NASA’s STEREO Spots a New Nova

STEREO-B image of Sagittarii 2012 (STEREO/SECCHI/NASA/NRL)


While on duty observing the Sun from its position in solar orbit, NASA’s STEREO-B spacecraft captured the sudden appearance of a distant bright object. This flare-up turned out to be a nova — designated Sagittarii 2012 — the violent expulsion of material and radiation from a re-igniting white dwarf star.

Unlike a supernova, which is the cataclysmic collapse and explosion of a massive star whose core has finally fused its last, a nova is the result of material falling onto the surface of a white dwarf that’s part of a binary pair. The material, typically hydrogen and helium gas, is drawn off the white dwarf’s partner which has expanded into a red giant.

Eventually the white dwarf cannot contain all of the material that it has sucked in from its neighbor… material which has been heated to tremendous temperatures on its surface as it got compressed further and further by the white dwarf’s incredibly strong gravity. Fusion occurs on the dwarf’s outermost layers, blasting its surface out into space in an explosion of light and energy.

This is a nova — so called because, when witnessed in the night sky, one could suddenly appear as a “new star” in the heavens — sometimes even outshining all other visible stars!

An individual nova will soon fade, but a white dwarf can produce many such flares over time. It all depends on how rapidly it’s accreting material (and how much there is available.)

Over the course of 4 days, Sagittarii 2012 reached a magnitude of about 8.5… still too dim to be seen with the unaided eye, but STEREO-B was able to detect it with its SECCHI (Sun Earth Connection Coronal and Heliospheric Investigation) instrument, which is sensitive to extreme ultraviolet wavelengths.

The video above was made from images acquired from April 20 – 24, 2012.

It’s not known yet how far away Sagittarii 2012 is but rest assured it poses no threat to Earth. The energy expelled by a nova is nowhere near that of a supernova, and although you wouldn’t want to have a front-row seat to such an event we’re well away from the danger zone.

What this does show is that STEREO-B is not only a super Sun-watching sentinel, but also very good at observing much more distant stars as well!

Thanks to @SungrazerComets for the heads-up on this novel nova!

[/caption]

 

Hubble Gets Best Look Yet At Messier 9

New Hubble image of Messier 9 cluster resolves individual stars (NASA/ESA)

[/caption]

First discovered by Charles Messier in 1764, the globular cluster Messier 9 is a vast swarm of ancient stars located 25,000 light-years away, close to the center of the galaxy. Too distant to be seen with the naked eye, the cluster’s innermost stars have never been individually resolved… until now.

This image from the Hubble Space Telescope is the most detailed view yet into Messier 9, capturing details of over 250,000 stars within it. Stars’ shape, size and color can be determined — giving astronomers more clues as to what the cluster’s stars are made of. (Download a large 10 mb JPEG file here.)

Hot blue stars as well as cooler red stars can be seen in Messier 9, along with more Sun-like yellow stars.

Unlike our Sun, however, Messier 9’s stars are nearly ten billion years old — twice the Sun’s age — and are made up of much less heavy elements.

Since heavy elements (such as carbon, oxygen and iron) are formed inside the cores of stars and dispersed into the galaxy when the stars eventually go supernova, stars that formed early on were birthed from clouds of material that weren’t yet rich in such elements.

Zoom into the Messier 9 cluster with a video from NASA and the European Space Agency below:

The Hubble Space Telescope is a project of international cooperation between ESA and NASA. See more at www.spacetelescope.org.

Image credit: NASA & ESA. Video: NASA, ESA, Digitized Sky Survey 2, N. Risinger (skysurvey.org)

Speca – An Intriguing Look Into The Beginning Of A Black Hole Jet

A unique galaxy, which holds clues to the evolution of galaxies billions of years ago, has now been discovered by an Indian-led international team of astronomers. The discovery, which will enable scientists to unearth new aspects about the formation of galaxies in the early universe, has been made using the Giant Meterwave Radio Telescope (GMRT) of the National Centre for Radio Astrophysics, Tata Institute of Fundamental Research (NCRA-TIFR). CREDIT: Hota et al., SDSS, NCRA-TIFR, NRAO/AUI/NSF.

[/caption]

Its name is SPECA – a Spiral-host Episodic radio galaxy tracing Cluster Accretion. That’s certainly a mouthful of words for this unusual galaxy, but there’s a lot more going on here than just its name. “This is probably the most exotic galaxy with a black hole, ever seen. It is like a ‘missing-link’ between present day and past galaxies. It has the potential to teach us new lessons about how galaxies and clusters of galaxies formed in the early Universe,” said Ananda Hota, of the Academia Sinica Institute of Astronomy and Astrophysics (ASIAA), in Taiwan and who discovered this exotic galaxy.

Located about 1.7 billion light-years from Earth, Speca is a radio source that contains a central supermassive black hole. As we have learned, galaxies of this type produce relativistic “jets” which are responsible for being bright at the radio frequencies, but that’s not all they create. While radio galaxies are generally elliptical, Speca is a spiral – reason behind is really unclear. As the relativistic jets surge with time, they create lobes of sub-atomic material at the outer edges which fan out as the material slows down… and Speca is one of only two galaxies so far discovered to show this type of recurrent jet activity. Normally it occurs once – and rarely twice – but here it has happened three times! We are looking at a unique opportunity to unravel the mysteries of the beginning phase of a black hole jet.

“Both elliptical and spiral galaxies have black holes, but Speca and another galaxy have been seen to produce large jets. It is also one of only two galaxies to show that such activity occurred in three separate episodes.” explains Sandeep Sirothia of NCRA-TIFR. “The reason behind this on-off activity of the black hole to produce jets is unknown. Such activities have not been reported earlier in spiral galaxies, which makes this new galaxy unique. It will help us learn new theories or change existing ones. We are now following the object and trying to analyse the activities.”

Dr. Hota and an international team of scientists reached their first conclusions while studying combined data from the visible-light Sloan Digital Sky Survey (SDSS) and the FIRST survey done with the Very Large Array (VLA) radio telescope. Here they discovered an unusually high rate of star formation where there should be none and they then confirmed their findings with ultraviolet data from NASA’s GALEX space telescope. Then the team dug even deeper with radio information obtained from the NRAO VLA Sky Survey (NVSS). At several hundred million years old, these outer lobes should be beyond their reproductive years… Yet, that wasn’t all. GMRT images displayed yet another, tiny lobe located just outside the stars at the edge of Speca in plasma that is just a few million years old.

“We think these old, relic lobes have been ‘re-lighted’ by shock waves from rapidly-moving material falling into the cluster of galaxies as the cluster continues to accrete matter,” said Ananda. “All these phenomena combined in one galaxy make Speca and its neighbours a valuable laboratory for studying how galaxies and clusters evolved billions of years ago.”

As you watch the above galaxy merger simulation created by Tiziana Di Matteo, Volker Springel, and Lars Hernquist, you are taking part in a visualization of two galaxies combining which both have central supermassive black holes and the gas distribution only. As they merge, you time travel over two billion years where the brightest hues indicate density while color denotes temperature. Such explosive process for the loss of gas is needed to understand how two colliding star-forming spiral galaxies can create an elliptical galaxy… a galaxy left with no fuel for future star formation. Outflow from the supernovae and central monster blackholes are the prime drivers of this galaxy evolution.

“Similarly, superfast jets from black holes are supposed to remove a large fraction of gas from a galaxy and stop further star formation. If the galaxy is gas-rich in the central region, and as the jet direction changes with time, it can have an adverse effect on the star formation history of a galaxy. Speca may have once been part of such a scenario. Where multiple jets have kicked out spiral arms from the galaxy. To understand such a process Dr Hota’s team has recently investigated NGC 3801 which has very young jet in very early-phase of hitting the host galaxy. Dust/PAH, HI and CO emission shows an extremely warped gas disk. HST data clearly showa outflow of heated-gas. This gas loss, as visualised in the video, has possibly caused the decline of star formation. However, the biggest blow from the monster’s jets are about to give the knock-down punch the galaxy.

“It seems, we observe this galaxy at a rare stage of its evolutionary sequence where post-merger star formation has already declined and new powerful jet feedback is about to affect the gaseous star forming outer disk within the next 10 million years to further transform it into a red-and-dead early-type galaxy.” Dr. Hota says.

The causes behind why present day radio galaxies do not contain a young star forming disks are not clear. Speca and NGC 3801 are ideal laboratories to understand black hole galaxy co-evolution processes.

Original Research Paper: Caught in the act: A post-merger starforming early-type galaxy with AGN-jet feedback. For Further Reading: Various press releases and news on the discovery of Speca. This article has been changed slightly from its original publication to reflect more information from Dr. Hota.

Galactic Archaeology: NGC 5907 – The Dragon Clash

NGC 5907 - Credit: R. Jay Gabany

[/caption]

The sprawling northern constellation of Draco is home to a monumental galactic merger which left a singular spectacle – NGC 5907. Surrounded by an ethereal garment of wispy star trails and currents of stellar material, this spiral galaxy is the survivor of a “clash of the dragons” which may have occurred some 8 to 9 billion years ago. Recent theory suggests galaxies of this type may be the product of a larger galaxy encountering a smaller satellite – but this might not be the case. Not only is NGC 5907 a bit different in some respects, it’s a lot different in others… and peculiar motion is just the beginning.

“If the disc of many spirals is indeed rebuilt after a major merger, it is expected that tidal tails can be a fossil record and that there should be many loops and streams in their halos. Recently Martínez-Delgado et al. (2010) have conducted a pilot survey of isolated spiral galaxies in the Local Volume up to a low surface brightness sensitivity of ~28.5 mag/arcsec2 in V band. They find that many of these galaxies have loops or streams of various shapes and interpret these structures as evidence of minor merger or satellite infall.” says J. Wang of the Chinese Academy of Sciences. “However, if these loops are caused by minor mergers, the residual of the satellite core should be detected according to numerical simulations. Why is it hardly ever detected?”

The “why” is indeed the reason NGC 5907 is being intensively studied by a team of six scientists of the Observatoire de Paris, CNRS, Chinese Academy of Sciences, National Astronomical Observatories of China NAOC and Marseille Observatory. Even though NGC 5907 is a member of a galactic group, there are no galaxies near enough to it to be causing an interaction which could account for its streamers of stars. It is truly a warped galaxy with gaseous and stellar disks which extend beyond the nominal cut-off radius. But that’s not all… It also has a peculiar halo which includes a significant fraction of metal enriched stars. NGC 5907 just doesn’t fit the patterns.

“For some of our models, we assume a star formation history with a varying global efficiency in transforming gas to stars, in order to preserve enough gas from being consumed before fusion.” explains the research team. “Although this fine-tuned star formation history may have some physical motivations, its main role is also to ensure the formation of stars after the emergence of the gaseous disc just after fusion.”

On left, the NGC 5907 galaxy. It is compared to the simulations, on right. Both cases show an edge-on galactic disk surrounded by giant loops of old stars, which are witnessing of a former, gigantic collision. (Jay Gabany, cosmotography.com / Observatoire de Paris / CNRS / Pythéas / NAOC)

Now enter the 32- and 196-core computers at the Paris Observatory center and the 680-core Graphic Processor Unit supercomputer of Beijing NAOC with the capability to run 50000 billion operations per second. By employing several state of the art, hydrodynamical, and numerical simulations with particle numbers ranging from 200 000 to 6 millions, the team’s goal was to show the structure of NGC 5907 may have been the result of the clash of two dragon-sized galaxies… or was it?

“The exceptional features of NGC 5907 can be reproduced, together with the central galaxy properties, especially if we compare the observed loops to the high-order loops expected in a major merger model.” says Wang. “Given the extremely large number of parameters, as well as the very numerous constraints provided by the observations, we cannot claim that we have already identified the exact and unique model of NGC 5907 and its halo properties. We nevertheless succeeded in reproducing the loop geometry, and a disc-dominated, almost bulge-less galaxy.”

In the meantime, major galaxy merger events will continue to be a top priority in formation research. “Future work will include modelling other nearby spiral galaxies with large and faint, extended features in their halos.” concludes the team. “These distant galaxies are likely similar to the progenitors, six billion years ago, of present-day spirals, and linking them together could provide another crucial test for the spiral rebuilding disc scenario.”

And sleeping dragons may one day arise…

Original Story Source: Paris Observatory News. For Further Reading: Loops formed by tidal tails as fossil records of a major merger and Fossils of the Hierarchical Formation of the Nearby Spiral Galaxy NGC 5907.

Young Magnetic Star Possesses Precise Carbon Dioxide Ring

Artist's conception image of a young star surrounded by a disk (made up of rings) (Credits: NASA/JPL-Caltech)

[/caption]

Catching a ring – or accretion disk – around a star isn’t unusual. However, catching a sharply defined carbon-dioxide ring around a young, magnetic star that’s precisely 1 AU away with a width 0.32 AU or less might raise a few eyebrows. This isn’t just any disk, either… It’s been likened as a “rope-like structure” and there’s even more to the mystery. It’s encircling a Herbig Ae star.

Discovered with the European Southern Observatory’s Very Large Telescope, the edges of this accretion disk are uniquely crisp. Located in the constellation of Centaurus at about 700 light years distant, V1052 (HD 101412) is a parent star with an infrared excess. “HD 101412 is most unusual in having resolved, magnetically split spectral lines which reveal a surface field modulus that varies between 2.5 to 3.5 kG.” says C.R. Cowley (et al). Previous studies “have surveyed molecular emission in a variety of young stellar objects. They found the emission to be much more subdued in Herbig Ae/Be stars than their cooler congeners, the T Tauri stars. This was true for HD 101412 as well, which was among the 25 Herbig Ae/Be stars they discussed. One exception, however, was the molecule CO2, which had a very large flux in HD 101412; indeed, only one T Tauri star had a higher CO2 flux.”

It’s not unusual for carbon dioxide to be found near young stars, but it is a bit more normal for it to be distributed throughout the disk region. “It’s exciting because this is the most constrained ring we’ve ever seen, and it requires an explanation,” explains Cowley, who is professor emeritus at the University of Michigan and leader of the international research effort. “At present time, we just don’t understand what makes it a rope rather than a dish.”

Because V1052 itself is different could be the reason. It is hypothesized the magnetic fields may be holding the rings in the disk structure at a certain distance. The idea has also been forwarded that there may be “shepherding planets”, much like Saturn’s ring structure, which may be the cause. “What makes this star so special is its very strong magnetic field and the fact that it rotates extremely slow compared to other stars of the same type,” said Swetlana Hubrig, of the Leibniz Institute for Astrophysics Potsdam (AIP), Germany.

One thing that is certain is how clean and well-defined the disk lines are centered around the Earth/Sun distance. This accords well with computer modeling where “A wider disk will not fit the observations.” These observations – and the exotic parent star – have been under intense scrutiny since 2008 and the findings have been recently published on-line in Astronomy and Astrophysics. It’s work that helps deepen the understanding of the interaction between central stars, their magnetic fields, and planet-forming disks. It also allows for fact finding when it comes to diverse systems and better knowledge of how solar systems form… even unusual ones.

“Why do turbulent motions not tear the ring apart?” Cowley wondered. “How permanent is the structure? What forces might act to preserve it for times comparable to the stellar formation time itself?”

When it comes to Herbig Ae stars, they are not only rare, but present a rare opportunity for study. In this case, it gives the team something to be quite excited about.

“This star is a gift of nature,” Hubrig said

Original Story Source: Leibniz Institute for Astrophysic News Release. For Further Reading: The narrow, inner CO ring around the magnetic Herbig Ae star, HD 101412.

“Proplyd-like” Objects Discovered in Cygnus OB2

Hubble image of a Proplyd-like object in Cygnus OB2. Credit: Z. Levay and L. Frattare, STScI
Hubble image of a Proplyd-like object in Cygnus OB2. Credit: Z. Levay and L. Frattare, STScI

[/caption]

The well known Orion Nebula is perhaps the most well known star forming regions in the sky. The four massive stars known as the trapezium illuminate the massive cloud of gas and dust busily forming into new stars providing astronomers a stunning vista to explore stellar formation and young systems. In the region are numerous “protoplanetary disks” or proplyds for short which are regions of dense gas around a newly formed star. Such disks are common around young stars and have recently been discovered in an even more massive, but less well known star forming region within our own galaxy: Cygnus OB2.

Ten times more massive than its more famous counterpart in Orion, Cygnus OB2 is a star forming region that is a portion of a larger collection of gas known as Cygnus X. The OB2 region is notable because, like the Orion nebula, it contains several exceptionally massive stars including OB2-12 which is one of the most massive and luminous stars within our own galaxy. In total the region has more than 65 O class stars, the most massive category in astronomers classification system. Yet for as bright as these stars are, Cygnus OB2 is not a popular target for amateur astronomers due to its position behind a dark obscuring cloud which blocks the majority of visible light.

But like many objects obscured in this manner, infrared and radio telescopes have been used to pierce the veil and study the region. The new study, led by Nicholas Wright at the Harvard-Smithsonian Center for Astrophysics, combines infrared and visual observations from the Hubble Space telescope. The observations revealed 10 objects similar in appearance to the Orion proplyds. The objects had long tails being blown away from the central mass due to the strong stellar winds from the central cluster similar to how proplyds in Orion point away from the trapezium. On the closer end, the objects were brightly ionized.

Yet despite the similarities, the objects may not be true proplyds. Instead, they may be regions known as “evaporating gaseous globules” or EGGs for short. The key difference between the two is whether or not a star has formed. EGGs are overdense regions within a larger nebula. Their size and density makes them resistant to the ionization and stripping that blows away the rest of the nebula. Because the interior regions are shielded from these dispersive forces, the center may collapse to form a star which is the requirement for a proplyd. So which are these?

In general, the newly discovered objects are far larger than those typically found in Orion. While Orion proplyds are nearly symmetric across an axis directed towards the central cluster, the OB2 objects have twisted tails with complex shapes. The objects are 18-113 thousand AU (1 AU = the distance between the Earth and Sun = 93 million miles = 150 million km) across making them significantly larger than the Orion proplyds and even larger than the largest known proplyds in NGC 6303.

Yet as different as they are, the current theoretical understanding of how proplyds work doesn’t put them beyond the plausible range. In particular, the size for a true proplyd is limited by how much stripping it feels from the central stars. Since these objects are further away from OB2-12 and the other massive stars than the Orion proplyds are from the trapezium, they should feel less dispersive forces and should be able to grow as large as is seen. Attempting to pierce the thick dust the objects contain and discover if central stars were present, the team examined the objects in the infrared and radio. Of the ten objects, seven had strong candidates central stellar sources.

Still, the stark differences make conclusively identifying the objects as either EGGs or proplyds difficult. Instead, the authors suggest that these objects may be the first discovery of an inbetween stage: old, highly evolved EGGs which have nearly formed stars making them more akin to young proplyds. If further evidence supports this, this finding would help fill in the scant observational details surrounding stellar formation. This would allow astronomers to more thoroughly test theories which are also tied to the understanding of how planetary systems form.

Goldilocks Moons

The Goldilocks Zones around various type stars. Credit: NASA/JPL-Caltech

[/caption]

The search for extraterrestrial life outside our Solar System is currently focused on extrasolar planets within the ‘habitable zones’ of exoplanetary systems around stars similar to the Sun. Finding Earth-like planets around other stars is the primary goal of NASA’s Kepler Mission.

The habitable zone (HZ) around a star is defined as the range of distances over which liquid water could exist on the surface of a terrestrial planet, given a dense enough atmosphere. Terrestrial planets are generally defined as rocky and similar to Earth in size and mass. A visualization of the habitable zones around stars of different diameters and brightness and temperature is shown here. The red region is too hot, the blue region is too cold, but the green region is just right for liquid water. Because it can be described this way, the HZ is also referred to as the “Goldilocks Zone”.

Normally, we think of planets around other stars as being similar to our solar system, where a retinue of planets orbits a single star. Although theoretically possible, scientists debated whether or not planets would ever be found around pairs of stars or multiple star systems. Then, in September, 2011, researchers at NASA’s Kepler mission announced the discovery of Kepler-16b, a cold, gaseous, Saturn-sized planet that orbits a pair of stars, like Star Wars’ fictional Tatooine.

This week I had the chance to interview one of the young guns studying exoplanets, Billy Quarles. Monday, Billy and his co-authors, professor Zdzislaw Musielak and associate professor Manfred Cuntz, presented their findings on the possibility of Earth-like planets inside the habitable zones of Kepler 16 and other circumbinary star systems, at the AAS meeting in Austin, Texas.

The Goldilocks Zones around various type stars. Credit: NASA/JPL-Caltech

“To define the habitable zone we calculate the amount of flux that is incident on an object at a given distance,” Billy explained. “We also took into account that different planets with different atmospheres will retain heat differently. A planet with a really weak greenhouse effect can be closer in to the stars. For a planet with a much stronger greenhouse effect, the habitable zone will be further out.”

“In our particular study, we have a planet orbiting two stars. One of the stars is much brighter than the other. So much brighter, that we ignored the flux coming from the smaller fainter companion star altogether. So our definition of the habitable zone in this case is a conservative estimate.”

Quarles and his colleagues performed extensive numerical studies on the long-term stability of planetary orbits within the Kepler 16 HZ. “The stability of the planetary orbit depends on the distance from the binary stars,” said Quarles. “The further out the more stable they tend to be, because there is less perturbation from the secondary star.”

For the Kepler 16 system, planetary orbits around the primary star are only stable out to 0.0675 AU (astronomical units). “That is well inside the inner limit of habitability, where the runaway greenhouse effect takes over,” Billy explained. This all but rules out the possibility of habitable planets in close orbit around the primary star of the pair. What they found was that orbits in the Goldilocks Zone farther out, around the pair of Kepler 16’s low-mass stars, are stable on time scales of a million years or more, providing the possibility that life could evolve on a planet within that HZ.

Kepler 16's orbit from Quarles et al

Kepler 16b’s roughly circular orbit, about 65 million miles from the stars, is on the outer edge of this habitable zone. Being a gas giant, 16b is not a habitable terrestrial planet. However, an Earth-like moon, a Goldilocks Moon, in orbit around this planet could sustain life if it were massive enough to retain an Earth-like atmosphere. “We determined that a habitable exomoon is possible in orbit around Kepler-16b,” Quarles said.

I asked Quarles how stellar evolution impacts these Goldilocks Zones. He told me, “There are a number of things to consider over the lifetime of a system. One of them is how the star evolves over time. In most cases the habitable zone starts out close and then slowly drifts out.”

During a star’s main sequence lifetime, nuclear burning of hydrogen builds up helium in its core, causing an increase in pressure and temperature. This occurs more rapidly in stars that are more massive and lower in metallicity. These changes affect the outer regions of the star, which results in a steady increase in luminosity and effective temperature. The star becomes more luminous, causing the HZ to move outwards. This movement could result in a planet within the HZ at the beginning of a star’s main sequence lifetime, to become too hot, and eventually, uninhabitable. Similarly, an inhospitable planet originally outside the HZ, may thaw out and enable life to commence.

“For our study, we ignored the stellar evolution part,” said lead author, Quarles. “We ran our models for a million years to see where the habitable zone was for that part of the star’s life cycle.”

Being at the right distance from its star is only one of the necessary conditions required for a planet to be habitable. Habitable conditions on a planet require various geophysical and geochemical conditions. Many factors can prevent, or impede, habitability. For example, the planet may lack water, gravity may be too weak to retain a dense atmosphere, the rate of large impacts may be too high, or the minimum ingredients necessary for life (still up for debate) may not be there.

One thing is clear. Even with all the requirements for life as we know it, there appear to be plenty of planets around other stars, and very likely, Goldilocks Moons around planets, orbiting within the habitable zones of stars in our galaxy, that detecting the signature of life in the atmosphere of a planet or moon around another Sun seems like only a matter of time now.

NASA’s Airborne Observatory Targets Newborn Stars

Infrared image of the W3A star cluster in Perseus. (SOFIA image -- NASA / DLR / USRA / DSI / FORCAST team Spitzer image -- NASA / Caltech - JPL.)

[/caption]

(DING!) “The captain has turned off the safety lights – you are now free to explore the infrared Universe.”

Mounted inside the fuselage of a Boeing 747SP aircraft, NASA’s Stratospheric Observatory for Infrared Astronomy, or SOFIA, is capable of searching the sky in infrared light with a sensitivity impossible from ground-based instruments. Cruising at 39,000 to 45,000 feet, its 100-inch telescope operates above 99% of the atmospheric water vapor that would otherwise interfere with such observations, and thus is able to pierce through vast interstellar clouds of gas and dust to find what lies within.

Its latest discovery has uncovered a cluster of newborn stars within a giant cloud of gas and dust 6,400 light-years from Earth.

The massive stars are still enshrouded in the gas cloud from which they formed, a region located in the direction of Perseus called W3. The Faint Object Infrared Camera for the SOFIA Telescope (FORCAST) instrument was able to peer through the cloud and locate up to 15 massive young stars clustered together in a compact region, designated W3A.

SOFIA's 747SP on the ground at NASA's Dryden Flight Research Center on Edwards Air Force Base, CA. (NASA/Tony Landis)

W3A’s stars are seen in various stages of formation, and their effects on nearby clouds of gas and dust are evident in the FORCAST inset image above. A dark bubble, which the arrow is pointing to, is a hole created by emissions from the largest of the young stars, and the greenish coloration surrounding it designates regions where the dust and large molecules have been destroyed by powerful radiation.

Without SOFIA’s infrared imaging capabilities newborn stars like those seen in W3A would be much harder to observe, since their visible and ultraviolet light typically can’t escape the cool, opaque dust clouds where they are located.

The radiation emitted by these massive young stars may eventually spur more star formation within the surrounding clouds. Our own Sun likely formed in this same way, 5 billion years ago, within a cluster of its own stellar siblings which have all long since drifted apart. By observing clusters like W3A astronomers hope to better understand the process of star birth and ultimately the formation of our own solar system.

Read more on the SOFIA news release here.

The observation team’s research principal investigator is Terry Herter of Cornell University. The data were analyzed and interpreted by the FORCAST team with Francisco Salgado and Alexander Tielens of the Leiden Observatory in the Netherlands plus SOFIA staff scientist James De Buizer. These papers have been submitted for publication in The Astrophysical Journal.

Echoes From η Carinae’s Great Eruption

[/caption]

During the mid 1800’s, the well known star η Carinae underwent an enormous eruption becoming for a time, the second brightest star in the sky. Although astronomers at the time did not yet have the technology to study one of the largest eruptions in recent history in depth, astronomers from the Space Telescope Science Institute recently discovered that light echoes are just now reaching us. This discovery allows astronomers to use modern instruments to study η Carinae as it was between 1838 and 1858 when it underwent its Great Eruption.

V838 Mon (Credit: NASA, European Space Agency and Howard Bond (STScI))
Light echoes have been made famous in recent years by the dramatic example of V838 Monocerotis. While V838 Mon looks like an expanding shell of gas, what is actually depicted is light reflecting off shells of gas and dust that was thrown off earlier in the star’s life. The extra distance the light had to travel to strike the shell, before being reflected towards observers on Earth, means that the light arrives later. In the case of η Carinae, nearly 170 years later!

The reflected light has its properties changed by the motion of the material off which it reflects. In particular, the light shows a notable blueshift, telling astronomers that the material itself is traveling 210 km/sec. This observation fits with theoretical predictions of eruptions similar to the type η Carinae is thought to have undergone. However, the light echo has also highlighted some discrepancies between expectation and observation.

Typically, η Carinae’s eruption is classified as a “supernova impostor”. This title is fitting since the eruptions create a large change in the overall brightness. However, although these events may release 10% of the total energy of a typical supernova or more, the star remains intact. The main model to explain such eruptions is that a sudden increase in the star’s energy output causes some of the outer layers to be blown off in an opaque wind. This shell of material is so thick, that it gives a large increase in the effective surface area from which light is emitted, thereby increasing the overall brightness.

However, for this to happen, models predict that the temperature of the star prior to the eruption needs to be at least 7,000 K. Analyzing the reflected light from the eruption places the temperature of η Carinae at the time of the eruption at a much lower 5,000 K. This would suggest that the favored model for such events is incorrect and that another model, involving an energetic blast was (a mini-supernova), may be the true culprit, at least in η Carinae’s case.

Yet this observation is somewhat at odds with observations made in the years following the eruption. As spectrography came into use, astronomers in 1870 visually noticed emission lines in the star’s spectrum which is more typical in hotter stars. In 1890, η Carinae had a smaller eruption and a photographic spectrum put the temperature around 6,000 K. While this may not accurately reflect the case of the Great Eruption, it is still puzzling how the star’s temperature could change so quickly and may also indicate that the favored model of the opaque-wind model is a better fit for later times or the smaller eruption, which would suggest two different mechanisms causing similar results in the same object on short timescales.

Either way, η Carinae is a marvelous object. The team has also identified several other areas in the shell surrounding the star which appear to be brightening and undergoing their own echoes which the team promises to continue to observe which would allow them to verify their findings.

Two More Earth-Sized Planets Discovered by Kepler, Orbiting Former Red Giant Star

Credit: S. Charpinet / Univ. of Toulouse

[/caption]

Amid all of the news last week regarding the discovery by Kepler of two Earth-sized planets orbiting another star, there was another similar find which hadn’t received as much attention. There were two more Earth-sized planets also just discovered by Kepler orbiting a different star. In this case, however, the star is an old and dying one, and has passed its red giant phase where it expands enormously, destroying (or at least barbecuing) any nearby planets in the process before becoming just an exposed core of its former self. The paper was just published in the journal Nature.

The two planets, KOI 55.01 and KOI 55.02, orbit the star KOI 55, a subdwarf B star, which is the leftover core of a red giant star. Both planets have very tight orbits close to the star, so they were probably engulfed during the red giant phase but managed to survive (albeit “deep-fried”). They are estimated to have radii of 0.76 and 0.87 that of Earth, the smallest known exoplanets found so far orbiting an active star.

According to lead author Stephane Charpinet, “Having migrated so close, they probably plunged deep into the star’s envelope during the red giant phase, but survived.”

“As the star puffs up and engulfs the planet, the planet has to plow through the star’s hot atmosphere and that causes friction, sending it spiraling toward the star,” added Elizabeth ‘Betsy’ Green, an associate astronomer at the University of Arizona’s Steward Observatory. “As it’s doing that, it helps strip atmosphere off the star. At the same time, the friction with the star’s envelope also strips the gaseous and liquid layers off the planet, leaving behind only some part of the solid core, scorched but still there.”

The discovery was also unexpected; the star had already been the subject of study using the telescopes at Kitt Peak National Observatory, part of a project to examine pulsating stars. For more accurate measurements however, the team used data from the orbiting Kepler space telescope which is free of interfering atmospheric effects. According to Green, “I had already obtained excellent high-signal to noise spectra of the hot subdwarf B star KOI 55 with our telescopes on Kitt Peak, before Kepler was even launched. Once Kepler was in orbit and began finding all these pulsational modes, my co-authors at the University of Toulouse and the University of Montreal were able to analyze this star immediately using their state-of-the art computer models.”

Two tiny modulations in the pulsations of the star were found, which further analysis indicated could only come from planets passing in front of the star (from our viewpoint) every 5.76 and 8.23 hours.

Our own Sun awaits a similar fate billions of years from now and is expected to swallow Mercury, Venus, Earth and Mars during its expansion phase. “When our sun swells up to become a red giant, it will engulf the Earth,” said Green. “If a tiny planet like the Earth spends 1 billion years in an environment like that, it will just evaporate. Only planets with masses very much larger than the Earth, like Jupiter or Saturn, could possibly survive.” The discovery should help scientists to better understand the destiny of planetary systems including our own.

This finding is important in that it not only confirms that Earth-size planets are out there, and are probably common, but that they and other planets (of a wide variety so far) are being found orbiting different types of stars, from newly born ones, to middle-age ones and even dying stars (or dead in the case of pulsars). They are a natural product of star formation which of course has implications in the search for life elsewhere.

The abstract of the paper is here, but downloading the full article requires a single-article payment of $32.00 US or a subscription to Nature.