The Next Generation of Telescopes Will Tell Us About the Weather on Other Worlds

This artist’s rendering shows the Extremely Large Telescope in operation on Cerro Armazones in northern Chile. The telescope is shown using lasers to create artificial stars high in the atmosphere. Image: ESO/E-ELT
This artist’s rendering shows the Extremely Large Telescope in operation on Cerro Armazones in northern Chile. The telescope is shown using lasers to create artificial stars high in the atmosphere. Image: ESO/E-ELT

The field of astronomy is about to be revolutionized, thanks to the introduction of Extremely Large Telescopes that rely on primary mirrors measuring 30 meters (or more) in diameter, adaptive optics (AO), coronographs, and advanced spectrometers. This will include the eponymously-named Extremely Large Telescope (ELT), the Giant Magellan Telescope (GMT), and the Thirty Meter Telescope (TMT). These telescopes will enable astronomers to study exoplanets using the Direct Imaging (DI) method, which will yield valuable data on the composition of their atmospheres.

According to a new study by a team of researchers from Ohio State University (OSU), these telescopes will also allow astronomers to study “ultracool objects,” like very low-mass stars (VLMs), brown dwarfs, and exoplanets. In addition to being able to visualize magnetic starspots and determine the chemical compositions of these objects, ELTs will be able to reveal details about atmospheric dynamics and cloud systems. These types of studies could reveal a wealth of information about some of the least-studied objects in our Universe and significantly aid in the search for life beyond our Solar System.

Continue reading “The Next Generation of Telescopes Will Tell Us About the Weather on Other Worlds”

A New Membrane Could Lead to Space Telescopes with Flexible Mirrors!

Membrane mirrors made using the new technique are flexible enough to be rolled up. This could be helpful for storing the mirrors inside of a launch vehicle. © Sebastian Rabien, MPE

The James Webb Space Telescope (JWST) is the most powerful and sophisticated observatory ever built. It is also the most expensive, owing to the complexity of its design and the rigorous testing this entailed. To ensure the telescope could fit into its payload fairing, NASA engineers designed the JWST to fold up (origami-style) and unfold once it reached space. It is little wonder why astronomers and astrophysicists hope to develop flexible, lightweight materials that can maintain the perfect shape and be folded up to fit compactly inside a launch vehicle.

This has the potential to reduce the size and mass of space telescopes and the complexity of their designs, thus reducing launch costs. During the COVID pandemic, researchers at the Max Planck Institute for Extraterrestrial Physics (MPE) developed a new method for producing and shaping high-quality parabolic membrane mirrors. So far, the MPE team has fabricated prototypes up to 30 cm (12 inches) in diameter that are much thinner and more flexible than conventional mirrors. In the long term, this method could drastically reduce the cost of manufacturing and deploying space telescopes.

Continue reading “A New Membrane Could Lead to Space Telescopes with Flexible Mirrors!”

Researchers Build a Telescope with a Flat Lens

The picture of the Moon in the banner might not look all that spectacular, but it is absolutely astounding from a technical perspective. What makes it so unique is that it was taken via a telescope using a completely flat lens. This type of lens, called a metalens, has been around for a while, but a team of researchers from Pennsylvania State University (PSU) recently made the largest one ever. At eight cm in diameter, it was large enough to use in an actual telescope – and produce the above picture of the Moon, however, blurred it might be.

Continue reading “Researchers Build a Telescope with a Flat Lens”

If an Earthlike Planet is Within 30 Light-Years, This Space Telescope Will Find it

There has long been a limiting factor in the development of space-based telescopes – launch fairings. These capsules essentially limit the overall size of the mirrors we are able to launch into space, thereby limiting the sensitivity of many of those instruments. Despite those limitations, some of the most successful telescopes ever have been space-based, but even with all the advantages of being in space, they have so far failed to find an exoplanet in the habitable zone of a Sun-like star. Enter a new project called the Diffractive Interfero Coronagraph Exoplanet Resolver (DICER), which recently received funding from NASA’s Institute for Advanced Concepts (NIAC). 

Continue reading “If an Earthlike Planet is Within 30 Light-Years, This Space Telescope Will Find it”

A Green Bank Telescope Prototype Radar System Can Image the Moon in High-Resolution and Detect Asteroids

Prototype radar image zoom-in of Tycho Crater floor in 5-meter resolution detail. (Credit: Raytheon Technologies)

Everyone loves taking pictures of the Moon. Whether it’s with their phones or through the wonders of astrophotography, photographing the Moon reminds us about the wonders and awesomeness of the universe. But while we can take awesome images of the whole Moon from the Earth, it’s extremely difficult to get close-up images of its surface given the enormous distance we are from our nearest celestial neighbor at 384,400 km (238,855 mi). This is because the closer we try to zoom in on its surface, the blurrier, or more pixelated, the images become. Essentially, the resolution of the images becomes worse and worse. But what if we could take high-resolution images of the Moon’s surface from Earth instead of relying on satellites presently in lunar orbit to take them for us?

Continue reading “A Green Bank Telescope Prototype Radar System Can Image the Moon in High-Resolution and Detect Asteroids”

Future Space Telescopes Could be 100 Meters Across, Constructed in Space, and Then Bent Into a Precise Shape

Graphic depiction of Bend-Forming of Large Electrostatically Actuated Space Structures. Credit: Zachary Cordero

It is an exciting time for astronomers and cosmologists. Since the James Webb Space Telescope (JWST), astronomers have been treated to the most vivid and detailed images of the Universe ever taken. Webb‘s powerful infrared imagers, spectrometers, and coronographs will allow for even more in the near future, including everything from surveys of the early Universe to direct imaging studies of exoplanets. Moreover, several next-generation telescopes will become operational in the coming years with 30-meter (~98.5 feet) primary mirrors, adaptive optics, spectrometers, and coronographs.

Even with these impressive instruments, astronomers and cosmologists look forward to an era when even more sophisticated and powerful telescopes are available. For example, Zachary Cordero 
of the Massachusetts Institute of Technology (MIT) recently proposed a telescope with a 100-meter (328-foot) primary mirror that would be autonomously constructed in space and bent into shape by electrostatic actuators. His proposal was one of several concepts selected this year by the NASA Innovative Advanced Concepts (NIAC) program for Phase I development.

Continue reading “Future Space Telescopes Could be 100 Meters Across, Constructed in Space, and Then Bent Into a Precise Shape”

It’s Already Hard Enough to Block a Single Star’s Light to See its Planets. But Binary Stars? Yikes

Binary stars are common and imaging their planets will be a challenge. How can astronomers block all that light so they can see the planets? This artist's illustration shows the eclipsing binary star Kepler 16, as seen from the surface of an exoplanet in the system. Image Credit: NASA

Detecting exoplanets was frontier science not long ago. But now we’ve found over 5,000 of them, and we expect to find them around almost every star. The next step is to characterize these planets more fully in hopes of finding ones that might support life. Directly imaging them will be part of that effort.

But to do that, astronomers need to block out the light from the planets’ stars. That’s challenging in binary star systems.

Continue reading “It’s Already Hard Enough to Block a Single Star’s Light to See its Planets. But Binary Stars? Yikes”

Subaru Telescope can now Analyze 2,400 Galaxies Simultaneously

First light is an exciting time for astronomers and engineers who help bring new telescopes up to speed. One of the most recent and significant first light milestones recently occurred at the Subaru Telescope in Hawai’i. Though it has been in operation since 2005, the National Astronomical Observatory of Japan’s (NAOJ) main telescope recently received an upgrade that will allow it to simultaneously observe 2400 astronomical objects at once over a patch of sky the size of several moons.

Continue reading “Subaru Telescope can now Analyze 2,400 Galaxies Simultaneously”

A New Instrument Gives the Very Large Telescope an Even Sharper View of the Cosmos

ERIS, the Very Large Telescope’s newest infrared eye on the sky, reveals the inner ring of the galaxy NGC 1097 in stunning detail, in this comparison view. Credit: ESO/ERIS team.

The Very Large Telescope (VLT) at Cerro Paranal in northern Chile, is undoubtedly one of the premier ground-based observatories. But a new infrared instrument recently installed on the telescope has made the VLT even better.

The Enhanced Resolution Imager and Spectrograph (ERIS) was delivered to Chile in December, 2021 and the first test observations were carried out beginning in February of this year. ESO, the European Organization for Astronomical Research in the Southern Hemisphere, an international organization which coordinates the use of VLT and several other observatories, says this infrared instrument “will be able to see further and in finer detail, leading the way in Solar System, exoplanet and galaxy observations.”

Continue reading “A New Instrument Gives the Very Large Telescope an Even Sharper View of the Cosmos”

Three New Potentially Hazardous Asteroids Discovered, Including a big one That Measures 1.5 km Across

Sstronomers have spotted three near-Earth asteroids (NEAs) hiding in the glare of the Sun. These NEAs are part of an elusive population that lurks inside the orbits of Earth and Venus. One of the asteroids is the largest object that is potentially hazardous to Earth to be discovered in the last eight years. Image Credit: DOE/FNAL/DECam/CTIO/NOIRLab/NSF/AURA/J. da Silva/Spaceengine

An asteroid 1.5 km across is no joke. Even a much smaller one, about the size of a house, can explode with more power than the first nuclear weapons. When an asteroid is greater than 1 km in diameter, astronomers call them “planet-killers.” The impact energy released from a planet-killer striking Earth would be devastating, so knowing where these asteroids are and where they’re headed is critically important.

Our defensive capability against asteroid strikes is in its infancy, so advance notice of asteroids that could cross Earth’s orbit is critical. We’ll need time to prepare.

Continue reading “Three New Potentially Hazardous Asteroids Discovered, Including a big one That Measures 1.5 km Across”