed in interesting chains.

The next are a north-south oriented pair around 4 degrees due east of NGC 2489. You’ll find the northernmost – NGC 2571 (Right Ascension: 8 : 18.9 – Declination: -29 : 44) – at the northeast corner of a small finderscope or binocular triangle of faint stars. At magnitude 7, it will show as a fairly bright hazy spot with a few stars beginning to resolve with around 30 mixed magnitude members revealed to aperture. Less than a degree south is NGC 2567 (Right Ascension: 8 : 18.6 – Declination: -30 : 38). At around a half magnitude less in brightness, this rich open cluster has around 50 members to offer the larger telescope, which are arranged in loops and chains.

Congratulations on completing these challenging objects!

Are you up for another challenge? Then test your ability to judge magnitude as Mars has now dimmed to approximately -1.0. Does it look slightly different in size and brightness than it did a week or so ago? Keep watching!

Wednesday, March 21 – Take your telescopes or binoculars out tonight to look just north of Xi Puppis for a celebration of starlight known as M93 (Right Ascension: 7 : 44.6 – Declination: -23 : 52). Discovered in March of 1781 by Charles Messier, this bright open cluster is a rich concentration of various magnitudes that will simply explode in sprays of stellar fireworks in the eyepiece of a large telescope. Spanning 18 light-years of space and residing more than 3400 light-years away, it contains not only blue giants, but lovely golds as well. Jewels in the night…

Thursday, March 22 – Today in 1799 Friedrich Argelander was born. He was a compiler of star catalogues, studied variable stars and created the first international astronomical organization.

Tonight let’s celebrate no Moon and have a look at an object from an alternative catalog that was written by Lacaille, and which is about two fingerwidths south of Eta Canis Majoris.

Also known as Collinder 140, Lacaille’s 1751 catalog II.2 “nebulous star cluster” is a real beauty for binoculars and very low power in telescopes. More than 50% larger than the Full Moon, it contains around 30 stars and may be as far as 1000 light-years away. When re-cataloged by Collinder in 1931, its age was determined to be around 22 million years. While Lacaille noted it as nebulous, he was using a 15mm aperture reflector, and it is doubtful that he was able to fully resolve this splendid object. For telescope users, be sure to look for easy double Dunlop 47 in the same field.

Now, kick back and enjoy a spring evening with two meteor showers. In the northern hemisphere, look for the Camelopardalids. They have no definite peak, and a screaming fall rate of only one per hour. While that’s not much, at least they are the slowest meteors – entering our atmosphere at speeds of only 7 kilometers per second!

Far more interesting to both hemispheres will be the March Geminids which peak tonight. They were first discovered and recorded in 1973 and then confirmed in 1975. With a much faster fall rate of about 40 per hour, these slower than normal meteors will be fun to watch! When you see a bright streak, trace it back to its point of origin. Did you see a Camelopardalid, or a March Geminid?

Friday, March 23 – Today in 1840, the first photograph of the Moon was taken. The daguerreotype was exposed by American astronomer and medical doctor J. W. Draper. Draper’s fascination with chemical responses to light also led him to another first – a photo of the Orion Nebula.

Our target for tonight is an object that’s better suited for southern declinations – NGC 2451 (Right Ascension: 7 : 45.4 – Declination: -37 : 58). As both a Caldwell object (Collinder 161) and a southern skies binocular challenge, this colorful 2.8 magnitude cluster was probably discovered by Hodierna. Consisting of about 40 stars, its age is believed to be around 36 million years. It is very close to us at a distance of only 850 light-years. Take the time to closely study this object – for it is believed that due to the thinness of the galactic disk in this region, we are seeing two clusters superimposed on each other.

With the Moon out of the picture early, why not get caught up in a galaxy cluster study – Abell 426. Located just 2 degrees east of Algol in Perseus, this group of 233 galaxies spread over a region of several degrees of sky is easy enough to find – but difficult to observe. Spotting Abell galaxies in Perseus can be tough in smaller instruments, but those with large aperture scopes will find it worthy of time and attention.

At magnitude 11.6, NGC 1275 (Right Ascension: 3 : 19.8 – Declination: +41 : 31) is the brightest of the group and lies physically near the core of the cluster. Glimpsed in scopes as small as 150 mm aperture, NGC 1275 is a strong radio source and an active site of rapid star formation. Images of the galaxy show a strange blend of a perfect spiral being shattered by mottled turbulence. For this reason NGC 1275 is thought to be two galaxies in collision. Depending on seeing conditions and aperture, galaxy cluster Abell 426 may reveal anywhere from 10 to 24 small galaxies as faint as magnitude 15. The core of the cluster is more than 200 million light-years away, so it’s an achievement to spot even a few!

Saturday, March 24 – Today is the birthday of Walter Baade. Born in 1893, Baade was the first to resolve the Andromeda galaxy’s individual stars using the Hooker telescope during World War II blackout times, and he also developed the concept of stellar populations. He was the first to realize that there were two types of Cepheid variables, thereby refining the cosmic distance scale. He is also well known for discovering an area towards our galactic center which is relatively free of dust, now known as “Baade’s Window.”

Just after sunset, you really need to take a look out your western window for a really beautiful bit of scenery. As the sky darkens, look for the very tender crescent Moon lit with “Earthshine”. Above it you will see bright Jupiter. Above that you will see blazing Venus. And, if that’s not enough, just a little higher will bring you to the Pleiades! What a great way to start a weekend evening!

With the Moon so near the horizon, we have only a short time to view its features. Tonight let’s start with a central feature – Langrenus – and continue further south for crater Vendelinus. Spanning 92 by 100 miles and dropping 14,700 feet below the lunar surface, Vendelinus displays a partially dark floor with a west wall crest catching the brilliant light of an early sunrise. Notice also that its northeast wall is broken by a younger crater – Lame. Head’s up! It’s an Astronomical League challenge.

Once the Moon has set, revisit M46 in Puppis – along with its mysterious planetary nebula NGC 2438. Follow up with a visit to neighboring open cluster M47 – two degrees west-northwest. M47 may actually seem quite familiar to you already. Did you possibly encounter it when originally looking for M46? If so, then it’s also possible that you met up with 6.7 magnitude open cluster NGC 2423 (Right Ascension: 7 : 37.1 – Declination: -13 : 52), about a degree northeast of M47 and even dimmer 7.9 magnitude NGC 2414 (Right Ascension: 7 : 33.3 – Declination: -15 : 27 ) as well. That’s four open clusters and a planetary nebula all within four square arc-minutes of sky. That makes this a cluster of clusters!

Let’s return to study M47. Observers with binoculars or using a finderscope will notice how much brighter, and fewer, the stars of M47 are when compared to M46. This 12 light-year diameter compact cluster is only 1600 light-years away. Even as close as it is, not more than 50 member stars have been identified. M47 has about one tenth the stellar population of larger, denser, and three times more distant, M46.

Of historical interest, M47 was “discovered” three times: first by Giovanni Batista Hodierna in the mid-17th century, then by Charles Messier some 17 years later, and finally by William Herschel 14 years after that. How is it possible that such a bright and well-placed cluster needed “re-discovery?” Hodierna’s book of observations didn’t surface until 1984, and Messier gave the cluster’s declination the wrong sign, making its identification an enigma to later observers – because no such cluster could be found where Messier said it was!

Sunday, March 25 – Today in 1655, Titan – Saturn’s largest satellite – was discovered by Christian Huygens. He also discovered Saturn’s ring system during this same year. 350 years later, the probe named for Huygens stunned the world as it reached Titan and sent back information on this distant world. How about if we visit Saturn? You’ll find the creamy yellow planet located about a fistwidth northwest of bright, white Spica! Even a small telescope will reveal Titan, but remember… it orbits well outside the ring plane, so don’t mistake it for a background star! While you’re there, look closely around the ring edges for the smaller moons. A 4.5” telescope can easily show you three of them. How about the shadow the rings on the planet’s surface? Or how about the shadow of the planet on the rings? Is the Cassini division visible? If you have a larger telescope, look for other ring divisions as well. All are part and parcel of viewing incredible Saturn!

If you missed yesterday evening’s scenic line-up, don’t despair. Just after the Sun sets tonight – and above the western horizon – you’ll find the young Moon very closely paired with Jupiter. Keep traveling eastward (up) and you’ll encounter Venus. Continue east and the next stop is M45. Watch in the days ahead as the Moon sweeps by, continuing to provide us with a show! Need more? Then check out Leo and Mars! You’ll find a great triangulation of Regulus to the west, Mars to the east and Algieba to the north. If you didn’t know better, you’d almost swear the Lion swallowed the red planet.

Tonight let’s return to our previous studies of the Moon and revisit a challenging crater. Further south than Vendelinus, look for another large, mountain-walled plain named Furnerius, located not too far from the terminator. Although it has no central peak, its walls have been broken numerous times by many smaller impacts. Look at a rather large one just north of central on the crater floor. If skies are stable, power up and search for a rima extending from the northern edge. Keep in mind as you observe that our own Earth has been pummeled just as badly as its satellite.

On this day in 1951, 21 cm wavelength radiation from atomic hydrogen in the Milky Way was first detected. 1420 MHz H I studies continue to form the basis of a major part of modern radio astronomy. If you would like to have a look at a source of radio waves known as a pulsar, then aim your binoculars slightly more than a fistwidth east of bright Procyon. The first two bright stars you encounter will belong to the constellation of Hydrus and you will find pulsar CP0 834 just above the northernmost – Delta.

Unitl next week? May all your journeys be at light speed!

Astrophoto: Conjunction Symmetry by Rick Ellis

Multiple images of the Venus-Jupiter conjuction on Mar. 13, 2012 from Toronto, Canada. Credit: Rick Ellis.

[/caption]

It’s poetry in motion! Rick Ellis from Toronto, Canada created this 27 frame-composite of the conjunction between Venus and Jupiter on March 13, 2012, with 6 second exposures five minutes apart. Rick used a Canon A460, ISO 80.

Beautiful!

Check out Rick’s website for more poetry — seriously — and more images.

See our previous gallery of Venus-Jupiter conjunction images from around the world.

Want to get your astrophoto featured on Universe Today? Join our Flickr group, post in our Forum or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

Weekly SkyWatcher’s Forecast – March 12-18, 2012

Venus & Jupiter above Backyard Observatory - Credit: John Chumack

[/caption]

Greetings, fellow SkyWatchers! What an awesome display of planets! Please take the time to walk outdoors just after skydark – regardless of where you live – and enjoy the bright display of Venus and Jupiter! However, this isn’t the only planetary action going on this week… Mars and M96 pair up, as well as Uranus and the Moon. There’s even a Southern Hemisphere meteor shower to enjoy! Pretty exciting, huh? Join the party by getting out your binoculars or telescopes and meet me for more in the backyard…

Monday, March 12 – No. That’s not the “headlights” of a UFO on the western horizon tonight… It’s a very cool pairing of Venus and Jupiter! It’s not often you see the two visually brightest planets making a close visual pass at each other and tonight you’ll spot the inner planet to the south and the outer planet to the north. This would make a great photo opportunity! Why not consider adding something interesting to your picture like a scenic building, tree, or even a person? Watch in the days ahead as Jupiter appears to stay in the same spot at the same time, yet Venus will climb higher.

Tonight let’s return again to NGC 2362 and start at the cluster’s north-northeast corner to have a look at a single, unusual star – UW Canis Majoris. At magnitude 4.9, this super-giant spectroscopic binary is one of the most massive and luminous in our galaxy. Its two stars are separated by only 27 million kilometers (17 million miles) and revolve around each other at a frenzied pace – in less than four and a half days. This speed means the stars themselves are flattened and would appear to be almost egg-shaped. The primary itself is shedding material that’s being collected by the secondary star.

Now drop southwest of NGC 2362 for another open cluster – NGC 2354 (Right Ascension: 7 : 14.3 – Declination: -25 : 44). While at best this will appear as a small, hazy patch to binoculars, NGC 2354 is actually a rich galactic cluster containing around 60 metal-poor members. As aperture and magnification increase, the cluster shows two delightful circle-like structures of stars, similar to a figure 8. Be sure to make a note… You’ve captured another Herschel 400 object!

Tuesday, March 13 – On this day in 1781, Uranus was discovered by William Herschel. Also on this day, in 1855, Percival Lowell was born in Boston. Educated at Harvard, Lowell went on to found the observatory which bears his name in Flagstaff, Arizona, and spent a lifetime studying Mars. During the early morning hours, you can honor Lowell by seeing Mars yourself – it’s best viewed when as high a possible on the ecliptic. While there won’t be a great many details, think of how many strides have been made since Lowell’s time and how advanced our knowledge of Mars has become!

Tonight let’s hop about four fingerwidths east-northeast of Sirius. Look for 5th magnitude SAO 152641 to guide you to a faint patch of stars in binoculars and a superb cluster in a telescope – NGC 2360 (Right Ascension: 7 : 17.8 – Declination: -15 : 37). Comprised of around eighty 10th magnitude and fainter stars, this particular cluster will look like a handful of diamond dust scattered on the sky. Discovered by Caroline Herschel in 1783, this intermediate-aged galactic cluster is home to red giants and heavy in metal abundance. Mark your notes, because not only is this a Herschel object, but is known as Caldwell 58 as well!

Wednesday, March 14 – Today is the birthday of Albert Einstein. Born in 1879, Einstein was one of the finest minds of our times. He developed the theory of gravity in terms of spacetime curvature – dependent on the energy density. Winner of the 1921 Physics Nobel prize, Einstein’s work on the photoelectric effect is the basis of modern light detectors.

Tonight let’s hop about a fistwidth north of bright Eta Canis Majoris and have a look at a “double cluster” – NGC 2383 (Right Ascension: 7 : 24.8 – Declination: -20 : 56) and NGC 2384 (Right Ascension: 7 : 25.1 – Declination: -21 : 02). Just showing in binoculars as a faint patch, this pair will begin resolution with larger scopes. Studied photometrically, it would appear these fairly young clusters have contaminated each other by sharing stars – which has also occurred in some clusters located in the Magellanic Clouds. Enjoy this unusual collection of stars…

Thursday, March 15 – Today celebrates the birth of Nicolas Lacaille. Born in 1713, Lacaille’s measurements confirmed the Earth’s equatorial bulge. He also named fourteen southern constellations. To honor Lacaille tonight, let’s begin some explorations in a constellation he named – Puppis!

For SkyWatchers living in high northern latitudes, you’ll never see all of this constellation, but there will be some things for you to explore, as well as a great deal for our friends in the southern hemisphere. The first is a Herschel object that lies directly on the galactic equator around five degrees north-northwest of Xi.

NGC 2421 (Right Ascension: 7 :36.3 – Declination: -20 : 37) is a magnitude 8.3 open cluster that will look like an exquisitely tiny “Brocchi’s Cluster” in binoculars and begin good resolution of its 50 or so members to an intermediate telescope, in an arrowhead-shaped pattern. It’s bright, it’s fairly easy to find, and it’s a great open cluster to add to your challenge study lists!

If you’re looking for a curiosity, then look no further than Leo and Mars. Tonight the happy red planet is situated just to the east of Messier 96 (Right Ascension: 10 : 46.8 – Declination: +11 : 49)! Enjoy celestial mechanics over the next few nights as Mars gently changes its position in relation with this distant galaxy… and gets much closer!

Friday, March 16 – On this day in 1926, Robert Goddard launched the first liquid-fuel rocket. But he was first noticed in 1907 when a cloud of smoke issued from a powder rocket fired in the basement of the physics building in Worcester Polytechnic Institute. Needless to say, the school took an interest in the work of this shy student. Thankfully they did not expel him, and thus began his lifetime of work in rocket science. Goddard was also the first to realize the full implications of rocketry for missiles and space flight, and his lifetime of work was dedicated to bringing this vision to realization. While most of what he did went unrecognized for many years, tonight we celebrate the name of Robert H. Goddard. This first flight may have gone only 12 meters, but forty years later on the date of his birth, Gemini 8 was launched, carrying Neil Armstrong and David Scott into orbit!

Let’s begin our observing evening with Mars. While you may have been keeping track of its position, did you know that it’s less than a degree away from a Messier object tonight? That’s right! You’ll find the dusty red planet just to the north of M96 (Right Ascension: 10 : 46.8 – Declination: +11 : 49).

Tonight we’ll pick up a challenge cluster and a planetary nebula on the Herschel list by returning to NGC 2421 and hopping about a fingerwidth northeast for NGC 2432 (Right Ascension: 7 : 40.9 – Declination: -19 : 05). This small, loose open cluster is rather dim and contains around 20 or so faint members shaped like the letter B. About another degree northeast is NGC 2440 – an elongated, small 11th magnitude planetary nebula. Look for its central star to cause a brightening and up the magnifying power to reveal it.

While out, be on watch for the Corona-Australids meteor shower. While the fall rate is low – 5 to 7 per hour – our friends in the southern hemisphere might stand a chance with this one!

Saturday, March 17 – On this day in 1958, the first solar-powered spacecraft was launched. Named Vanguard 1, it was an engineering test satellite. From its orbital position, the data taken from its transmission helped to redefine the true shape of the Earth.

Tonight let’s return to Xi Puppis and head less than a fingerwidth east-northeast for Herschel study NGC 2482 (Right Ascension: 7 : 54.9 – Declination: -24 : 18). At magnitude 7, this small fuzzy spot in binoculars will resolve into around two dozen stars to the telescope. Look for the diagonal chain of stars along its edge.

Now let’s have a look at an open cluster easily located in northeastern Orion. This 5.9 magnitude scattered group of stars may have been first observed by Giovanni Batista Hodierna in the mid-17th century. While bright enough to have been a Messier object, William Herschel added it to his log of discoveries on October 15, 1784, as H VIII.24. Of the 30 known stars associated with this 3,600 light-year distant group, the brightest is 50 million years old. A half-dozen of the cluster’s very brightest members can be seen in small scopes at mid-range powers. Look for NGC 2169 (Right Ascension: 6 : 08.4 – Declination: +13 : 57) slightly less than a fist width north-northeast of Betelguese and slightly south of Xi and Nu Orionis.

Sunday, March 18 – Although you can’t see it with just your eyes, Uranus is less than a degree from the Moon this morning. For some areas this could be an occultation, so be sure to check IOTA information!

Today in 1965, the first ever spacewalk was performed by Alexei Leonov onboard the Soviet Voskhod spacecraft. The “walk” only lasted around 20 minutes and Alexei had problems in re-entering the spacecraft because his space suit had enlarged slightly. Imagine his fear as he had to let air leak out of his space suit in order to squeeze back inside. When they landed off target in the heavily forested Ural Mountains, the crew of two had to spend the night in the woods surrounded by wolves. It took over twenty-four hours before they were located and workers had to chop their way through the forest and recover them on skis. Brave men!

Tonight let’s honor them by studying a small area which contains not only three Herschel objects – but two Messiers as well – M46 and M47. You’ll find them less than a handspan east of Sirius and about a fistwidth north of Xi Puppis.

The brighter of the two clusters is M47 (Right Ascension: 7 : 36.6 – Declination: -14 : 30) and at 1600 light-years away, it’s a glorious object for binoculars. It is filled with mixed magnitude stars that resolve fully to aperture with the double Struve 1211 near its center. While M47 is in itself a Herschel object, look just slightly north (about a field of view) to pick up another cluster which borders it. At magnitude 6.7, NGC 2423 isn’t as grand, but it contains more than two dozen fairly compressed faint stars with a lovely golden binary at its center.

Now return to M47 and hop east to locate M46 (Right Ascension: 7 : 41.8 – Declination: -14 : 49). While this star cluster will appear to be fainter and more compressed in binoculars, you’ll notice one star seems brighter than the rest. Using a telescope, you’ll soon discover the reason. 300 million year old M47 contains a Herschel planetary nebula known as NGC 2438 in its northern portion. The cluster contains around 150 resolvable stars and may involve as many as 500. The bright planetary nebula was first noted by Sir William Herschel and then again by John. While it would appear to be a member of the cluster, the planetary nebula is just a little closer to us than the cluster. Be sure to mark your notes… There’s a lot there in just a little area!

Until next week? May all of your journeys be at light speed!

Many thanks to John Chumack for the inspiring image!

Night Sky Guide: March 2012

Special thanks to Ninian Boyle astronomyknowhow.com for information in parts of this guide.

March brings us some wonderful sights to see in the night skies for those who are armed with binoculars, telescopes or just their eyes.

The brightest object in the night sky this month (apart from the Moon) is the Planet Venus. Venus and mighty Jupiter have already been providing a treat n the western skies for naked eye observers, but by the middle of the month the two planets will inch even closer. There are other planetary conjunctions this month as well.

The stars of spring are starting to become more prominent and the mighty constellation of Orion sets earlier in the west as the nights roll on. The constellations of Leo, Coma Berenices and Virgo herald the region of the sky known as the “Realm of the Galaxies” more so as the month moves on.

We have Comet Garradd visible all night long through binoculars, as it starts to fade from 7th to 8th magnitude. You can find it near the north celestial North pole near the star Kochab or Beta Ursa Minoris (The little Bear) on the 6th, and the star Dubhe in the Plough on the 21st. Scan this region with binoculars and you should pick it up as a faint misty patch of light.

The Sun continues to become more active as it approaches “Solar Maximum” in 2013 and this is a time when we need to be on our guard for sudden bursts of activity which can result in aurora for observers in high latitudes. Some large geomagnetic storms in the past have resulted in Aurora being spotted as far south as regions near the Caribbean and Mediterranean. Will we get a show like this soon?

Planets

There are going to be some excellent conjunctions this month, as planets and even sometimes the Moon are close together and appear in the same region of the sky.

Mercury. Keep an eye out for the tiny planet Mercury. This planet (closest one to the Sun) is notoriously difficult to see. The best time to try and catch it is on the 4th, low down near the western horizon shortly after sunset. Make sure the Sun has fully set if you plan to sweep the area with binoculars. Never ever look at the sun directly with binoculars, telescopes or your naked eyes – This will damage your eyes or permanently blind you!

Mercury just after sunset - Beginning of March

Mars reaches what we call ‘opposition’ on the 3rd, when it is directly opposite the Sun in the sky from our point of view here on Earth. This is the best time to view the “Red Planet” with a telescope. Try and see if you can spot its ice caps and dark markings. It will need a clear steady sky and a good magnification to see these well, try different coloured filters and even have a go at webcam imaging this amazing Planet. On the 7th the nearly full Moon lies 10-degrees to the south of the planet Mars. You’ll know its Mars by its distinct orange/pink colour.

Mars

Venus & Jupiter bring us the highlight of the month when they appear to be very close to each other and are just separated by 3 degrees on the 15th of March. The brightest out of the pair will be Venus with Jupiter below it and the pair will be an amazing sight – like a pair of heavenly eyes staring down at us. The two planets will be close to each other either side of the 15th, so there should be plenty of picture-taking opportunities. The Moon joins the Venus and Jupiter on the 25th and 26th and the thin crescent Moon will make the show even more stunning.

Venus Jupiter 15 March

Saturn rises later in the evenings in the constellation of Virgo, the rings are now nicely tilted towards us and the planet looks stunning right throughout the month. If you have never seen Saturn through a telescope before, you must see it! It is the most beautiful of all the planets and one of the reasons so many people get interested in astronomy.

Saturn

Moon phases

  • First Quarter – 1st March
  • Full Moon – 8th March
  • Last Quarter – 15th March
  • New Moon – 22nd March

Constellations

In March Orion is getting lower in the West and setting earlier as the spring constellations of Leo, Coma Berenices and Virgo come into view; this is the “Realm of the Galaxies.”

In the month of March the Earth’s orbit around the Sun means that during the night we see out from our own galaxy the ‘Milky Way’ into the depths of deep space. Because of this, we can see many other galaxies and some similar to our own, each contains hundreds of billions of stars. You will need a good telescope to see these amazing wonders; however a good pair of binoculars will show one or two faint fuzzy patches. Some of these faint fuzzy objects are many millions of light years distant.

A few brighter examples lay in the constellation of Leo the Lion. Have a look for M 95, M96 and M105; these are not far from Mars during March. You will need a dark Moonless night to see them well.

Another trio of galaxies still in the constellation of Leo are M65, M66 and NGC 3628 otherwise known as the ‘Leo Triplet’ A small telescope and a low to medium power should show these objects in the same field of view.

The region of sky within Leo, Coma and Virgo is packed with galaxies and whatever telescope you use, you will be sure to spot something.

For those of you without a telescope, see if you can discern the asterism of the ‘Bowl of Virgo’. This is a chain of five stars in a loose semi-circle pointing towards the ‘tail’ of Leo. The brightest star in the chain is Porrima. South of Porrima lays the brightest star in the constellation, called Spica. Saturn can be found to the east of this.

Credit: Adrian West

A Weekend Sky Show: Moon, Venus and Jupiter

Moon and Venus on Feb. 25, 2012. © Jason Major

[/caption]

As promised by Nancy in a previous article on Universe Today, Venus was visible during the daylight hours this Saturday, very close to the crescent Moon. If you had clear weather you may have been able to catch a glimpse of the scene above, photographed from my location in north Texas at 6:35 p.m. local time.

Dim but visible, Venus is the “star” at lower left.

Later that same evening the show really went into full force as the Moon was illuminated by Earthshine in the western sky, with Venus ablaze and Jupiter making a bright appearance as well!

Nancy wrote on Feb. 24: If you don’t see Venus during the day, try to see Venus immediately at sunset; and right now, the Moon, Venus and Jupiter are lining up for triple conjunction at dusk, and with clear skies, it will be a great view that is almost impossible to miss!

A great view indeed! I grabbed a quick shot with my iPhone camera of the conjunction, and took the opportunity to point out the view to some neighbors as well.

Conjunction of the Moon, Venus and Jupiter on Feb. 25, 2012. (Jason Major)

One of the more dramatic planetary conjunctions I’ve seen, especially with the light from a fading sunset illuminating the stage.

Sometimes the best astronomy is the type you can see with your own eyes… and be able to easily share with others!

ADDED 2/26: Sunday evening brought some great views as well! Here’s a photo from around 6:45 pm on Feb. 26th:

Jupiter, the Moon and Venus on Feb. 26, 2012. © Jason Major

 

See Venus in Daylight This Weekend

Photo of Venus and the Moon taken on Jan 26, 2012. The new moon is at the top right and Venus is at the bottom left. Credit: Gadi Eidelheit.

[/caption]

The planet Venus is so bright that when conditions are right, it can be visible in full daylight. This weekend, and especially on Saturday, February 25, 2012, conditions should be just right for seeing Venus in the daytime. Our friend Gadi Eidelheit sent us his tips for seeing Venus, and says it is easier to see Venus when it is far from the Sun and less affected by its glare, so make sure that the Sun is blocked by a building or a tree. If you have a clear blue sky in your location early Saturday afternoon, try first locating the crescent Moon at about 1 pm local time. At this time, the Moon will be in the southeastern sky, about 60 degrees above the horizon.

When you find the Moon, look a short distance directly below it to find Venus. The planet will appear as a tiny white dot in the sky. You can also use sky maps or internet sites (such as Heavens-Above) to find out where Venus is relative to the Moon.

If you don’t see Venus during the day, try to see Venus immediately at sunset; and right now, the Moon, Venus and Jupiter are lining up for triple conjunction at dusk, and with clear skies, it will be a great view that is almost impossible to miss!

But for seeing Venus on subsequent days, try to stand in the same position where you saw it before, but 20 minutes before sunset. Try to locate Venus a little higher up and to the East from where it was a day before. Do so for several days, each time a little earlier.

You can also try to use binoculars to locate Venus. Safety first, make sure that the Sun is completely blocked and that you can not accidentally look directly at it through the binoculars! Although Venus is bright, it will not appear through binoculars if they are not focused properly. In order to use binoculars, focus it beforehand (such as the evening before) on Venus and make sure that the focus does not change. Now the binoculars are focused and you can use them to see Venus in the day. After you find Venus through the binoculars, try to see it without them.

If you get images of Venus in the daytime or of the triple conjunction, you can submit them to our Flickr page.

If your location does not have clear skies for the triple conjunction, The online Slooh Space Camera will webcast views from various observatories around the world, beginning at 0230 GMT (9:30 pm EST, 6:30 pm PST) both nights this weekend (Feb. 26 and 27). Access the webcast here.

Slooh will provide footage from multiple observatories around the world, including Arizona and the Canary Islands off the coast of Africa. The broadcast can be accessed at Slooh’s homepage, found here: http://events.slooh.com/

Frederick Quintao on Google+ has provided instructions for seeing Venus in the daytime in Portuguese!

Weekly SkyWatcher’s Forecast: February 19-25, 2012

Messier 41 - Credit: NOAO/AURA/NSF

[/caption]

Greetings, fellow SkyWatchers! It’s going to be an awesome week as we watch the planets – Mars, Saturn, Jupiter, Venus and Mercury – dance along the ecliptic plane. You don’t even need a telescope for this show! But that’s not all. We’ll take a look at a wealth of bright star clusters, challenging studies and lots more. I’ll see you in the back yard…

Sunday, February 19 – Today is the birthday of Nicolas Copernicus. Born in 1473, he was the creator of the modern solar system model which illustrated the retrograde motion of the outer planets. Considering this was well over 530 years ago, and in a rather “unenlightened” time, his revolutionary thinking about what we now consider natural is astounding.

Have you been observing retrograde motion while keeping track of Mars? Good for you! You may have also noticed that Mars has dimmed slightly over the last few weeks. Right now it’s around -1.0. Keep track of its many faces!

While we still have dark skies on our side, let’s head for a handful of difficult nebulae in a region just west of Gamma Monocerotis. For binoculars, check out the region around Gamma, it is rich in stars and very colorful! You are looking at the very outer edge of the Orion spiral arm of our galaxy. For small scopes, have a look at Gamma itself – it’s a triple system that we’ll be back to study. For larger scopes? It’s Herschel hunting time…

NGC 2183 (Right Ascension: 6 : 10.8 – Declination: -06 : 13 ) and NGC 2185 (Right Ascension: 6 : 11.1 – Declination: -06 : 13 ) will be the first you encounter as you move west of Gamma. Although they are faint, just remember they are nothing more than a cloud of dust illuminated by faint stars on the edge of the galactic realm. The stars that formed inside provided the light source for these wispy objects and at their edges lay in intergalactic space.

To the southwest is the weaker NGC 2182 (Right Ascension: 6 : 09.5 – Declination: -06 : 20), which will appear as nothing more than a faint star with an even fainter halo about it, with NGC 2170 (Right Ascension: 6 : 07.5 – Declination: -06 : 24) more strongly represented in an otherwise difficult field. While the views of these objects might seem vaguely disappointing, you must remember that not everything is as bright and colorful as seen in a photograph. Just knowing that you are looking at the collapse of a giant molecular cloud that’s 2400 light-years away is pretty impressive!

Monday, February 20 – Today in history celebrates the Mir space station launch in 1986. Mir (Russian for “peace”) was home to both cosmonauts and astronauts as it housed 28 long duration crews during its 15 years of service. To date it is one of the longest running space stations and a triumph for mankind. Spasiba! Today in 1962, John Glenn was onboard Friendship 7 and became the first American to orbit the Earth. As Colonel Glenn looked out the window, he reported seeing “fireflies” glittering outside his Mercury space capsule. Let’s see if we can find some…

The open cluster M41 (Right Ascension: 6 : 46.0 – Declination: -20 : 44) in Canis Major is just a quick drift south of the brightest star in the northern sky – Sirius. Even the smallest scopes and binoculars will reveal this rich group of mixed magnitude stars and fill the imagination with strange notions of reality. Through larger scopes, many faint groupings emerge as the star count rises to well over 100 members. Several stars of color – orange in particular – are also seen along with a number of doubles.

First noted telescopically by Giovanni Batista Hodierna in the mid-1500s, ancient texts indicate that Aristotle saw this naked-eye cluster some 1800 years earlier. Like other Hodierna discoveries, M41 was included on Messier’s list – along with even brighter clusters of antiquity such as Praesepe in Cancer and the Pleiades in Taurus. Open cluster M41 is located 2300 light years away and recedes from us at 34km/sec – about the speed Venus moves around the Sun. M41 is a mature cluster, around 200 million years old and 25 light years in diameter. Remember M41… Fireflies in night skies.

Tuesday, February 21 – Tonight is New Moon! Tonight let’s take a journey just a breath above Zeta Tauri and spend some quality time with a pulsar embedded in the most famous supernova remnant of all. Factually, we know the Crab Nebula to be the remains of an exploded star recorded by the Chinese in 1054. We know it to be a rapid expanding cloud of gas moving outward at a rate of 1,000 km per second, just as we understand there is a pulsar in the center. We also know it as first recorded by John Bevis in 1758, and then later cataloged as the beginning Messier object – penned by Charles himself some 27 years later to avoid confusion while searching for comets. We see it revealed beautifully in timed exposure photographs, its glory captured forever through the eye of the camera — but have you ever really taken the time to truly study M1 (Right Ascension: 5 : 34.5 – Declination: +22 : 01)? Then you just may surprise yourself…

In a small telescope, M1 might seem to be a disappointment – but do not just glance at it and move on. There is a very strange quality to the light which reaches your eye, even though initially it may just appear as a vague, misty patch. Allow your eyes to adjust and M1 will appear to have “living” qualities – a sense of movement in something that should be motionless. The “Crab” holds true to many other spectroscopic studies. The concept of differing light waves crossing over one another and canceling each other out – with each trough and crest revealing differing details to the eye – is never more apparent than during study. To observe M1 is to at one moment see a “cloud” of nebulosity, the next a broad ribbon or filament, and at another a dark patch. When skies are stable you may see an embedded star, and it is possible to see six such stars.

Many observers have the ability to see spectral qualities, but they need to be developed. From ionization to polarization – our eye and brain are capable of seeing to the edge of infra-red and ultra-violet. Even a novice can see the effects of magnetism in the solar “Wilson Effect.” But what of the spinning neutron star at M1’s heart? We’ve known since 1969 that M1 produces a “visual” pulsar effect. About once every five minutes, changes occurring in the neutron star’s pulsation affect the amount of polarization, causing the light waves to sweep around like a giant “cosmic lighthouse” and flash across our eyes. M1 is much more than just another Messier. Capture it tonight!!

Wednesday, February 22 – Today in 1966, Soviet space mission Kosmos 110 was launched. Its crew was canine, Veterok (Little Wind) Ugolyok (Little Piece of Coal); both history making dogs. The flight lasted 22 days and held the record for living creatures in orbit until 1974 – when Skylab 2 carried its three-man crew for 28 days.

Since we’ve studied the “death” of a star, why not take the time tonight to discover the “birth” of one? Our journey will start by identifying Aldeberan (Alpha Tauri) and move northwest to bright Epsilon. Hop 1.8 degrees west and slightly to the north for an incredibly unusual variable star – T Tauri.

Discovered by J.R. Hind in October 1852, T Tauri and its accompanying nebula, NGC 1555 (Right Ascension: 4 : 22.9 – Declination: +19 : 32), set the stage for discovery with a pre-main sequence variable star. Hind reported the nebula, but also noted that no catalog listed such an object in that position. His observations also included a 10th magnitude uncharted star and he surmised that the star in question was a variable. On each count Hind was right, and both were followed by astronomers for several years until they began to fade in 1861. By 1868, neither could be seen and it wasn’t until 1890 that the pair was re-discovered by E.E. Barnard and S.W. Burnham. Five years later? They vanished again.

T Tauri is the prototype of this particular class of variable stars and is itself totally unpredictable. In a period as short as a few weeks, it might move from magnitude 9 to 13 and other times remain constant for months on end. It is about equal to our own Sun in temperature and mass – and its spectral signature is very similar to Sol’s chromosphere – but the resemblance ends there. T Tauri is a star in the initial stages of birth!

T Tauri are all pre-main sequence and are considered “proto-stars”. In other words, they continuously contract and expand, shedding some of their mantle of gas and dust. This gas and dust is caught by the star’s rotation and spun into an accretion disc – which might be more properly referred to as a proto-planetary disc. By the time the jets have finished spewing and the material is pulled back to the star by gravity, the proto-star will have cooled enough to have reached main sequence and the pressure may have allowed planetoids to form from the accreted material.

Thursday, February 23 – If you have an open western horizon, then be out at twilight! Right now the speedy inner planet – Mercury – will make a brief appearance. Depending on your time zone, you might also spot a very young Moon just above it! For curiosity seekers, you can also find asteroid Vesta to the south of the Moon, along with planet Uranus to the south-east. How cool is that?!

In 1987, Ian Shelton made an astonishing visual discovery – SN 1987a. This was the brightest supernova in 383 years. More importantly, before it occurred, a blue star of roughly 20 solar masses was already known to exist in that same location within the Large Magellanic Cloud. Catalogued as Sanduleak -69-202, that star is now gone. With available data on the star, astronomers were able to get a “before and after” look at one of the most extraordinary events in the universe! Tonight, let’s have a look at a similar event known as “Tycho’s Supernova.”

Located northwest of Kappa Cassiopeia, SN1572 appeared so bright in that year that it could be seen with the unaided eye for six months. Since its appearance was contrary to Ptolemaic theory, this change in the night sky now supported Copernicus’ views and heliocentric theory gained credence. We now recognize it as a strong radio source, but can it still be seen? There is a remnant left of this supernova, and it is challenging even with a large telescope. Look for thin, faint filaments that form an incomplete ring around 8 arc minutes across.

Friday, February 24 – Tonight the slender first crescent of the Moon makes its presence known on the western horizon. Before it sets, take a moment to look at it with binoculars. The beginnings of Mare Crisium will show to the northeast quadrant, but look just a bit further south for the dark, irregular blotch of Mare Undarum – the Sea of Waves. On its southern edge, and to lunar east, look for the small Mare Smythii – the “Sea of Sir William Henry Smyth.” Further south of this pair and at the northern edge of Fecunditatis is Mare Spumans – the “Foaming Sea.” All three of these are elevated lakes of aluminous basalt belonging to the Crisium basin.

For telescope users, wait until the Moon has set and return to Beta Monocerotis and head about a fingerwidth northeast for an open cluster challenge – NGC 2250 (Right Ascension: 6 : 32.8 – Declination: -05 : 02). This vague collection of stars presents itself to the average telescope as about 10 or so members that form no real asterism and makes one wonder if it is indeed a cluster. So odd is this one, that a lot of star charts don’t even list it!

Today in 1968, during a radar search survey, the first pulsar was discovered by Jocelyn Bell. The co-directors of the project, Antony Hewish and Martin Ryle, matched these observations to a model of a rotating neutron star, winning them the 1974 Physics Nobel Prize and proving a theory of J. Robert Oppenheimer from 30 years earlier.

Would you like to get a look at a region of the sky that contains a pulsar? Then wait until the Moon has well westered and look for guidestar Alpha Monocerotis to the south and bright Procyon to its north. By using the distance between these two stars as the base of an imaginary triangle, you’ll find pulsar PSR 0820+02 at the apex of your triangle pointed east.

Saturday, February 25 – As the Moon begins its westward journey after sunset in a position much easier to observe. The lunar feature we are looking for is at the north-northeast of the lunar limb and its view is often dependent on libration. What are we seeking? “The Sea of Alexander von Humboldt”…

Mare Humboldtianum can sometimes be hidden from view because it is an extreme feature. Spanning 273 kilometers, the basin in which it is contained extends for an additional 600 kilometers and continues around to the far side of the Moon. The mountain ranges which accompany this basin can sometimes be glimpsed under perfect lighting conditions, but ordinarily are just seen as a lighter area. The mare was formed by lava flow into the impact basin, yet more recent strikes have scarred Humboldtianum. Look for a splash of ejecta from crater Hayn further north, and the huge, 200 kilometer strike of crater Bel’kovich on Humboldtianum’s northeast shore.

When the Moon begins to wester, let’s head for Beta Monocerotis and hop about 3 fingerwidths east for an 8.9 magnitude open cluster that can be spotted with binoculars and is well resolved with a small telescope – NGC 2302 (Right Ascension: 6 : 51.9 – Declination: -07 : 04). This very young stellar cluster resides at the outer edge of the Orion spiral arm. While binoculars will see a handful of stars in a small V-shaped pattern, telescope users should be able to resolve 40 or so fainter members.

Until next week, may all of your journeys be at light speed!

If you enjoy the weekly observing column, then you’ll love the book, The Night Sky Companion 2012 written by Tammy Plotner. This fully illustrated observing guide includes star charts for your favorite objects and much more!

Is Venus’ Rotation Slowing Down?

Venus Express in orbit since 2006 around our nearest planetary neighbor. Credits: ESA

New measurements from ESA’s Venus Express spacecraft shows that Venus’ rotation rate is about 6.5 minutes slower than previous measurements taken 16 years ago by the Magellan spacecraft. Using infrared instruments to peer through the planet’s dense atmosphere, Venus Express found surface features weren’t where the scientists expected them to be.

“When the two maps did not align, I first thought there was a mistake in my calculations as Magellan measured the value very accurately, but we have checked every possible error we could think of,” said Nils Müller, a planetary scientist at the DLR German Aerospace Centre, lead author of a research paper investigating the rotation.

[/caption]

Using the VIRTIS infrared instrument, scientists discovered that some surface features were displaced by up to 20 km from where they should be given the accepted rotation rate as measured by the Magellan orbiter in the early 1990s.

Over its four-year mission, Magellan determined the length of the day on Venus as being equal to 243.0185 Earth days. But the data from Venus Express indicate the length of the Venus day is on average 6.5 minutes longer.

What could cause the planet to slow down? One possibility may be the raging weather on Venus. Recent atmospheric models have shown that the planet could have weather cycles stretching over decades, which could lead to equally long-term changes in the rotation period. The most important of those forces is due to the dense atmosphere – more than 90 times the pressure of Earth’s and high-speed weather systems, which are believed to change the planet’s rotation rate through friction with the surface.

Earth experiences a similar effect, where it is largely caused by wind and tides. The length of an Earth day can change by roughly a millisecond and depends seasonally with wind patterns and temperatures over the course of a year.

But a change of 6.5 minutes over a little more than a decade is a huge variation.

Other effects could also be at work, including exchanges of angular momentum between Venus and the Earth when the two planets are relatively close to each other. But the scientists are still working to figure out the reason for the slow down.

These detailed measurements from orbit are also helping scientists determine whether Venus has a solid or liquid core, which will help our understanding how the planet formed and evolved. If Venus has a solid core, its mass must be more concentrated towards the center. In this case, the planet’s rotation would react less to external forces.

“An accurate value for Venus’ rotation rate will help in planning future missions, because precise information will be needed to select potential landing sites,” said Håkan Svedhem, ESA’s Venus Express project scientist.

Venus Express will keep monitoring the planet to determine if the rate of rotation continues to change.

Source: ESA

Night Sky Guide: February 2012

Special thanks to Ninian Boyle astronomyknowhow.com for information in parts of this guide

This month, the Solar System gives us a lot to observe and we’ll even start to see the ‘spring’ constellations appear later in the evenings. But February still has the grand constellations of winter, with mighty Orion as a centrepiece to long winter nights.

The Sun has finally started to perform as it should as it approaches “Solar Maximum.” This means we get a chance to see the northern lights (Aurora), especially if you live in such places as Scotland, Canada, Scandinavia, or Alaska or the southern light (Aurora Australis) if you live in the southern latitudes of South America, New Zealand and Australia. Over the past few weeks we have seen some fine aurora displays and will we hope to seesome in February!

We have a bit of a treat in store with a comet being this month’s favourite object with binoculars as well, so please read on to find out more about February’s night sky wonders.

You will only need your eyes to see most of the things in this simple guide, but some objects are best seen through binoculars or a small telescope.

So what sights are there in the February night sky and when and where can we see them?

Aurora

Looking north from the science operations center at Poker Fla,Alaska. Credit: Jason Ahrns.

The Aurora or Northern Lights (Aurora Borealis) have been seen from parts of Northern Europe and North America these last few weeks. This is because the Sun has been sending out huge flares of material, some of which have travelled towards us slamming into our magnetic field. The energetic particles then follow the Earth’s magnetic field lines towards the poles and meet the atoms of our atmosphere causing them to fluoresce, similar to what happens in a neon tube or strip light.

The colours of the aurora depend on the type of atom the charged particles strike. Oxygen atoms for example usually glow with a green colour, with some reds, pinks and blues. So the more active the Sun gets, the more likely we are to see the Northern (or Southern) Lights.

All you need to see aurora is your eyes, with no other equipment is needed. Many people image the aurora with exposures of just a few seconds and get fantastic results. Unfortunately auroras are “space weather” and are almost as difficult to predict as normal terrestrial weather, but thankfully we can be given the heads up of potential geomagnetic storms by satellites monitoring the Sun such as “STEREO” (Solar TErrestrial RElations Observatory).

Spaceweather.com is a great resource for aurora and other space weather phenomenon and the site has real-time information on current aurora conditions and other phenomenon.

Planets

Mercury is too close to the Sun to be seen at the beginning of the month, but will be visible very low in the south west from the 17th onwards. At the end of February Mercury will be quite bright at around mag -0.8 and will be quite a challenge. It can be seen for about 30 minutes after sunset.

Venus will improve throughout the month in the south west and will pass within half a degree of Uranus on the 9th of February. You can see this through binoculars or a small telescope. On the 25th Venus and the slender crescent Moon can be seen together a fabulous sight. At the end of month Venus closes in on Jupiter for a spectacular encounter in March.

Venus

Mars can easily be spotted with the naked eye as a salmon pink coloured “star” and starts off the month in the constellation of Virgo and moves into Leo on the 4th. Mars is at opposition on March 3rd but is also at its furthest from the Sun on the 15th February making this opposition a poor one with respect to observing due to its small apparent size. The planet will still be visually stunning throughout the month.

Mars

Jupiter starts off the month high in the south as darkness falls and is still an incredibly bright star-like object. Through good binoculars or a small telescope you can see its four Galilean moons – a fantastic sight. On the 8th at around 19:50 UT, Europa will transit Jupiter and through a telescope you will see the tiny moons shadow move across its surface. Throughout February, Jupiter moves further west for its close encounter with Venus in March.

Jupiter

Saturn rises around midnight in the constellation of Virgo and appears to be a bright yellowish star. Through a small telescope you will see the moon Titan and Saturn’s rings as well.

Saturn

Uranus is now a binocular or telescope object in the constellation of Pisces. On the 9th Uranus and the planet Venus will be within half a degree of each other.

Uranus

Neptune is not visible this month.

Comets

Comet Garradd Credit: astronomy.com

Comet Garradd is still on show early in the month — if you have binoculars — and as the month progresses the viewing should improve. You can find the comet in the constellation of Hercules not far from the globular cluster M92. It is about a half a degree away or around the same width as the full Moon. The comet is around magnitude 7 or a little fainter than the more famous globular cluster M13 also to be found in Hercules, so you will definitely need binoculars to see it. The comet is heading north over the course of the month which should mean that it will become a little easier to see. At the beginning of the month you will have to get up early to see it, the best time being around 5:30 to 6:30 GMT. By the end of the month though, it should be visible all night long.

Moon phases

  • Full Moon – 7th February
  • Last Quarter – 14th February
  • New Moon – 21st February

Constellations

In February, Orion still dominates the sky but has many interesting constellations surrounding it.

Above and to the left of Orion you will find the constellation of Gemini, dominated by the stars Castor and Pollux, representing the heads of the twins with their bodies moving down in parallel lines of stars with each other.

Legend has it that Castor and Pollux were twins conceived on the same night by the princess Leda. On the night she married the king of Sparta, wicked Zeus (disguised as a swan) invaded the bridal suite, fathering Pollux who was immortal and twin of Castor who was fathered by the king so was mortal.

Castor and Pollux were devoted to each other and Zeus decided to grant Castor immortality and placed Castor with his brother Pollux in the stars.

Gemini has a few deep sky objects such as the famous Eskimo nebula and some are a challenge to see. Get yourself a good map, Planisphere or star atlas and see what other objects you can track down.

Credit: Adrian West

 

Night Sky Guide: January 2012

January Sky Northern Hemisphere Credit: Adrian West

[/caption]

January brings us striking views of the night skies! You’ll be able to see well known constellations during the long hours of darkness in the Northern hemisphere, with crisp cold skies. This is an ideal time to get out and look at the wonders of the night sky as there is so much to see for the beginner and seasoned astronomer alike.

You will only need your eyes to see most of the things in this simple guide, but some objects are best seen through binoculars or a small telescope.

So what sights are there in the January night sky and when and where can we see them?

Meteor Showers

Quadrantid Meteor Credit: nasa.gov

As soon as the month starts we receive a welcome treat in the form of the Quadrantid meteor shower on the evening of the 3rd/ morning of the 4th of January.

The Quadrantids can be quite an impressive shower with rates (ZHR) of up to 120 meteors per hour at the showers peak (under perfect conditions) and can sometimes produce rates of up to 200 meteors per hour. The peak is quite narrow lasting only a few hours, with activity either side of the peak being quite weak.

Due to a waxing gibbous moon, the best time to look is after midnight and through the early hours when the moon sets in time for us to see the peak which is 07:20 UT.

The radiant of the Quadrantids (where the meteors radiate from) is in the constellation of Boötes, however many people are mislead in thinking they need to look at the radiant to see the meteors – this is not true. Meteors will come from the radiant, but will appear anywhere in the whole sky at random. You can trace the shooting stars path back to the radiant to confirm if it is a meteor from the meteor shower.

For more information on how to observe and enjoy the Quadrantid meteor shower, visit meteorwatch.org

Planets

Mercury is low down in the southeast before sunrise in the first week of January.

Venus will be shining brightly in the southwest until May and will pass within 1° of Neptune the furthest planet on the 12th and 13th of January. You can see this through binoculars or a small telescope. On the 26th Venus and the Moon can be seen together after sunset.

Venus

On the 5th of January, Earth will be at “Perihelion” its closest point to the Sun.

Mars brightens slightly to -0.5 during January and can be found in the tail of Leo; it can be easily spotted with the naked eye. The red Planet is close to the Moon on the night of the 13th/ 14th January.

Mars

On January 2nd Jupiter and the Moon will be very close to each other with a separation of only 5° with Jupiter just below the Moon. Jupiter will continue to be one of the brightest objects in the sky this month.
Jupiter

Saturn now lies in the constellation of Virgo and follows after just after Mars in Leo.
Saturn

Uranus is just barely visible to the naked eye in the constellation of Pisces and can be easily spotted in binoculars or small telescopes throughout the month. The Moon will pass very close to Uranus on the 27th and will be just 5.5° to the left of the planet.
Uranus

Moon phases

  • First Quarter – 1st and 31st January
  • Full Moon – 9th January
  • Last Quarter – 16th January
  • New Moon – 23rd January

Constellations

Credit: Adrian West

In January the most dominant and one of the best known constellations proudly sits in the south of the sky – Orion the hunter.

Easily distinguishable as a torso of a man with a belt of three stars, a sword, club and shield, Orion acts as the centre piece of the surrounding winter constellations. Orion is viewed upside down in the Northern sky as seen from the Southern hemisphere.

Orion contains some exciting objects and its most famous are the Great Nebula in Orion(M42), which makes up the sword and is easily seen in binoculars or a telescope and bright Betelgeuse, Orion’s bright alpha star (α Orionis). Betelgeuse is a red supergiant many times larger than our Sun; it would engulf everything in our solar system out to the orbit of Jupiter, if the two stars swapped places. Betelgeuse will eventually end its life in a Supernova explosion and some people believe that it may have already exploded and the light hasn’t reached us yet. It would make for a fantastic sight!

The Great Orion Nebula by Patrick Cullis
The Great Orion Nebula. Image Credit: Patrick Cullis

If you draw an imaginary line through the three belt stars of Orion and keep going up and to the right, you will come to a bright orange coloured star – Aldebaran (α Tauri) in the constellation of Taurus.
Pleiades Cluster/ Seven Sisters

Taurus depicts a head of a bull with Aldebaran as its eye with a V shape that creates long horns starting from what we call the Hyades cluster, a V shaped open cluster of stars. If you continue to draw a line through the belt stars of Orion, through Aldebaran and keep going, you will eventually get to one of the gems in Taurus – The Pleiades cluster or Seven Sisters (M45) a stunning cluster of blue and extremely luminous stars and from our vantage point on Earth, the most recognisable cluster with the naked eye. A great object to scan with binoculars. A great object to hunt for with a small telescope is the Crab Nebula (M1) near the end of the lower horn of Taurus.
The Crab Nebula
The Crab Nebula

If you go back to our imaginary line drawn through the belt stars of Orion and draw it in the other direction, to left and below, you will come to the very bright star Sirius (α CMa) – The Dog Star in Canis Major. Sirius is the brightest star in the sky and is only 8.6 light years away, it is the closest star visible to the naked eye after the Sun.

Sirius along with Betelgeuse and Procyon (α CMi) in Canis Minor, form an asterism known as the Winter Triangle.

Directly above Orion and the Winter Triangle are the constellations of Gemini (The Twins), with the two bright stars of Castor and Pollux marking their heads and Auriga the charioteer, with its bright alpha star Capella (α Aur). Auriga is host to M36, M37 and M38 which are globular clusters and easily seen through binoculars or small telescope and Gemini plays host to M35.

M37

Only a few of the objects available to see have been mentioned, so get yourself a good map, Planisphere or star atlas and see what other objects you can track down!