Astronomy Cast Ep. 201: Titan

Titan

Titan is Saturn’s largest moon, and the second largest moon in the Solar System. It’s unique in the Solar System as the only moon with an atmosphere. In fact, scientists think that Titan’s thick atmosphere – rich in hydrocarbons – is similar to the early Earth, and could give us clues about how life got started on our planet.

Click here to download the episode

Titan – Show notes and transcript

Or subscribe to: astronomycast.com/podcast.xml with your podcatching software.

Titan-ic Tsunami Causing Crack in Saturn’s C Ring

This graphic shows an angled view of a newly discovered “crack” in one of Saturn’s rings, known as the C ring. This view shows the 3-D quality of the puzzling crack associated with a wave-like feature that was discovered earlier by NASA’s Voyager 1 spacecraft. Image credit: NASA/JPL/Cornell

[/caption]

Saturn’s rings have several gaps, most of which are caused by small moons shepherding ring debris into breaks in the rocky rings. But one gap may be caused by gravitational perturbations from Saturn’s largest moon, Titan, sending tsunami-like waves up to 3 kilometers (2 miles) high in the C ring. This causes one region of the ring to spin like a warped, uneven vinyl record on a turntable. A new model of this action explains why the gap was narrower than expected and also why is seems to disappear from time to time. “What looked like a 15-kilometer-wide gap actually was this gap with a vertical displacement of about 3 kilometers projected and seen almost edge on,” said Phillip Nicholson from Cornell University, speaking at a press briefing at the American Astronomical Society’s Division for Planetary Sciences meeting in Pasadena, California. “It’s a little like a tsunami propagating away from an earthquake fault.”

The Cassini spacecraft looks close at Saturn to frame a view encompassing the entire C ring. Image credit: NASA/JPL/SSI

The gap in the middle of the C ring has been known since Voyager 1 flew by Saturn in the 1980, and it appeared there was a 15 km-wide gap. But when Cassini arrived in 2004 and began observations, the gap was only 2 km (1.5 miles) and sometimes it wasn’t there at all.

Nicholson said only when they began to think in three dimensions were they able to solve the mystery of this gap. While most of Saturn’s rings are flat, in 2009, the angle of sunlight during Saturn’s spring equinox revealed there were lumps and bumps in the rings are as high as the Rocky Mountains.

The model Nicholson and colleagues created suggests the actual gap in the ring is about a half a kilometer wide, but part of the ring rises 3 km (2 miles) in the air up. The different angles the two spacecraft observed from made the gap look wider to Voyager than to Cassini.

“The whole pattern rotates around at the same rate as the satellite Titan orbits Saturn, once every 16 days,” said Nicholson said. Sometimes, the tsunami-like wave couldn’t be seen by the spacecraft, which accounts for how the gap seems to appear and disappear.

Nicholson said this model explains the C ring gap, “better than you have any right to expect,” but there could be three or four dynamical processes going on that explains the other gaps.

Nicholson and Cassini Deputy Project Scientist Linda Spilker said the same types of processes seen in Saturn’s rings could also explain what is seen in disks of debris around other stars, with the theory that there are gaps forming in the disks associated with the formation of planets.

New insights into the nature of Saturn’s rings are revealed in this panoramic mosaic of 15 images taken during the planet’s August 2009 equinox. Image credit: NASA/JPL/SSI

“Saturn provides a wonderful natural laboratory of how protoplanetary nebula may evolve,” said Spilker.

The Cassini scientists also noted how the Cassini mission has now moved past the “Equinox” mission and is now in another extension of the mission called the Solstice mission, which will keep the spacecraft going until 2017.

Spilker shared how as the end of the mission approaches, they might try some riskier moves, such as try flying between Saturn’s D ring or heading into Saturn’s into upper atmosphere to “study new things about planet itself, for the end of the mission.”

Source: DPS meeting webcast

Largest Clouds Ever Seen on Titan

Clouds on Titan seen by the Cassini spacecraft on Sept. 27. 2010. Credit: NASA/JPL/Space Science Institute

[/caption]

The Cassini spacecraft recently swooped by Saturn’s largest moon Titan and captured images of large patches of clouds. “These are some of the largest clouds our cameras on Cassini have yet seen on Titan!” said Carolyn Porco, Cassini imaging team lead, in an email announcing the image. “And the fact that we see them in the equatorial region is big news and may signify seasonal change is underway!”

The image was taken on September 27, 2010 and received on Earth September 28, 2010 at a distance of approximately 1,282,259 kilometers away. The spacecraft was actually at its closest approach on Sept. 24, and took a long, sustained look at the hazy moon, coming within 8,175 kilometers (5,080 miles) above the hazy moon’s surface.

Cassini’s visual and infrared mapping spectrometer also took a look at these clouds, so look for more information soon about this large region of clouds.

Cassini also used its composite infrared spectrometer instrument to take a look at Titan’s stratosphere to learn more about its vertical structure as the seasons change.

This flyby is the first in a series of high-altitude Titan flybys for Cassini over the next year and a half.

See a larger version of the image at the CICLOPS website.

Titan Weather Report for Spring: Still Cold, but Clearing Skies

Left: T43 flyby of Titan - 12 May 2008 – VIMS images a large cloud that caps the north pole of Titan (yellowish tones). Right: T63 flyby of Titan - 12 December 2009 – VIMS still observes a huge cloud system at 40°S (yellowish tones) and the north pole of Titan free of clouds, a few months after the equinox. Credit: NASA/JPL/University of Arizona/University of Nantes/ University of Paris Diderot

[/caption]

The beauty of an extended space mission is that scientists can make long term observations and find out things we’ve never known before. The Cassini spacecraft’s Visual and Infrared Mapping Spectrometer (VIMS) instrument has been monitoring clouds on Titan continuously since the spacecraft went into orbit around Saturn in 2004, and a team led by Sébastien Rodriguez (AIM laboratory – Université Paris Diderot) has used more than 2,000 VIMS images to create the first long-term study of Titan’s weather. Are they ready to make a weather forecast? They say Titan’s northern hemisphere is set for mainly fine spring weather, with polar skies clearing since the equinox in August last year.

Together with Saturn in its 30-years orbit around the Sun, Titan has seasons that last for 7 terrestrial years. The team has observed significant atmospheric changes between July 2004 (early summer in the southern hemisphere) and April 2010, the very start of northern spring. The images showed that cloud activity has recently decreased near both of Titan’s poles. These regions had been heavily overcast during the late southern summer until 2008, a few months before the equinox.

“Over the past six years, we’ve found that clouds appear clustered in three distinct latitude regions of Titan: large clouds at the north pole, patchy cloud at the south pole and a narrow belt around 40 degrees south. However, we are now seeing evidence of a seasonal circulation turnover on Titan – the clouds at the south pole completely disappeared just before the equinox and the clouds in the north are thinning out. This agrees with predictions from models and we are expecting to see cloud activity reverse from one hemisphere to another in the coming decade as southern winter approaches,” said Dr Rodriguez.

Fractional cloud coverage in Titan’s atmosphere integrated between July 2004 and April 2010. Black areas are cloud free and yellow are fully covered. Credit: NASA/JPL/University of Arizona/University of Nantes/ University of Paris Diderot

The team has used results from the Global Climate Models (GCMs) developed by Pascal Rannou (Institut Pierre Simon Laplace) to interpret the evolution of the observed cloud patterns over time. Northern polar clouds of ethane form in the Titan’s troposphere during the winter at altitudes of 30-50 km by a constant influx of ethane and aerosols from the stratosphere. In the other hemisphere, mid- and high-latitudes clouds are produced by the upwelling from the surface of air enriched in methane. Observations of the location and activity of Titan’s clouds over long periods are vital in developing a global understanding of Titan’s climate and meteorological cycle.

In Feburary 2010, the Cassini mission was extended to a few months past Saturn’s northern summer solstice in May 2017. This means that Rodriguez and his team will be able to observe the seasonal changes right the way through from mid-winter to mid-summer in the northern hemisphere.

“We have learned a lot about Titan’s climate since Cassini arrived in at Saturn but there is still a great deal to learn. With the new mission extension, we will have the opportunity to answer some of the key questions about the meteorology of this fascinating moon,” said Rodriguez.

Rodriguez presented the results at the European Planetary Science Congress 2010 in Rome.

Source: European Planetary Science Conference

Watch Titan Occult a Binary Star System

Titan passing in front of the binary star system named NV0435215+200905. Credit: Palomar Observator

[/caption]

Scott Kardel from the Palomar Observatory just posted something extremely cool on his Palomar Skies website. Back in 2001, a group of astronomers used the 200-inch Hale Telescope equipped with adaptive optics to observe Saturn’s moon Titan pass in front of a binary star system. The binary stars are separated in the sky by just 1.5 arc seconds, but because of the fantastic resolving power of the Hale and its adaptive optics, visible in the image above is the light of the star nearest to Titan being refracted by Titan’s dense atmosphere. As Scott said, such events are rare but valuable. Mike Brown (of Eris fame) was among the astronomers and on Twitter today, he linked to a video the team created from their observations, which is just awesome. Not only did they see the occultation, but they also found out that Titan has jet stream-like winds in its atmosphere. Watch the movie, (or see below, someone has now YouTubed it) and then read their paper about the event!

Zapping Titan-Like Atmosphere with UV Creates Life Precursors

Which Planets Have Rings?
This colorized image taken by the Cassini orbiter, shows Saturn's A and F rings, the small moon Epimetheus and Titan, the planet's largest moon. Credit: NASA/JPL/Space Science Institute

[/caption]
From the University of Arizona

The first experimental evidence showing how atmospheric nitrogen can be incorporated into organic macromolecules is being reported by a University of Arizona team. The finding indicates what organic molecules might be found on Titan, the moon of Saturn that scientists think is a model for the chemistry of pre-life Earth.

Earth and Titan are the only known planetary-sized bodies that have thick, predominantly nitrogen atmospheres, said Hiroshi Imanaka, who conducted the research while a member of UA’s chemistry and biochemistry department.

How complex organic molecules become nitrogenated in settings like early Earth or Titan’s atmosphere is a big mystery, Imanaka said.

“Titan is so interesting because its nitrogen-dominated atmosphere and organic chemistry might give us a clue to the origin of life on our Earth,” said Imanaka, now an assistant research scientist in the UA’s Lunar and Planetary Laboratory. “Nitrogen is an essential element of life.”

However, not just any nitrogen will do. Nitrogen gas must be converted to a more chemically active form of nitrogen that can drive the reactions that form the basis of biological systems.

Imanaka and Mark Smith converted a nitrogen-methane gas mixture similar to Titan’s atmosphere into a collection of nitrogen-containing organic molecules by irradiating the gas with high-energy UV rays. The laboratory set-up was designed to mimic how solar radiation affects Titan’s atmosphere.

Most of the nitrogen moved directly into solid compounds, rather than gaseous ones, said Smith, a UA professor and head of chemistry and biochemistry. Previous models predicted the nitrogen would move from gaseous compounds to solid ones in a lengthier stepwise process.

Titan looks orange in color because a smog of organic molecules envelops the planet. The particles in the smog will eventually settle down to the surface and may be exposed to conditions that could create life, said Imanaka, who is also a principal investigator at the SETI Institute in Mountain View, Calif.

However, scientists don’t know whether Titan’s smog particles contain nitrogen. If some of the particles are the same nitrogen-containing organic molecules the UA team created in the laboratory, conditions conducive to life are more likely, Smith said.

Laboratory observations such as these indicate what the next space missions should look for and what instruments should be developed to help in the search, Smith said.

Imanaka and Smith’s paper, “Formation of nitrogenated organic aerosols in the Titan upper atmosphere,” is scheduled for publication in the Early Online edition of the Proceedings of the National Academy of Sciences the week of June 28. NASA provided funding for the research.

The UA researchers wanted to simulate conditions in Titan’s thin upper atmosphere because results from the Cassini Mission indicated “extreme UV” radiation hitting the atmosphere created complex organic molecules.

Therefore, Imanaka and Smith used the Advanced Light Source at Lawrence Berkeley National Laboratory’s synchroton in Berkeley, Calif. to shoot high-energy UV light into a stainless steel cylinder containing nitrogen-and-methane gas held at very low pressure.

The researchers used a mass spectrometer to analyze the chemicals that resulted from the radiation.

Simple though it sounds, setting up the experimental equipment is complicated. The UV light itself must pass through a series of vacuum chambers on its way into the gas chamber.

Many researchers want to use the Advanced Light Source, so competition for time on the instrument is fierce. Imanaka and Smith were allocated one or two time slots per year, each of which was for eight hours a day for only five to 10 days.

For each time slot, Imanaka and Smith had to pack all the experimental equipment into a van, drive to Berkeley, set up the delicate equipment and launch into an intense series of experiments. They sometimes worked more than 48 hours straight to get the maximum out of their time on the Advanced Light Source. Completing all the necessary experiments took years.

It was nerve-racking, Imanaka said: “If we miss just one screw, it messes up our beam time.”

At the beginning, he only analyzed the gases from the cylinder. But he didn’t detect any nitrogen-containing organic compounds.

Imanaka and Smith thought there was something wrong in the experimental set-up, so they tweaked the system. But still no nitrogen.

“It was quite a mystery,” said Imanaka, the paper’s first author. “Where did the nitrogen go?”

Finally, the two researchers collected the bits of brown gunk that gathered on the cylinder wall and analyzed it with what Imanaka called “the most sophisticated mass spectrometer technique.”

Imanaka said, “Then I finally found the nitrogen!”

Imanaka and Smith suspect that such compounds are formed in Titan’s upper atmosphere and eventually fall to Titan’s surface. Once on the surface, they contribute to an environment that is conducive to the evolution of life.

Titan + Dione = New Desktop

Titan and Dione as seen by Cassini. Credit: NASA/JPL/Space Science Institute

[/caption]

Another stunning image from the Cassini spacecraft, suitable for wallpaper on your desktop. Click image for larger version, or click here for a large 1.125 MB version.

This is Saturn’s moon Dione, in crisp detail, against a hazy, ghostly Titan. Simply stunning.

The “wispy” terrain on Dione is visible, and on Titan are hints of atmospheric banding around Titan’s north pole. This view looks toward the Saturn-facing hemisphere of Dione (1123 kilometers, 698 miles across) and Titan (5150 kilometers, 3200 miles across), and was taken on April 10, 2010.

No images available yet from Cassini’s extremely close flyby of Titan over the weekend where it buzzed the hazy moon at an altitude of just 880 kilometers (547 miles) above the surface.

That is 70 kilometers (43 miles) lower than it has ever been at Titan before. The reason for attempting such a close pass is to try and establish if Titan has a magnetic field of its own. But the Cassini team went through hours and hours of calculations for this close flyby, as Titan’s atmosphere applies torque to objects flying through it, much the same way the flow of air would wiggle your hand around if you stuck it outside a moving car window. According to the Cassini website, when engineers calculated the most stable and safe angle for the spacecraft to fly, they found it was almost the same as the angle that would enable Cassini to point its high-gain antenna to Earth. So they cocked the spacecraft a fraction of a degree, enabling them to track the spacecraft in real-time during its closest approach. They set up the trajectory with thrusters firing throughout the flyby to maintain pointing automatically.

The images and data gathered should be amazing, as if everything went as planned, the flyby ended with the ultra violet imaging spectrograph (UVIS) instrument capturing a stellar occultation outbound from Titan. We’ll keep you posted!

Source: CICLOPS, Carolyn Porco on Twitter

Alien Life on Titan? Hang on Just a Minute…

This artist concept shows a mirror-smooth lake on the surface of the smoggy moon Titan. Image credit: NASA/JPL

[/caption]

Two papers released last week detailing oddities found on Titan have blown the top off the ‘jumping to conclusions’ meter, and following media reports of NASA finding alien life on Saturn’s hazy moon, scientists are now trying to put a little reality back into the news. “Everyone: Calm down!” said Cassini imaging team leader Carolyn Porco on Twitter over the weekend. “It is by NO means certain that microbes are eating hydrogen on Titan. Non-bio explanations are still possible.” Porco also put out a statement on Monday saying such reports were “the unfortunate result of a knee-jerk rush to sensationalize an exciting but rather complex, nuanced and emotionally-charged issue.”

Astrobiologist Chris McKay told Universe Today that life on Titan is “certainly the most exciting, but it’s not the simplest explanation for all the data we’re seeing.”

McKay suggests everyone needs to take the Occam’s Razor approach, where the simplest theory that fits the facts of a problem is the one that should be selected.

The two papers suggest that hydrogen and acetylene are being depleted at the surface of Titan. The first paper by Darrell Strobel shows hydrogen molecules flowing down through Titan’s atmosphere and disappearing at the surface. This is a disparity between the hydrogen densities that flow down to the surface at a rate of about 10,000 trillion trillion hydrogen molecules per second, but none showing up at the surface.

“It’s as if you have a hose and you’re squirting hydrogen onto the ground, but it’s disappearing,” Strobel said. “I didn’t expect this result, because molecular hydrogen is extremely chemically inert in the atmosphere, very light and buoyant. It should ‘float’ to the top of the atmosphere and escape.”

The other paper (link not yet available) led by Roger Clark, a Cassini team scientist, maps hydrocarbons on Titan’s surface and finds a surprising lack of acetylene. Models of Titan’s upper atmosphere suggest a high level of acetylene in Titan’s lakes, as high as 1 percent by volume. But this study, using the Visual and Infrared Mapping Spectrometer (VIMS) aboard Cassini, found very little acetylene on Titan’s surface.

Of course, one explanation for both discoveries is that something on Titan is consuming the hydrogen and acetylene.

Even though both findings are important, McKay feels the crux of any possible life on Titan hinges on verifying Strobel’s discovery about the lack of hydrogen.

“To me, the whole thing hovers on this determination of whether there is this flux of hydrogen is real,” McKay said via phone. “The acetylene has been missing and the ethane has been missing, but that certainly doesn’t generate a lot of excitement, because how much is supposed to be there depends on how much is being made. There are a lot of uncertainties.”

McKay stressed both results are still preliminary and the hydrogen loss in particular is the result of a computer calculation, and not a direct measurement. “It is the result of a computer simulation designed to fit measurements of the hydrogen concentration in the lower and upper atmosphere in a self-consistent way,” he said in a statement he put out over the weekend. “It is not presently clear from Strobel’s results how dependent his conclusion of a hydrogen flux into the surface is on the way the computer simulation is constructed or on how accurately it simulates the Titan chemistry.”

However, the findings are interesting for astrobiology, and would require the actual existence of methane-based life, a theory McKay himself proposed five years ago, which he described today as an “odd idea.”

In 2005, McKay and Heather Smith (McKay and Smith, 2005) suggested that methane-based life (rather than water-based) called methanogens on Titan could consume hydrogen, acetylene, and ethane. The key conclusion of that paper was “The results of the recent Huygens probe could indicate the presence of such life by anomalous depletions of acetylene and ethane as well as hydrogen at the surface.”

Even though the two new papers seem to show evidence for all three of these on Titan, McKay said this is a still a long way from “evidence of life”. However, it is extremely interesting.

But what does McKay really think?

“Unfortunately, if I was betting, the most likely explanation is that Darrel’s (Strobel) results are wrong and that further analysis will show there is another explanation for the data he is trying to fit, besides the strong flux of hydrogen into the surface. I would be very happy if we did confirm all that data, but we do have to take it in steps.”

McKay provided four possibilities for the recently reported findings, listed in order of their likely reality:

1. The determination that there is a strong flux of hydrogen into the surface is mistaken. “It will be interesting to see if other researchers, in trying to duplicate Strobel’s results, reach the same conclusion,” McKay said.

2. There is a physical process that is transporting H2 from the upper atmosphere into the lower atmosphere. One possibility is adsorption onto the solid organic atmospheric haze particles which eventually fall to the ground. However this would be a flux of H2, and not a net loss of H2.

3. If the loss of hydrogen at the surface is correct, the non-biological explanation requires that there be some sort of surface catalyst, presently unknown, that can mediate the hydrogenation reaction at 95 K, the temperature of the Titan surface. “That would be quite interesting and a startling find although not as startling as the presence of life,” McKay said.

4. The depletion of hydrogen, acetylene, and ethane, is due to a new type of liquid-methane based life form as predicted (Benner et al. 2004, McKay and Smith 2005, and Schulze-Makuch and Grinspoon 2005 (Astrobiology, vol. 5, no. 4., p. 560-567.).

McKay said if further analysis shows that a strong flux of hydrogen into the surface really is happening, “then my first two explanations are no longer options and we are then left with two really quite remarkable alternatives, either there is some mysterious metalysis going on, which at 95 k is really hard to imagine, and would have enormous implications for things like chemical engineering. And the second alternative is that there is life, which is even more amazing.”

“So to make process on this,” McKay continued, “we have to confirm Darrel’s result that there is hydrogen being fluxed onto the surface of Titan, that is really way unexpected, and unfortunately, it constitutes extraordinary claims that need extraordinary evidence. Darrel’s paper is just a first step in that.”

What does McKay think about the rash of media reports claiming life on Titan?

“Well, I think it reflects our human fascination and desire to find life out there,” he said. “We want it to be true. When we’re given a set of facts, if they are consistent with biology we jump to that explanation first. The most biologically interesting explanation is the first one we look to. We ought to give that a name — something like ‘Carl Sagan’s Razor’ as opposed to ‘Occam’s Razor,’ which would say that ‘The most exciting explanation is assumed to be true until it is proven false.'”

You can read all of McKay’s written response on the CICLOPS website, which Porco said will be “the first installment in a new feature on the CICLOPS website, called ‘Making Sense of the News’, where from time to time, scientists, both involved in Cassini and not, will be invited to comment on new developments that bear on the exploration of the solar system and the study of planetary systems, including our own.”

Early Faint Sun Paradox Explained?

Titan's thick haze. Image: NASA/JPL/Space Science Institute.

[/caption]

Models of the Sun’s evolution indicate it was as much as 30 percent less luminous during Earth’s early history than it is now. But, somehow the surface of the planet was warm enough for primordial life to emerge. A new study and a look at Saturn’s moon Titan has provided clues for how the Sun could have kept the early Earth warm enough. Scientists say a thick organic haze that enshrouded early Earth several billion years ago may have been similar to the haze that covers Titan and would have protected emerging life on the planet from the damaging effects of ultraviolet radiation, while warming the planet, as well.

Eric Wolf from the University of Colorado-Boulder and his team believe the organic haze was made up primarily of methane and nitrogen chemical byproducts created by reactions with light. If the particles clumped together in larger, complex structures, an arrangement known as a fractal size distribution, then the smallest particles would interact with the shortwave radiation, while the larger structures made out of the smaller particles would affect longer wavelengths. Not only would the haze have shielded early Earth from UV light, it would have allowed gases like ammonia to build up, causing greenhouse warming and perhaps helped to prevent the planet from freezing over.

Other researchers including Carl Sagan have proposed possible solutions to this “Early Faint Sun” paradox, which generally involved atmospheres with powerful greenhouse gases that could have helped insulate the Earth. But while those gases would have blocked the radiation, it wouldn’t have warmed Earth enough for life to form.

“Since climate models show early Earth could not have been warmed by atmospheric carbon dioxide alone because of its low levels, other greenhouse gases must have been involved,” said Wolf. “We think the most logical explanation is methane, which may have been pumped into the atmosphere by early life that was metabolizing it.”

Lab simulations helped researchers conclude that the Earth haze likely was made up of irregular “chains” of aggregate particles with greater geometrical sizes, similar to the shape of aerosols believed to populate Titan’s thick atmosphere. The arrival of the Cassini spacecraft at Saturn in 2004 has allowed scientists to study Titan, the only moon in the solar system with both a dense atmosphere and liquid on its surface.

During the Archean period there was no ozone layer in Earth’s atmosphere to protect life on the planet, said Wolf. “The UV shielding methane haze over early Earth we are suggesting not only would have protected Earth’s surface, it would have protected the atmospheric gases below it — including the powerful greenhouse gas, ammonia — that would have played a significant role in keeping the early Earth warm.”

The researchers estimated there were roughly 100 million tons of haze produced annually in the atmosphere of early Earth during this period. “If this was the case, an early Earth atmosphere literally would have been dripping organic material into the oceans, providing manna from heaven for the earliest life to sustain itself,” said team member Brian Toon, also from CU-Boulder.

“Methane is the key to make this climate model run, so one of our goals now is to pin down where and how it originated,” said Toon. If Earth’s earliest organisms didn’t produce the methane, it may have been generated by the release of gasses during volcanic eruptions either before or after life first arose — a hypothesis that will requires further study.

This new study will likely re-ignite interest in a controversial experiment by scientists Stanley Miller and Harold Urey in the 1950s in which methane, ammonia, nitrogen and water were combined in a test tube. After Miller and Urey ran an electrical current through the mixture to simulate the effects of lightning or powerful UV radiation, the result was the creation of a small pool of amino acids — the building blocks of life.

“We still have a lot of research to do in order to refine our new view of early Earth,” said Wolf. “But we think this paper solves a number of problems associated with the haze that existed over early Earth and likely played a role in triggering or at least supporting the earliest life on the planet.”

Sources: CU-Boulder, Science

Incredible Images of Enceladus From Cassini’s Latest Flyby

Titan, Saturn's rings and Enceladus. Credit: NASA/JPL/SSI

[/caption]

Wow. Cassini the artist has struck again, this time with amazing images from the close flyby of Enceladus that we wrote a preview about earlier this week. Cassini flew by Enceladus during the early hours of May 18 UTC, coming within about 435 kilometers (270 miles) of the moon’s surface. The raw images came in late last night, and in my inbox this morning was an email from Stuart Atkinson, (no relation, but great name) alerting me to the treasures. Stu himself has called this image “the new iconic image of the space age,” and Emily Lakdawalla of the Planetary Blog has called these images “some of the most amazing Cassini has captured yet.”

What you’re seeing here is hazy Titan, backlit by the Sun, with Saturn’s rings in the foreground– plus, at the way bottom is the limb of the night side of Enceladus’ south pole. Emily has created a flipped, annotated image (plus there’s more Enceladus jaw-droppers below:

nceladus, Titan, and the rings of Saturn (explained) Credit: NASA/JPL/SSI/annotated by Emily Lakdawa. Click for larger version.

The 'fountains' of Enceladus. Credit: NASA/JPL/SSI

Three huge “fountains” of Enceladus geysers are visible in this raw image taken by Cassini on May 18, 2010. The camera was pointing toward Enceladus at approximately 14,972 kilometers away, and the image was taken using the CL1 and CL2 filters. Emily, with her photo editing prowess, has created a movie from four different images as Cassini cruised closer to the moon.

Astro0 on UnmannedSpaceflight.com has put the two different images together to create a collage of what it would have looked like if the plumes were visible in the image with Titan. Gorgeous! Plus, here’s a color version Astro0 created.

Plus there’s this very interesting raw image from Cassini:

Raw image from Cassini on May 18. Credit: NASA/JPL/SSI

Explanations anyone?

Cassini will be flying by Titan in the early hours of May 20 UTC, coming within 1,400 kilometers (750 miles) of the surface. Although Cassini will primarily be doing radio science during this pass to detect subtle variations in the gravitational tug on the spacecraft by Titan, hopefully we’ll see some new visible light images of Titan, as well.

For more images from Cassini, see the Cassini website, and the section for the raw images.