X-ray Burst May Be the First Sign of a Supernova

GRB 080913, a distant supernova detected by Swift. This image merges the view through Swift’s UltraViolet and Optical Telescope, which shows bright stars, and its X-ray Telescope. Credit: NASA/Swift/Stefan Immler

The first moments of a massive star going supernova may be heralded by a blast of x-rays, detectable by space telescopes like Swift, which could then tell astronomers where to look for the full show in gamma rays and optical wavelengths. These findings come from the University of Leicester in the UK where a research team was surprised by the excess of thermal x-rays detected along with gamma ray bursts associated with supernovae.

“The most massive stars can be tens to a hundred times larger than the Sun,” said Dr. Rhaana Starling of the University of Leicester  Department of Physics and Astronomy. “When one of these giants runs out of hydrogen gas it collapses catastrophically and explodes as a supernova, blowing off its outer layers which enrich the Universe.

“But this is no ordinary supernova; in the explosion narrowly confined streams of material are forced out of the poles of the star at almost the speed of light. These so-called relativistic jets give rise to brief flashes of energetic gamma-radiation called gamma-ray bursts, which are picked up by monitoring instruments in space, that in turn alert astronomers.”

Powerful gamma ray bursts — GRBs — emitted from supernovae can be detected by both ground-based observatories and NASA’s Swift telescope. Within seconds of detecting a burst (hence its name) Swift relays its location to ground stations, allowing both ground-based and space-based telescopes around the world the opportunity to observe the burst’s afterglow.

But the actual moment of the star’s collapse, when its collapsing core reacts with its surface, isn’t observed — it happens too quickly, too suddenly. If these “shock breakouts” are the source of the excess thermal x-rays (a.k.a. black body emission) that have been recently identified in Swift data, some of the galaxy’s most energetic supernovae could be pinpointed and witnessed at a much earlier moment in time — literally within the first seconds of their birth.

“This phenomenon is only seen during the first thousand seconds of an event, and it is challenging to distinguish it from X-ray emission solely from the gamma-ray burst jet,” Dr. Starling said. “That is why astronomers have not routinely observed this before, and only a small subset of the 700+ bursts we detect with Swift show it.”

Read more: Finding the Failed Supernovae

More observations will be needed to determine if the thermal emissions are truly from the initial collapse of stars and not from the GRB jets themselves. Even if the x-rays are determined to be from the jets it will provide valuable insight to the structure of GRBs… “but the strong association with supernovae is tantalizing,” according to Dr. Starling.

Read more on the University of Leicester press release here, and see the team’s paper in the Nov. 28 online issue of the Monthly Notices of the Royal Astronomical Society here (Full PDF on arXiv.org here.)

Inset image: An artist’s rendering of the Swift spacecraft with a gamma-ray burst going off in the background. Credit: Spectrum Astro. Find out more about the Swift telescope’s instruments here.

 

Unraveling the Secrets of Type Ia Supernovae: a New Two-Minute Thesis

The folks over at PHD Comics have put together a new video in their Two-Minute Thesis series, this one featuring Ph.D candidate Or Graur of the University of Tel Aviv and the American Museum of Natural History discussing the secret lives — and deaths — of astronomers’ “standard candles” of universal distance, Type Ia supernovae.

Judging distances across intergalactic space isn’t easy, so in order to figure out how far away galaxies are astronomers have learned to use the light from Type Ia supernovae, which flare up with the brilliance of 5 billion Suns… and rather precisely so.

Type Ia supernovae are thought to be created from a pairing of two stars: one super-dense white dwarf which draws in material from a binary companion until a critical mass — about 40% more mass than the Sun – is reached. The overpacked white dwarf suddenly undergoes a rapid series of thermonuclear reactions and explodes in an incredibly bright outburst of material and energy.

But exactly what sorts of stellar pairs lead to Type Ia supernovae and how frequently they occur aren’t known, and that’s what Ph.D candidate Or Graur is aiming to learn more about.

Read more: A New Species of Type Ia Supernova?

“We don’t really know what kind of star it is that leads to these explosions, which is kind of embarrassing,” says Graur. “The companion star could be a regular star like our Sun, a red giant or supergiant, or another white dwarf.”

Because stars age at certain rates, by looking deeper into space with the Hubble and Subaru telescopes Graur hopes to determine how often and when in the Universe’s history Type Ia supernovae occur, and thus figure out what types of stars are most likely responsible.

“My rate measurements favor a second white dwarf as the binary companion,” Graur says, “but the issue is far from settled.”

Watch the video for the full story, and visit PHD TV and PHD Comics for more great science illustrations.

Video: PHDComics. Animation: Jorge Cham. Series Producer: Meg Rosenburg. Inset image: merging white dwarfs causing a Type Ia supernova. (NASA/CXC/M Weiss)

Orion Revisited: Astronomers Find New Star Cluster in Front of the Orion Nebula

The well-known star-forming region of the Orion Nebula.  Credit: Canada-France-Hawaii Telescope / Coelum (J.-C. Cuillandre & G. Anselmi)

Precise distances are difficult to gauge in space, especially within the relatively local regions of the Galaxy. Stars which appear close together in the night sky may actually be separated by many hundreds or thousands of light-years, and since there’s only a limited amount of space here on Earth with which to determine distances using parallax, astronomers have to come up with other ways to figure out how far objects are, and what exactly is in front of or “behind” what.

Recently, astronomers using the 340-megapixel MegaCam on the Canada-France-Hawaii Telescope (CFHT) observed the star-forming region of the famous Orion nebula — located only about 1,500 light-years away — and determined that two massive groupings of the nebula’s stars are actually located in front of the cluster as completely separate structures… a finding that may ultimately force astronomers to rethink how the many benchmark stars located there had formed.

Although the Orion nebula is easily visible with the naked eye (as the hazy center “star” in Orion’s three-star sword, hanging perpendicular below his belt) its true nebulous nature wasn’t identified until 1610. As a vast and active star-forming region of bright dust and gas located a mere 1,500 light-years distant, the various stars within the Orion Nebula Cluster (ONC) has given astronomers invaluable benchmarks for research on many aspects of star formation.

[Read more: Astrophoto – Orion’s Bloody Massacre]

Now, CFHT observations of the Orion nebula conducted by Dr. Hervé Bouy of the European Space Astronomy Centre (ESAC) and Centre for Astrobiology (CSIC) and Dr. João Alves of the Institut für Astronomie (University of Vienna) have shown that a massive cluster of stars known as NGC 1980 is actually in front of the nebula, and is an older group of approximately 2,000 stars that is separate from the stars found within the ONC… as well as more massive than once thought.

“It is hard to see how these new observations fit into any existing theoretical model of cluster formation, and that is exciting because it suggests we might be missing something fundamental.”

– Dr. João Alves, Institut für Astronomie, University of Vienna

In addition their observations with CFHT — which were combined with previous observations with ESA’s Herschel and XMM-Newton and NASA’s Spitzer and WISE — have led to the discovery of another smaller cluster, L1641W.

According to the team’s paper, “We find that there is a rich stellar population in front of the Orion A cloud, from B-stars to M-stars, with a distinct 1) spatial distribution; 2) luminosity function; and 3) velocity dispersion from the reddened population inside the Orion A cloud. The spatial distribution of this population peaks strongly around NGC 1980 (iota Ori) and is, in all likelihood, the extended stellar content of this poorly studied cluster.”

The findings show that what has been known as Orion Nebula Cluster is actually a combination of older and newer groups of stars, possibly calling for a “revision of most of the observables in the benchmark ONC region (e.g., ages, age spread, cluster size, mass function, disk frequency, etc.)”

[Read more: Astronomers See Stars Changing Right Before Their Eyes in Orion Nebula]

“We must untangle these two mixed populations, star by star, if we are to understand the region, and star formation in clusters, and even the early stages of planet formation,” according to co-author Dr. Hervé Bouy.

The team’s article “Orion Revisited” was published in the November 2012 Astronomy & Astrophysics journal. Read the CFHT press release here.

The Canada-France-Hawaii Telescope’s Mauna Kea summit dome in September 2009. Credit: CFHT/Jean-Charles Cuillandre

Inset image: Orion nebula seen in optical – where the molecular cloud is invisible – and infrared, which shows the cloud. Any star detected in the optical in the line of sight over the region highlighted in the right panel must therefore be located in the foreground of the molecular cloud. Credit: J. Alves & H. Bouy.

Closely-Orbiting Stellar Companions Surrounded by “Mystery Dust”

Artist’s concept showing a dust disk around a binary system containing a white dwarf and a less-massive M (red) dwarf companion. (P. Marenfeld and NOAO/AURA/NSF)

Even though NASA’s Wide-field Infrared Survey Explorer spacecraft — aka WISE — ran out of coolant in October 2010, bringing its infrared survey mission to an end, the data that it gathered will be used by astronomers for decades to come as it holds clues to some of the most intriguing and hard-to-find objects in the Universe.

Recently astronomers using WISE data have found evidence of a particularly curious disk of dust and gas surrounding a pair of stars — one a dim red dwarf and the other the remains of a dead Sun-sized star — a white dwarf. The origin of the gas is a mystery, since based on standard models of stellar evolution it shouldn’t be there… yet there it is.

The binary system (which has the easy-to-remember name SDSS J0303+0054) consists of a white dwarf and a red dwarf separated by a distance only slightly larger than the radius of the Sun — about 700,000 km — which is incredibly close for two whole stars. The stars orbit each other quickly too: once every 3 hours.

The stars are so close that the system is referred to as a “post-common envelope” binary, because at one point the outer material of one star expanded out far enough to briefly engulf the other completely in what’s called a “common envelope.” This envelope of material brought the stars even closer together, transferring stellar material between them and ultimately speeding up the death of the white dwarf.

The system was first spotted during the Sloan Digital Sky Survey (hence the SDSS prefix) and was observed with WISE’s infrared abilities during a search for dust disks or brown dwarfs orbiting white dwarf stars. To find both a red (M) dwarf star 40-50 times the mass of Jupiter and a disk of dust orbiting the white dwarf in this system was unexpected — in fact, it’s the only known example of a system like it.

The entire mass of the dust (termed an infrared excess) is estimated to be “equivalent to the mass of an asteroid a few tens of kilometers in radius” and extends out to about the same distance as Venus’ orbit — just over 108 million kilometers, or 0.8 AU.

Why is the dust so unusual? Because, basically, it shouldn’t even be there. At that distance from the white dwarf, positioned just out of reach (but not terribly far away at all) anything that was within that zone when the original Sun-sized star swelled into its red giant phase should have spiraled inwards, getting swallowed up by the expanding stellar atmosphere.

Such is the fate that likely awaits the inner planets of our own Solar System — including Earth — when the Sun reaches the final phases of its stellar life.

So this requires that there are other sources of the dust. According to the WISE science update, “One possibility is that it is caused by multiple asteroids that orbit further away and somehow are perturbed close to the binary and collide with each other. [Another] is that the red dwarf companion releases a large amount of gas in a stellar wind that is trapped by the gravitational pull of its more massive white dwarf companion. The gas then condenses and forms the dust disk that is observed.

“Either way, this new discovery provides an interesting laboratory for the study of binary star evolution.”

See the team’s paper here, and read more on Berkeley’s WISE mission site here.

WISE launched into space on Dec. 14, 2009 on a mission to map the entire sky in infrared light with greatly improved sensitivity and resolution over its predecessors. From its polar orbit 525 kilometers (326 miles) in altitude it scanned the skies, collecting images taken at four infrared wavelengths of light. WISE took more than 2.7 million images over the course of its mission, capturing objects ranging from faraway galaxies to asteroids relatively close to Earth before exhausting the supply of coolant necessary to mask its own heat from its ultra-sensitive sensors.

Inset:  Infrared images of SDSS J0303+0054.  (NASA/JPL and  John H. Debes et. al.)

Here There Be Planets: Stellar Disk Gap May Reveal Newborn Worlds

HiCIAO near-infrared image of the protoplanetary disk around PDS 70. The circular mask hides the star itself, as well as a smaller internal disk structure. (Credit: NAOJ)

Over the past couple of decades astronomers have figured out several methods for finding planets around other stars in our galaxy. Some have revealed their presence by the slight “wobble” they impart to their host stars as they orbit, while others have been discovered as they pass in front of their stars from our perspective, briefly dimming the light we see.

Now, some astronomers think they may have identified the presence of multiple planets, based on a large gap found in the disk of  gas and dust surrounding a Sun-like star 460 light-years from Earth.

Using the High Contrast Instrument for the Subaru Next Generation Adaptive Optics (HiCIAO) mounted on Japan’s 8.2-meter optical-infrared Subaru telescope atop Mauna Kea in Hawaii, an international team of astronomers targeted PDS 70, a young star (10 million years old) about the same mass as the Sun located 460 light-years away in the constellation Centaurus.

The near-infrared observations made by HiCIAO reveal a protoplanetary disk surrounding PDS 70. This disk is composed of gas and dust and extends billions of miles out from the star. Quite literally the stuff that planets are made of, it’s a disk much like this that our solar system likely started out as over 4.6 billion years ago.

“Thanks to the powerful combination of the Subaru Telescope and HiCIAO, we are able to probe the disks around Sun-like stars. PDS 70 shows how our solar system may have looked in its infancy. I want to continue this kind of research to understand the history of planetary formation.”

– Team Leader Jun Hashimoto (NAOJ)

Within PDS 70’s disk are several large gaps positioned at varying distances from the star itself, appearing as dark regions in the near-infrared data. These gaps — especially the largest, located about 70 AU from the star — are thought to be the result of newly-formed planets having cleared the surrounding space of dust and smaller material. It’s also believed that multiple planets may be present since, according to the team, “no single planet, regardless of how heavy or efficient it is in its formation, is sufficient to create such a giant gap.”

In addition to the large disk structure and outer gap, PDS 70 also has a smaller disk located only 1 AU away. (This disk is obscured by the HiCIAO mask in the image above.)

Further observations will be needed to locate any actual exoplanets directly, since the light from the star and scattered light within the disk makes it difficult — if not impossible with current technology — to detect the incredibly faint light reflected by planets.

Still, it’s fascinating to come across what may very well be a solar system in its infancy, giving us a glimpse back in time to our own formation.

“Direct imaging of planets in the process of forming in protoplanetary disks would be ideal so that we can learn when, where, and how planets form,” said team leader Ruobing Dong of Princeton University.

Read more on the NAOJ website for the Subaru Observatory here.

The goal of the Strategic Exploration of Exoplanets and Disks with Subaru (SEEDS) Project is to study the disks around less massive stars like the Sun.

Inset image: Artist’s rendition of PDS 70 and its two protoplanetary disks (NAOJ)

Dying Star Blows Surprising Spiral Bubble

Using the Atacama Large Millimeter/submillimeter Array, or ALMA, astronomers found an unexpected spiral structure surrounding the red giant star R Sculptoris shown here in this visualization. Credit: ALMA (ESO/NAOJ/NRAO)

Sometimes what we can’t see is just as surprising as what lies directly in front of us. This especially holds true in a new finding from the astronomers using the Atacama Large Millimeter/sumbillimeter Array, or ALMA, in Chile. A surprising and strange spiral structure surrounding the old star R Sculptoris is likely being created by an unseen companion, say astronomers.

The team using ALMA, the most powerful millimeter/submillimeter telescope in the world, mapped the spiral structure in three-dimensions. The astronomers say this is the first time a spiral of material, with a surrounding shell, has been observed. They report their findings in the journal Nature this week.

“We’ve seen shells around this kind of star before,” says lead author Matthias Maercker of the European Southern Observatory and Argelander Institute for Astronomy, University of Bonn, Germany in a press release. “But this is the first time we’ve ever seen a spiral of material coming out from a star, together with a surrounding shell.”

Scientists, using the NASA/ESA Hubble Space Telescope found a similar spiral, but without a surrounding shell, while observing the star LL Pegasi. Unlike the new ALMA observations, however, the astronomers could not create a three-dimensional map of the structure. Hubble observations saw the dust while ALMA detected the molecular emission.

ALMA detects the warm glow of carbon monoxide molecules in the far infrared through the multimeter wavelengths allowing astronomers to map the gas emissions surrounding the star in high-resolution. The team believes the strangely shaped bubble of material was probably created by an invisible companion star orbiting the red giant.

As stars like our Sun reach the ends of their lives, they become red giants. Swollen and cool, the stars begin a short-lived helium burning phase. During this time, the stars slough off large amounts of their mass in a dense stellar wind forming an expanding glowing shell around the stellar core. The pulses occur about every 10,000 to 50,000 years and last just a few hundred years. New observations of R Sculptoris show a pulse event rocked the star about 1,800 years ago and lasted for about 200 years. Computer simulations following the evolution of a binary system fit the new ALMA observations, according to the astronomers.

“It’s a real challenge to describe theoretically all the observed details coming from ALMA,” says co-author Shazrene Mohamed, of Argelander Institute for Astronomy in Bonn, Germany and South African Astronomical Observatory. “But our computer models show that we really are on the right track. ALMA is giving us new insight into what’s happening in these stars and what might happen to the Sun in a few billion years from now.”

A wide field view of the red giant variable star R Sculptoris. Credit: ESO/Digitized Sky Survey 2. Acknowledgement: Davide De Martin

R Sculptoris is considered by astronomers to be an asymptotic giant branch, or AGB, star. With masses between 0.8 and 8 solar masses, they are cool red giants with a tiny central core of carbon and oxygen surrounded by a burning shell of helium and hydrogen burning. Eventually, our Sun will evolve into an AGB star. The glowing shell is made up of gas and dust, material that will be used for making future stars with their retinue of planets and moons and even the building blocks of life.

“In the near future, observations of stars like R Sculptoris with ALMA will help us to understand how the elements we are made up of reached places like the Earth. They also give us a hint of what our own star’s far future might be like,” says Maercker.

This new video shows a series of slices through the data, each taken at a slightly different frequency. These reveal the shell around the star, appearing as a circular ring, that seems to gets bigger and then smaller, as well as a clear spiral structure in the inner material that it best seen about half-way through the video sequence.

Source: European Southern Observatory

Small image caption: What appears to be a thin spiral pattern winding away from a star is shown in this remarkable picture from the Advanced Camera for Surveys on the NASA/ESA Hubble Space Telescope shows one of the most perfect geometrical forms created in space. It captures the formation of an unusual pre-planetary nebula, known as IRAS 23166+1655, around the star LL Pegasi (also known as AFGL 3068) in the constellation of Pegasus (the Winged Horse). Credit: NASA/ESA Hubble

A New Species of Type Ia Supernova?

Artist’s conception of a binary star system that produces recurrent novae, and ultimately, the supernova PTF 11kx. (Credit: Romano Corradi and the Instituto de Astrofísica de Canarias)

Although they have been used as the “standard candles” of cosmic distance measurement for decades, Type Ia supernovae can result from different kinds of star systems, according to recent observations conducted by the Palomar Transient Factory team at California’s Berkeley Lab.


Judging distances across intergalactic space from here on Earth isn’t easy. Within the Milky Way — and even nearby galaxies — the light emitted by regularly pulsating stars (called Cepheid variables) can be used to determine how far away a region in space is. Outside of our own local group of galaxies, however, individual stars can’t be resolved, and so in order to figure out how far away distant galaxies are astronomers have learned to use the light from much brighter objects: Type Ia supernovae, which can flare up with a brilliance equivalent to 5 billion Suns.

Type Ia supernovae are created from a special pairing of two stars orbiting each other: one super-dense white dwarf drawing material in from a companion until a critical mass — about 40% more massive than the Sun — is reached. The overpacked white dwarf suddenly undergoes a rapid series of thermonuclear reactions, exploding in an incredibly bright outburst of material and energy… a beacon visible across the Universe.

Because the energy and luminance of Type Ia supernovae have been found to be so consistently alike, distance can be gauged by their apparent brightness as seen from Earth. The dimmer one is when observed, the farther away its galaxy is. Based on this seemingly universal similarity it’s been thought that these supernovae must be created under very similar situations… especially since none have been directly observed — until now.

An international team of astronomers working on the Palomar Transient Factory collaborative survey have observed for the first time a Type Ia supernova-creating star pair — called a progenitor system — located in the constellation Lynx. Named PTF 11kx, the system, estimated to be some 600 million light-years away, contains a white dwarf and a red giant star, a coupling that has not been seen in previous (although indirect) observations.

“It’s a total surprise to find that thermonuclear supernovae, which all seem so similar, come from different kinds of stars,” says Andy Howell, a staff scientist at the Las Cumbres Observatory Global Telescope Network (LCOGT) and a co-author on the paper, published in the August 24 issue of Science. “How could these events look so similar, if they had different origins?”

The initial observations of PTF 11kx were made possible by a robotic telescope mounted on the 48-inch Samuel Oschin Telescope at California’s Palomar Observatory as well as a high-speed data pipeline provided by the NSF, NASA and Department of Energy. The supernova was identified on January 16, 2011 and supported by subsequent spectrography data from Lick Observatory, followed up by immediate “emergency” observations with the Keck Telescope in Hawaii.

“We basically called up a fellow UC observer and interrupted their observations in order to get time critical spectra,” said Peter Nugent, a senior scientist at the Lawrence Berkeley National Laboratory and a co-author on the paper.

The Keck observations showed the PTF 11kx post-supernova system to contain slow-moving clouds of gas and dust that couldn’t have come from the recent supernova event. Instead, the clouds — which registered high in calcium in the Lick spectrographic data — must have come from a previous nova event in which the white dwarf briefly ignited and blew off an outer layer of its atmosphere. This expanding cloud was then seen to be slowing down, likely due to the stellar wind from a companion red giant.

(What’s the difference between a nova and a supernova? Read NASA’s STEREO Spots a New Nova)

Eventually the decelerating nova cloud was impacted by the rapidly-moving outburst from the supernova, evidenced by a sudden burst in the calcium signal which had gradually diminished in the two months since the January event. This calcium burst was, in effect, the supernova hitting the nova and causing it to “light up”.

The observations of PTF 11kx show that Type Ia supernova can occur in progenitor systems where the white dwarf has undergone nova eruptions, possibly repeatedly — a scenario that many astronomers had previously thought couldn’t happen. This could even mean that PTF 11kx is an entirely new species of Type Ia supernova, and while previously unseen and rare, not unique.

Which means our cosmic “standard candles” may need to get their wicks trimmed.

“We know that Type 1a supernovae vary slightly from galaxy to galaxy, and we’ve been calibrating for that, but this PTF 11kx observation is providing the first explanation of why this happens,” Nugent said. “This discovery gives us an opportunity to refine and improve the accuracy of our cosmic measurements.”

Source: Berkeley Lab news center

Inset images: PTF 11kx observation (BJ Fulton, Las Cumbres Observatory Global Telescope Network) / The 48-inch Samuel Oschin Telescope dome at Palomar Observatory. Video: Romano Corradi and the Instituto de Astrofísica de Canarias

Bright Stars Don’t Like to Be Alone

Caption: New research using data from European Southern Observatory telescopes, including the Very Large Telescope, has revealed that the hottest and brightest stars, known as O stars, are often found in close pairs. Credit: ESA, NASA, H. Sana (Amsterdam University), and S.E. de Mink (STScI)

Like humans, stars seem to prefer the company of companions. A new study using the Very Large Telescope reveals that most very bright, high-mass O-type stars do not live alone. Surprisingly, almost three-quarters of these stars have a close companion star, far more than previously thought. But sometimes – also like humans – the relationship between companion stars can turn a little ugly, with one star becoming dominant and even disruptive by stealing matter from the other, or doing a hostile takeover.


An international team of astronomers have found that some stars will virtually suck the life out of another, and about one-third of the time, a pair of stars will ultimately merge to form a single star.

The stars included in this study are some of the biggest, brightest stars which have very high temperatures. They live fast and die young, and in their lives play a key role in the evolution of galaxies. by, which drive the evolution of galaxies. They are also linked to extreme phenomena such as gamma-ray bursts.

“These stars are absolute behemoths,” said Hugues Sana, from the University of Amsterdam, The Netherlands, lead author of the study. “They have 15 or more times the mass of our Sun and can be up to a million times brighter. These stars are so hot that they shine with a brilliant blue-white light and have surface temperatures over 54,000 degrees Fahrenheit (30,000 degrees C).”

The astronomers studied a sample of 71 O-type single stars and stars in pairs (binaries) in six nearby young star clusters in the Milky Way.
By analyzing the light coming from these targets in greater detail than before, the team discovered that 75 percent of all O-type stars exist inside binary systems, a higher proportion than previously thought, and the first precise determination of this number. More importantly, though, they found that the proportion of these pairs that are close enough to interact (through stellar mergers or transfer of mass by so-called vampire stars) is far higher than anyone had thought, which has profound implications for our understanding of galaxy evolution.

O-type stars make up just a fraction of a percent of the stars in the universe, but the violent phenomena associated with them mean they have a disproportionate effect on their surroundings. The winds and shocks coming from these stars can both trigger and stop star formation, their radiation powers the glow of bright nebulae, their supernovae enrich galaxies with the heavy elements crucial for life, and they are associated with gamma-ray bursts, which are among the most energetic phenomena in the universe. O-type stars are therefore implicated in many of the mechanisms that drive the evolution of galaxies.

“The life of a star is greatly affected if it exists alongside another star,” said Selma de Mink of the Space Telescope Science Institute, in Baltimore, Md., a co-author of the study. “If two stars orbit very close to each other they may eventually merge. But even if they don’t, one star will often pull matter off the surface of its neighbor.”

Mergers between stars, which the team estimates will be the ultimate fate of around 20 to 30 percent of O-type stars, are violent events. But even the comparatively gentle scenario of vampire stars, which accounts for a further 40 to 50 percent of cases, has profound effects on how these stars evolve.

Until now, astronomers mostly considered that closely orbiting massive binary stars were the exception, something that was only needed to explain exotic phenomena such as X-ray binaries, double pulsars, and black hole binaries. The new study shows that to properly interpret the universe, this simplification cannot be made: these heavyweight double stars are not just common, their lives are fundamentally different from those of single stars.

Loading player…

For instance, in the case of vampire stars — where the smaller, lower-mass star is rejuvenated as it sucks the fresh hydrogen from its companion — its mass will increase substantially and it will outlive its companion, surviving much longer than a single star of the same mass. The victim star, meanwhile, is stripped of its envelope before it has a chance to become a luminous red supergiant. Instead, its hot, blue core is exposed. As a result, the stellar population of a distant galaxy may appear to be much younger than it really is: both the rejuvenated vampire stars, and the diminished victim stars become hotter, and bluer in color, mimicking the appearance of younger stars. Knowing the true proportion of interacting high-mass binary stars is therefore crucial to correctly characterize these faraway galaxies.

“The only information astronomers have on distant galaxies is from the light that reaches our telescopes. Without making assumptions about what is responsible for this light we cannot draw conclusions about the galaxy, such as how massive or how young it is. This study shows that the frequent assumption that most stars are single can lead to the wrong conclusions,” said Sana.

Understanding how big these effects are, and how much this new perspective will change our view of galactic evolution, will need further work. Modeling binary stars is complicated, so it will take time before all these considerations are included in models of galaxy formation.

The paper was published in the July 27 issue of the journal Science.

Paper by: Sana, de Mink, et al. (PDF document)

Sources: ESO, HubbleSite

The Last Outbursts of a Dying Star

As stars approach the inevitable ends of their lives they run out of stellar fuel and begin to lose a gravitational grip on their outermost layers, which can get periodically blown far out into space in enormous gouts of gas — sometimes irregularly-shaped, sometimes in a neat sphere. The latter is the case with the star above, a red giant called U Cam in the constellation Camelopardalis imaged by the Hubble Space Telescope.

From the Hubble image description:

U Cam is an example of a carbon star. This is a rare type of star whose atmosphere contains more carbon than oxygen. Due to its low surface gravity, typically as much as half of the total mass of a carbon star may be lost by way of powerful stellar winds. Located in the constellation of Camelopardalis (The Giraffe), near the North Celestial Pole, U Cam itself is actually much smaller than it appears in Hubble’s picture. In fact, the star would easily fit within a single pixel at the center of the image. Its brightness, however, is enough to saturate the camera’s receptors, making the star look much bigger than it really is.

The shell of gas, which is both much larger and much fainter than its parent star, is visible in intricate detail in Hubble’s portrait. While phenomena that occur at the ends of stars’ lives are often quite irregular and unstable, the shell of gas expelled from U Cam is almost perfectly spherical.

Image credit: ESA/NASA

“Impossible” Binary Star Systems Found

Astronomers think about half of the stars in our Milky Way galaxy are, unlike our Sun, part of a binary system where two stars orbit each other. However, they’ve also thought there was a limit on how close the two stars could be without merging into one single, bigger star. But now a team of astronomers have discovered four pairs of stars in very tight orbits that were thought to be impossibly close. These newly discovered pairs orbit each other in less than 4 hours.

Over the last three decades, observations have shown a large population of stellar binaries, and none of them had an orbital period shorter than 5 hours. Most likely, the stars in these systems were formed close together and have been in orbit around each other from birth onwards.

A team of astronomers using the United Kingdom Infrared Telescope (UKIRT) in Hawaii made the first investigation of red dwarf binary systems. Red dwarfs can be up to ten times smaller and a thousand times less luminous than the Sun. Although they form the most common type of star in the Milky Way, red dwarfs do not show up in normal surveys because of their dimness in visible light.

But astronomers using UKIRT have been monitoring the brightness of hundreds of thousands of stars, including thousands of red dwarfs, in near-infrared light, using its state-of-the-art Wide-Field Camera (WFC).

“To our complete surprise, we found several red dwarf binaries with orbital periods significantly shorter than the 5 hour cut-off found for Sun-like stars, something previously thought to be impossible,” said Bas Nefs from Leiden Observatory in the Netherlands, lead author of the paper which was published in journal Monthly Notices of the Royal Astronomical Society. “It means that we have to rethink how these close-in binaries form and evolve.”

Since stars shrink in size early in their lifetime, the fact that these very tight binaries exist means that their orbits must also have shrunk as well since their birth, otherwise the stars would have been in contact early on and have merged. However, it is not at all clear how these orbits could have shrunk by so much.

One possible scenario is that cool stars in binary systems are much more active and violent than previously thought.

The astronomers said it is possible that the magnetic field lines radiating out from the cool star companions get twisted and deformed as they spiral in towards each other, generating the extra activity through stellar wind, explosive flaring and star spots. Powerful magnetic activity could apply the brakes to these spinning stars, slowing them down so that they move closer together.

“The active nature of these stars and their apparently powerful magnetic fields has profound implications for the environments around red dwarfs throughout our Galaxy, ” said team member said David Pinfield from the University of Hertfordshire.

UKIRT has a 3.8 meter diameter mirror, and is the second largest dedicated infrared telescope in the world. It sits at an altitude of 4,200 m on the top of the volcano Mauna Kea on the island of Hawaii.

Read the team’s paper.

Lead image caption: This artist’s impression shows the tightest of the new record breaking binary systems. Two active M4 type red dwarfs orbit each other every 2.5 hours, as they continue to spiral inwards. Eventually they will coalesce into a single star. Credit: J. Pinfield.