Dreamliner Makes First Flight

The next big thing for airliners made its maiden flight today. Boeing’s new 787 Dreamliner jet took off at 10:27 am (1827 GMT) from Paine Field near Boeing’s plant in Washington state in the US. As Boeing’s first new design model in over a decade, it takes advantage of advances in aviation technology and is capable of flying long-haul routes using up to 20 percent less fuel. At two year overdue, the milestone is critical for Boeing at the key to the future of the US aerospace company.
Continue reading “Dreamliner Makes First Flight”

The Next Generation of Heat Shield: Magnetic

Heat shields are an important part of any space vehicle that re-enters the Earth’s atmosphere. The next generation of heat shields to protect astronauts and payloads on their re-entry into the Earth’s atmosphere may use superconducting magnets to deflect the plasma that forms in front of spacecraft as they travel at high speeds in the air. The first test of such a heat shield could happen as early as ten years from now, and the basic technology is already in development.

Traditional heat shields use the process of ablation to disperse heat away from the capsule. Basically, the material that covers the outside of the capsule gets worn away as it is heated up, taking the heat with it. The space shuttle uses tough insulated tiles. A magnetic heat shield would be lighter and much easier to re-use, eliminating the cost of re-covering the outside of a craft after each entry.

A magnetic heat shield would use a superconductive magnetic coil to create a very strong magnetic field near the leading edge of the vehicle. This magnetic field would deflect the superhot plasma that forms at the extreme temperatures cause by friction near the surface of an object entering the Earth’s atmosphere. This would reduce or completely eliminate the need for insulative or ablative materials to cover the craft.

Problems with the heat shield on a spacecraft can be disastrous, even fatal; the Columbia disaster was due largely to the failure of insulative tiles on the shuttle, due to damage incurred during launch. Such a system might be more reliable and less prone to damage than current heat shield technology.

At the European air and space conference 2009 in Manchester in October, Detlev Konigorski from the private aerospace firm Astrium EADS said that with the cooperation of German aerospace center DLR and the European Space Agency, Astrium was developing a potential magnetic heat shield for testing within the next few years.

The initial test vehicle would be launched from a submarine aboard a Russian Volna rocket on a suborbital trajectory, and land in the Russian Kamchatka region. A Russian Volan escape capsule will be outfitted with the device, and the re-entry trajectory will take it up to speeds near Mach 21.

Though the scientists are currently testing the capabilities of a superconducting coil to perform this feat, there is the challenge of calculating changes to the trajectory of a test vehicle, because the air will be deflected away much more than with current heat shield technology. The ionized gases surrounding a capsule using a magnetic heat shield would also put a wrench in the current technique of using radio signals for telemetry data. Of course, there are a long list of other technical challenges to overcome before the testing will happen, so don’t expect to see the Orion crew vehicle outfitted with one!

Source: Physorg

The Extremely Large Telescope

The European Southern Observatory (ESO) is planning on building a massive – and I do mean massive – telescope in the next decade. The European Extremely Large Telescope (E-ELT) is a 42-meter telescope in its final planning stages. Weighing in at 5,000 tonnes, and made up of 984 individual mirrors, it will be able to image the discs of extrasolar planets and resolve individual stars in galaxies beyond the Local Group! By 2018 ESO hope to be using this gargantuan scope to stare so deep into space that they can actually see the Universe expanding!

The E-ELT is currently scheduled for completion around 2018 and when built it will be four times larger than anything currently looking at the sky in optical wavelengths and 100 times more powerful than the Hubble Space Telescope – despite being a ground-based observatory.

With advanced adaptive optics systems, the E-ELT will use up to 6 laser guide stars to analyse the twinkling caused by the motion of the atmosphere. Computer systems move the 984 individual mirrored panels up to a thousand times a second to cancel out this blurring effect in real time. The result is an image almost as crisp as if the telescope were in space.

This combination of incredible technological power and gigantic size mean that that the E-ELT will be able to not only detect the presence of planets around other stars but also begin to make images of them. It could potentially make a direct image of a Super Earth (a rocky planet just a few times larger than Earth). It would be capable of observing planets around stars within 15-30 light years of the Earth – there are almost 400 stars within that distance!

The E-ELT will be able to resolve stars within distant galaxies and as such begin to understand the history of such galaxies. This method of using the chemical composition, age and mass of stars to unravel the history of the galaxy is sometimes called galactic archaeology and instruments like the E-ELT would lead the way in such research.

Incredibly, by measuring the redshift of distant galaxies over many years with a telescope as sensitive as the E-ELT it should be possible to detect the gradual change in their doppler shift. As such the E-ELT could allow humans to watch the Universe itself expand!

ESO has already spent millions on developing the E-ELT concept. If it is completed as planned then it will eventually cost about €1 billion. The technology required to make the E-ELT happen is being developed right now all over the world – in fact it is creating new technologies, jobs and industry as it goes along. The telescope’s enclosure alone presents a huge engineering conundrum – how do you build something the size of modern sports stadium at high altitude and without any existing roads? They will need to keep 5,000 tonnes of metal and glass slewing around smoothly and easily once it’s operating – as well as figuring out how to mass-produce more than 1200 1.4m hexagonal mirrors.

The E-ELT has the capacity to transform our view not only of the Universe but of telescopes and the technology to build them as well. It will be a huge leap forward in telescope engineering and for European astronomy it will be a massive 42m jewel in the crown.

Anti-Gravity Treadmill Developed from NASA Technology

Ever wonder what it would be like to walk on the Moon or run on Mars? A treadmill developed using NASA technology can provide users the feeling of moving about in less than 1 G. Anti Gravity treadmills, sold under the name of Alter-G, are becoming common in hospitals, rehab centers, and sports facilities, and just about every professional sports team in North America has one. They are a bit pricey for individuals to afford, but athletes and physical therapists say the device is a fantastic addition to their exercise repertoire.

Anti G treadmills allow people to improve mobility and health, recover from injury and surgery more effectively, overcome medical challenges that limit movement, and enhance physical performance. Runners and other athletes use the anti gravity treadmills to maintain their fitness level after a minor injury, without adding stress to their injury.

The Alter-G treadmill creates a seal around the user’s waist and then inflates to create a pressurized environment that can take away up to 80% of the user’s body weight, lessening the pounding to the joints.
The technology was first proposed for use on the space station to actually increase the amount of gravity felt by the body by using differential air pressure in space to mimic the Earth’s gravity to prevent bone loss and muscle deterioration.

G-Trainer.  Credit: NASA
G-Trainer. Credit: NASA

Ames Research Center scientist, Robert Whalen, who came up with the idea said the anti-G trainer evolved directly from his original idea of how to add weight to an astronaut’s body during treadmill exercise in the low gravity of space. On Earth, it works just the opposite, giving users an astronaut-like experience.

A variety of patients—whether suffering from brain injury, neurological disorders, athletic injuries, or other stresses on the joints such as arthritis or morbid obesity—now use the NASA-derived technology in physical therapy.

In order for the G-Trainer to control air pressure effectively, users first have to don specially designed shorts which attach to a waist-level enclosure. After the person’s lower body is sealed in an enclosure – basically a big plastic bag around the treadmill, the system performs a calibration, adjusting to the person’s size and weight. Then running speed and incline can be chosen, along with what percent of weight should be removed. If a patient desires more unloading—more weightlessness—a button is simply pressed on a touch screen, and the air pressure increases, lifting the body, reducing strain, and further minimizing impact on the legs.

Prices run from USD $24,000 to $75,000 or leases for about $500 a month.

For more information:

Alter-G website
NASA Spinoffs

Designing a Better Astronaut Glove

If you can build a better mousetrap, then you can certainly build a better glove for astronauts! Making a glove that both protects the hands of the astronauts in the harsh environment of space or on the Moon, and allowing them the dexterity to manipulate tools is a tough challenge for NASA. That’s why they are holding the second Astronaut Glove Challenge on November 19th, with a $400,000 prize for the best glove.

The layers of protection that an astronaut glove needs to have to shield against micrometeorites in space and insulate the hand of the wearer make for one rigid glove. The gloves are also pressurized, which makes them more rigid and further detracts from the mobility of an astronaut. NASA has held one previous competition to see who could build a better glove, in 2007, and the winner was Peter Homer, a former aerospace engineer. He took home the $200,000 prize last time, and is expected to return this year to compete against at least one other team. To read more about his story and see a video of his glove in operation, visit NASA’s page about him. Homer was also featured on Wired Magazine’s “Geek Dad” series, and a video interview is available here.

The last competition involved performing a series of tasks inside of a box that is under vacuum to measure how fatiguing to the fingers the glove was. The inside bladder of the glove was subjected to a burst test, in which it was pressurized to the point at which it bursts. The amount of force required to bend each finger of the glove was also measured.

These same rules will apply in this year’s competition, but the added challenge will be to perform all of these tests inside of an improved thermal micrometeorite garment, the outside layer of the glove that protects the astronaut’s hand from damage. This is basically a complete glove that is ready for operation in space.

NASA has been holding several challenges with some hefty prizes to incite development in space-related technology. The Centennial Challenge program most recently gave away prizes for the Power Beaming Challenge and the Lunar Lander Challenge. The prize will be provided by NASA, but the competition is managed by Volanz Aerospace Inc. of Owings, Md. and sponsored by Secor Strategies, LLC of Titusville, Fla.

Good luck to all the competitors, and may the best glove win!

Source: NASA, Astronaut Glove Challenge

LaserMotive Takes Prize During Space Elevator Games

The 2009 Space Elevator Games ran from November 4-6, and there is a winner! LaserMotive from Seattle took home the Level 1 prize of $900,000. Three teams competed for the $1.1 million and $900,000 prizes in this year’s event: LaserMotive from Seattle, the Kansas City Space Pirates, and the University of Saskatchewan Space Design Team (USST).

As we covered last week, on the very first day of the event LaserMotive successfully climbed the 1km (.6mile) ribbon “racetrack” at NASA’s Dryden Flight Research Center at Edwards Air Force Base near Mojave, California. LaserMotive is the first team that has qualified for a prize in the 5 years the games have run. They made a successful climb of the 1km ribbon at 4m/s (13ft/s), far beyond the 2m/s requirement for the Level 1 prize. LaserMotive made 4 runs of above 2m/s (6.6ft/s), an impressive showing considering that this is the first time a team has made the 1km mark, let alone qualify for one of the prizes! Their top time of 3-minutes 47-seconds was on Thursday.

The Kansas City Space Pirates made several climbs, none of which reached the top of the cable. Though their lasing system is the most powerful, they had trouble tracking the climber throughout the competition and were unable to get it up past about the halfway point.

USST didn’t have much luck this time around. Their climber had a number of issues, and during many of their climbing windows it was completely grounded.

The Level 2 prize of $1.1 million still remains unclaimed. This will go to the team that can climb 1km at 5m/s (16.5 ft/s) or more at the next Power Beaming Challenge. LaserMotive made an unsuccessful attempt to lighten their climber and get it to the 5m/s mark on the last day of the games. Maybe next year?

The Space Elevator Games/Power Beaming Challenge are part of NASA’s Centennial Challenges program, which provides monetary incentives for private companies to develop technologies in space-related fields. Just last week, the program handed out $1.5 million for the The Northrop Grumman Lunar Lander X-Prize challenge. The Space Elevator Games are run by the Spaceward Foundation.

Check back with us here at Universe Today next year to see if anyone nabs the big prize!

Source: NASA, Space Elevator Games

Going Up? Top Floor, Space Elevator Games 2009

BREAKING NEWS: LaserMotive successfully qualified for the $900,000 prize! Their official speed was 3.72 m/s. Way to go! See more below.

Though it’s unlikely that anyone will be pressing the elevator button labeled ‘Space’ on one of the competitors’ vehicles this year at the 2009 Space Elevator Games, there is hope that a winner will walk away with the $1.1 million prize. Three different teams will compete to see if any can send a laser powered vehicle up a thin but strong ribbon 1km (.6 miles) into the sky.

This is the 5th year of the games, which started in 2005. The games are part of NASA’s Centennial Challenges program, which awards monetary prizes in the attempt to spur new technologies. This is a busy week for the program; as we covered earlier today, the Northrop Grumman Lunar X-prize announced two winners, and is part of the Centennial Challenge program.

To win the $1.1 million prize, one of the teams must propel their vehicle 1 km (.6 miles) into the sky at an average of at least 5 m/s (16.4ft/s). A second place prize of $900,000 will be awarded to any team that can go the 1km at an average of 2m/s (6.6 ft/s). The games this year will run from November 4th-6th, with each team getting the chance to launch their laser powered vehicles during a pre-determined 45-minute window for each day of the competition. The event takes place at NASA’s Dryden Flight Research Center at Edwards Air Force Base near Mojave, California.

Three teams have qualified to enter this year’s event: The Kansas City Space Pirates, LaserMotive, and the University of Saskatchewan Space Design Team (USST). The entire event will be live broadcast on Ustream, and updates will be provided on the official site.

For each test, a helicopter brings the elevator up the cable to a fixed starting point. The team is then given a go to calibrate their laser, and start beaming power to the craft. Each elevator uses small wheels to grip the ribbon, which is held aloft by a balloon tethered by three guy wires.

For a taste of what these elevators look like, check out this video:

Here’s a breakdown of what happened so far today: The Kansas City Space Pirates gave it three tries. In the first attempt, their elevator failed to take off. After fixing the problem, they were able to get the craft to move, but it then stopped. During the third, it started to climb the ribbon but they were unable to keep the laser locked on the elevator to power it, and it wasn’t able to climb the 1km to the top of the ribbon and brought back down.

LaserMotive had much better luck, despite a no-go on their initial attempt. Their elevator was lifted to the start by the helicopter, but failed to move despite repeated lasing attempts. After bringing it down for a tweak or two, the elevator was again placed at the start. It took off, making the first 300m (985ft) in a little under a minute, which met the 5m/s goal. The speed tapered off towards the top, but they bumped up against the 1km mark at approximately 4 minutes, making them the first to successfully claim the minimum 2km/s prize! While watching the live feed of this fantastic feat, I overheard a transmission from LaserMotive saying, “This is LaserMotive requesting permission to breathe.”

USST will not launch today, as there are no more open windows where satellites overhead will not be accidentally hit by the intense lasers used as power sources for the elevators. They will go tomorrow, November 5th, at 7am PST. Be sure to check back with us at Universe Today for more coverage, or head over to the official site for live streaming.

Source: Physorg, Space Games Live Feed

Mars Explorers May Use AI to Become ‘Cyborg Astrobiologists’

Ever heard of a ‘Cyborg Astrobiologist’? Probably not. But I bet you’ll want to be one after learning that future exploration of Mars (and other planets, for that matter) may employ the use of artificial intelligence integrated into spacesuits to enhance the ability of astronauts in taking scientific data while exploring. The AI assistance could help future astronauts exploring planets to recognize differences in their surroundings as being due to the presence of life. Does this sound like something from 50 years from now? Well, a prototype model has already been tested, and has shown the principle behind this idea to be sound.

University of Chicago geoscientist Patrick McGuire and his team have developed the basic systems needed for such a spacesuit, using mostly off-the shelf technology. The system uses a Hopfield neural network to analyze data taken in by a either a camera phone or a microscope. The AI system employs a ‘novelty detection algorithm’ which analyzes images from either imaging device, and is able to identify features in images that are out of place.

The Hopfield system compares patterns against ones it has already seen, and learns from this process to correctly identify novel patterns that could be of interest. The full prototype spacesuit has a wearable computer that houses the AI system, which uses Bluetooth to receive data from a cell phone camera or is connected to a USB digital microscope.

The system was tested at the Mars Desert Research Station (MDRS) in the San Rafael Swell of Utah, which is maintained by the Mars Society. The MDRS is a semi-arid desert with “greenish, grey or light gray mudstone,
limestone, siltstone and sandstone, partially inter-bedded by white sandstone layers”. For the last two weeks of February 2009, two members of McGuire’s team tested the wearable technology, which was able to successfully learn to identify patches of lichen from a background of rock, and identify different color patterns that signified different rock formations.

Another test, conducted in September of 2005 at Rivas Vaciamadrid in Spain, utilized a USB digital microscope to image rocks with lichen on them. As you can see in the image below, the AI system was able to identify as uncommon the spores of the lichen, which are about 1mm in diameter.The Hopfield AI system was able to successfully identify lichen spores imaged by a digital microscope as a novel feature on rock formations in Rivas Vaciamadrid, Spain. Image Credit: Patrick McGuire arXiv:0910.5454

There are still some bugs to be worked out, though, as the system detected cast shadows in rough terrain our low standing Sun as novel features, the researchers wrote in their paper, The Cyborg Astrobiologist: Testing a Novelty-Detection Algorithm on Two Mobile Exploration Systems at Rivas Vaciamadrid in Spain and at the Mars Desert Research Station in Utah, available on Arxiv. The researchers also tested a head-mounted digital microscope display, but instead opted for a tripod due to the blurriness associated with the head movement of the researcher wearing the suit.

Though it may be a while until there are any Martian astronauts utilizing such a system – let alone Martian astronauts with the title of ‘Cyborg Astrobiologist’ – the combination of the AI with imaging systems could start to prove very useful on future orbital surveyors of Mars. Additionally, these systems could be used to collect and analyze data outside of the visible light spectrum, which could be incredibly useful for both robotic and human explorers.

Source: Physorg, Arxiv

WiFi in Space Coming Soon?

[/caption]
Although current astronauts are Twittering and blogging from space, it’s a cumbersome process as the ISS, shuttle and Soyuz do not have internet access. Instead, they have to downlink their information to mission control, where someone posts it to the web. But if future commercial space travelers or astronauts living on the Moon want to blog, Tweet and share their experiences real-time, will it be possible? Well, a group of engineers are working on applying the same wireless systems that keep our mobile phones, laptops and other devices connected to the web to a new generation of networked space hardware. They say that wireless technologies will likely be important part of future space exploration, not only for human communication but for transfer of data and commands.

The Wireless Working Group (WWG) of the Consultative Committee for Space Data Services (CCSDS) is a group of engineers that coordinates wireless research among global space agencies and promotes interoperability of spacecraft data systems.

Multiple microsensors like this one could be scattered across planetary surfaces to gather more information than a single lander could provide. The microsensors would then configure a wireless network to assemble data for its relay back to Earth.  Credit:  ESA
Multiple microsensors like this one could be scattered across planetary surfaces to gather more information than a single lander could provide. The microsensors would then configure a wireless network to assemble data for its relay back to Earth. Credit: ESA

They say that wireless sensor nodes placed throughout a spacecraft might function as a networked nervous system, yielding a wealth of currently inaccessible structural or environmental data to mission controllers. Similar nodes scattered across a planetary surface would generate a much higher scientific return than a single lander could, configuring a network to combine their findings for relaying to Earth.

And establishing ‘plug and play’ wireless networking between multiple spacecraft could enable the seamless transfer of data and commands. This would work for formation-flying satellite constellations and orbiter-lander-rover combinations , but proximity networks could be set up by any spacecraft within signal range as easily as a laptop plugs into a WiFi network.

Of course, the technology is still being developed and having Wifi in space isn’t going to happen anytime soon, but engineers say the underlying technologies are already with us, in the protocols delivering wireless connectivity to homes, offices and public places.

“This research is an example of us ‘spinning in’ technology developed elsewhere into the space sector,” said ESA data handling engineer Jean-François Dufour, who is part of the CCSDS. “Commercial wireless protocols such as the IEEE 802.11 family of standards for computer WiFi or sensor networking standards such as IEEE 802.15.4 are already available so we are assessing how they might transfer to the space environment.”

Source: ESA

Manned Solar Plane Will Attempt Flight Around the World

[/caption]
A man who circled the globe in a balloon in 1999 has a new global adventure planned. Bertrand Piccard has unveiled a prototype of a solar-powered plane he hopes to fly around the world. Until now, only unmanned solar airplanes have been flown, but Piccard’s HB-SIA would be manned. The glider-like plane has solar panels covering the wings, and the wingspan of the prototype reaches 61m, while the entire vehicle weighs only 1,500 kg. The first tests of the plane will be done to prove it can fly at night. Piccard says he wants to demonstrate the potential of renewable energies.

Piccard just unveiled the prototype, and he hopes to attempt a flight across the Atlantic by 2012.

Solar and battery technology is just now maturing enough to enable solar flight. In 2007 the UK defence company Qinetiq flew an unmanned aerial vehicle called the Zephyr unmanned for 54 continuous hours during tests.

The HB-SIA. Credit: BBC
The HB-SIA. Credit: BBC

But Piccard and his company, Solar Impulse are working on what they believe to be a breakthrough design, using super-efficient solar cells, batteries, motors and propellers to get it through the dark hours and composite materials to keep it extremely light.

Although the vehicle is expected to be capable of flying non-stop around the globe, Piccard will in fact make five long hops, sharing flying duties with project partner Andre Borschberg.

“The aeroplane could do it theoretically non-stop – but not the pilot,” said Piccard told the BBC. “We should fly at roughly 25 knots and that would make it between 20 and 25 days to go around the world, which is too much for a pilot who has to steer the plane. In a balloon you can sleep, because it stays in the air even if you sleep. We believe the maximum for one pilot is five days.”

More info on Solar Impulse.. And just for your interest, here’s an article about the biggest plane in the world.

Source: BBC