Update on Phobos-Grunt: Might the LIFE Experiment be Recovered?

Phobos-Grunt
An artists concept of the Phobos-Grunt Mission. Credit: Roscosmos

[/caption]

Editor’s note: With Russian engineers trying to save the Phobos-Grunt mission, Dr. David Warmflash, principal science lead for the US team from the LIFE experiment on board the spacecraft, provides an update of the likelihood of saving the mission, while offering the intriguing prospect that their experiment could possibly be recovered, even if the mission fails.

With the latest word from Roscosmos being that the Mars moon probe, Phobos-Grunt is “not officially lost,” but yet remains trapped in low Earth orbit, people are wondering what may happen over the next several weeks. Carried into space early Wednesday morning, November 9, Moscow time, atop a Zenit 2 rocket, Grunt, Russian for “soil”, entered what is known in space exploration as a parking orbit. After the engine of the Zenit upper stage completed its burn, it separated from another stage, known as Fregat, which now still remains attached to Phobos-Grunt. Ignition of the Fregat engine was to occur twice during the first five hours in space. The first Fregat burn would have taken the spacecraft to a much higher orbit; the second burn, about 2.5 hours later would have propelled the probe on its way to Mars and its larger moon, Phobos. From this moon, a sample of soil would be scooped into a special capsule which would return to Earth for recovery in 2014.

Grunt is still in a low orbit, because neither Fregat burn occurred. While the spacecraft is believed to be in safe mode and even has maneuvered such that its orbital altitude has increased, controllers have been unable to establish contact to send new commands. If communication cannot be established, it will re-enter the atmosphere.

In addition to the sample return capsule, Grunt carries an instrument package designated to remain on the Phobosian surface, plus a Chinese probe, Yinghuo-1, designed to orbit Mars. The mission also includes the Planetary Society’s Living Interplanetary Flight Experiment (LIFE) , for which I serve as principal science lead of the US team. Carried inside the return capsule into which the Phobosian soil is to be deposited, LIFE consists of a discoid-shaped canister, a biomodule, weighing only 88 grams. Inside are 30 sample tubes carrying ten biological species, each in triplicate. Surrounded by the 30 tubes is a sample of soil with a mixed population of microorganisms, taken from the Negev desert in Israel to be analyzed by Russian microbiologists.

The Planetary Society’s Living Interplanetary Flight Experiment (LIFE) capsule, on board the Phobos-Grunt spacecraft. Credit:The Planetary Society

Organisms carried within the LIFE biomodule include members of all three domains of Earth life: bacteria, archaea, and eukaryota. The purpose of the experiment is to test how well the different species can endure the space environment, akin to microorganisms moving in space within a meteoroid ejected from Mars by an impact event. If organisms can remain viable within rock material that is transferred naturally from Mars to Earth, it would lend support to the Mars transpermia hypothesis –the idea that life on Earth may have began by way of a seeding event by early organisms from Mars.

We know of microorganisms that could survive the pressures and temperatures associated with the ejection itself. We also know that during atmospheric entry, only the most outer few millimeters of rocks are heated on their way to Earth; thus, anything alive in a rock’s interior at this point should still be alive when the rock hits Earth as a meteorite. If life forms also could survive the journey itself from Mars to Earth, a Martian origin for Earth’s life would be a major possibility. It also would mean that life originating on its own anywhere in the Cosmos could spread from each point of origin, thus increasing the number of living planets and moons that may exist.

Numerous studies of the survivability of many of the LIFE species have been conducted in low Earth orbit, but much of the challenge to life in space comes from highly energetic space radiation. A large portion of space radiation is trapped by a system of magnetic fields known as the Van Allen radiation belts, or the geomagnetosphere. Since very few controlled studies of microorganisms, plant seeds, and other life have been conducted beyond the Van Allen belts, which reach an altitude of about 60,000 kilometers (about 1/7th the distance to the Moon), the Planetary Society arranged to have the LIFE biomodule carried within Grunt’s return capsule.

Over last weekend, the spacecraft surprised everyone by maneuvering on its own, raising its orbit. Due to this, the estimated reentry date was moved back from late November to mid January, meaning that the LIFE biomodule will be in space for more than nine weeks. An intriguing possibility that looms as controllers consider how the mission might end is that the Grunt sample return capsule will break off from the rest of the craft intact. If this happens, it could assume the stable atmospheric entry, descent, and landing that were expected after the return from Phobos. If this happens and the capsule comes down on land, we could recover the LIFE biomodule and test the state of the organisms packaged within it. The result of yet another biological test in low orbit, it would not be the experiment of our dreams. But, amidst the loss of a mission into which so many engineers and scientists have invested their dreams, a little bit could mean a lot.

The Expanding Universe – Credit To Hubble Or Lemaitre?

This illustration shows American astronomer Edwin Hubble (1889-1953) on the right and Belgian priest and cosmologist Georges Lemaître (1894-1966) on the left. Based on new evidence, both scientists should share credit for independently uncovering evidence for the expanding universe in the late 1920s. Lemaître is also credited with proposing a theory for the origin of the universe that would later be called the "big bang." The telescope on the left is the 100-inch Hooker Telescope on Mt. Wilson in California. The Hubble Space Telescope is on the right. Credit: NASA, ESA, and A. Feild (STScI)

[/caption]

Perhaps one of the greatest astronomical discoveries of the 20th century may have gone down in the history books as credited to the wrong person. Now known as the Hubble Constant, the theory of an expanding Universe was first speculated by Belgian priest and cosmologist, Father Georges Lemaitre. How did this oversight occur? It may very well be the hand of the man himself who was unpretentious enough to pass on his findings.

According to the the November 10th issue of the journal Nature, astrophysicist Mario Livio of the Space Telescope Science Institute is calling for closure about a conspiracy theory of who should be properly credited for the discovery of the expansion theory. For almost a hundred years we’ve been led to believe American astronomer Edwin P. Hubble was the man who explained the universal expansion in 1929 – although he never won a Nobel prize for his work. His findings were based on the achievements of Vesto Slipher, who – through the use of redshift – calculated recessional velocities and paired them with distances to the same galaxies as Hubble’s work. This led Hubble to demonstrate that the further away a galaxy was, the faster it would recede… the Hubble Constant.

However, two years before Hubble published his work, a quiet man called Georges Lemaitre published the same conclusions based on Slipher’s same redshift data and Hubble’s calculated distances.

Father Georges Lemaitre and Albert Einstein – Historical Image

How did this happen and why didn’t Father Lemaitre get credit? According to news release, it may have been because the original paper was published in French, in a rather obscure Belgian science journal called the Annales de la Societe Scientifique de Bruxelles (Annals of the Brussels Scientific Society). Chances are, we never would have known except for a later translation which was published in the Monthly Notices of the Royal Astronomical Society in 1931… a paper which just “left out” Lemaitre’s 1927 calculations! Of course, there were people who knew these passages had been omitted since 1984 and the ensuing debate accused not only the editors of the Monthly Notices, but Hubble as well.

However, before any accusations can be made, let it be noted that astrophysicist Mario Livio combed through an exhaustive archive of hundreds of letters to the Royal Astronomical Society and the RAS meeting minutes – as well as Father Lemaitre’s Archive. What he found was the good Father had simply omitted the passages himself when he translated the papers to English. In one of two “smoking-gun letters” uncovered by Livio, Lemaitre wrote to the editors: “I did not find advisable to reprint the provisional discussion of radial velocities which is clearly of no actual interest, and also the geometrical note, which could be replaced by a small bibliography of ancient and new papers on the subject.”

What is left for us to ponder is “why” Georges Lemaitre didn’t want to take credit for this discovery. Can there really be an altruistic scientist? One who puts the simple act of discovery above himself?

Livio concludes, “Lemaitre’s letter also provides an interesting insight into the scientific psychology of some of the scientists of the 1920s. Lemaitre was not at all obsessed with establishing priority for his original discovery. Given that Hubble’s results had already been published in 1929, he saw no point in repeating his more tentative earlier findings again in 1931.”

Excuse me, folks… After having read the original news release, I think we should rename the Hubble Telescope to read the “Humble Telescope”.

Original Story Source: Hubblesite News Release.

New Symphony of Science Video: Onward to the Edge

The latest auto-tuned musical celebration of science is out in the “Symphony of Science” series. This one features Neil deGrasse Tyson, Brian Cox, and Carolyn Porco and touches on the importance and inspirational qualities of space exploration (human and robotic), as well as a look at some of the amazing worlds in our solar system. This new video is the 12th installment in the series. See them all at SymphonyofScience.com

Russians Race against Time to Save Ambitious Phobos-Grunt Mars Probe from Earthly Demise

Russian graphic shows the planned Earth departure trajectory (at right) and two engine burns that failed to ignite from the Fregat upper stage following the launch of the Phobos-Grunt spacecraft from Baikonur Cosmodrome on Nov. 9 at 00:16am Moscow time. Illustration at left shows Phobos-Grunt spacecraft folded for flight inside the payload fairing. Credit: Roscosmos.

[/caption]

Teams of Russian engineers are in a race against time to save the ambitious and unprecedented Phobos-Grunt sample return mission from crashing back to Earth following the post launch failure of the upper stage rocket firings essential to propel the probe onward to destination Mars and scooping up dirt and dust from the tiny moon Phobos.

Roscomos, the Russian Federal Space Agency says they have perhaps two weeks to salvage the spacecraft – now stuck in Earth orbit – before its batteries run out and its orbit would naturally decay leading to an ignominious and uncontrollable reentry and earthly demise. Vladimir Popovkin, head of Roscosmos Chief had initially indicated a survival time limited to only 2 days in a briefing to Russian media.

“I give them a good chance — better than even — of recovering the mission and making the Mars insertion burn in a day or two, said James Oberg, a renowned expert on Russian and US spaceflight in commentary to Universe Today.

But Oberg also told me that having such problems so early in the mission was not a good sign. It all depends on whether the root cause is related to a simple software patch or serious hardware difficulties.

Following yesterday’s eerie midnight blastoff of Phobos-Grunt at 00:16 a.m. Moscow time atop an upgraded Zenit- 2SB booster and the apparently flawless performance of the first and second stages, the situation turned decidedly negative some 5 hours later when the pre-planned ignition burns of the Fregat upper stage failed to ignite twice.

Blastoff of Phobos-Grunt spacecraft atop Zenit-2 rocket from Baikonur Cosmodrome on Nov. 9. Credit: Roscosmos

The 13,000 kg Phobos-Grunt (which means Phobos-Soil) spacecraft was to embark on an 11 month interplanetary cruise and arrive in the vicinity of Mars around October 2012, along with a piggybacked mini-satellite from China named Yinghuo-1, the nation’s first ever probe to orbit the Red Planet, and the Phobos-LIFE experiment from the Planetary Society.

“It has been a tough night for us because we could not detect the spacecraft [after the separation],” Vladimir Popovkin said according to the Ria Novosti Russian news agency. “Now we know its coordinates and we found out that the [probe’s] engine failed to start.”

“It is a complex trajectory, and the on-board computers could have simply failed to send a “switch on” command to the engine,” Popovkin added.

Fortunately, the engine ignition malfunction was one of the anticipated failure scenarios and a corrective action plan already exists for it – but only if it can be implemented to save the $163 million mission and Russian hopes to revive their long dormant interplanetary forays.

“But it’s an old old superstition that when leaving your house for a long voyage, if you trip on the door step, you better just lay down your suitcases and go back inside,” Oberg said.

“Seriously, on a mission so complex and innovative as this one is, with so much stuff that has to be done RIGHT the first time they’ve ever tried it, having this kind of error — even if it’s only a coding mishap — right at the start, is NOT a good omen about the quality of work on preparing the later steps,” Oberg warned.

The goal of the complicated and first of its-kind 3 year round trip mission is to deploy a lander to the surface of Phobos, grab up to 200 grams of pristine regolith and rocks, and then take off and sail back to Earth with the precious samples for analysis by the most scientifically advanced instruments available to humankind. Watch the detailed mission animation in my article here.

Russia’s historic Phobos-Grunt sample return mission to Mars and Phobos will retrieve 200 grams of soil from the surface of Martian moon Phobos and fly the samples back to Earth by August 2014. Credit: Roscosmos

Another serious problem was a lengthy gap in tracking coverage and thus two way communications with the spacecraft which minimized and seriously delayed Russian controller’s ability to diagnose and correct the malfunction.

Roscosmos stated today that after two communications sessions all necessary parameters of the spacecrafts motion have been determined and they hoped to regain contact sometime Wednesday afternoon through a ground station at Baikonur and upload new software to orient the vehicle and commands for an engine firing at some point soon. Luckily the hydrazine filled propellant tank had not been jettisoned – or all would be lost.

It appears that the earliest day the Fregat engines can be fired is sometime Thursday. The Fregat would also journey all the way to Mars and conduct the critical braking maneuver to insert Phobos-Grunt and Yinghuo-1 into separate Mars orbits.

The engine ignition failure has left Phobos-Grunt stuck in an elliptical orbit ranging from about 207 by 347 kilometers and inclined 51 degrees. The engine firings would have placed the ship into a higher altitude elliptical orbit of 250 by 4150 km and then cruising to Mars.

The Russianspaceweb website reported that “the editor of this web site received a message from the director of Moscow-based Space Research Institute, IKI, Lev Zeleny, informing that tracking facilities of the US military provided significant help in establishing exact orbital parameters of the Phobos-Grunt spacecraft. This data was to be used during the previous night to send commands to the spacecraft as it was passing within range of ground control stations. Zeleny reassured that the mission team still had had “few days for reprogramming before the end of the Mars accessibility window for 2011.”

Alexey Kuznetsov, Head of the Roskosmos Press Office told me previously that, “The Phobos-Grunt launch window extends until November 25.” So theoretically, there is still some time to propel Phobos-Grunt to Mars but there are also many unknowns.

Labeled Schematic of Phobos-Grunt and Yinghou-1 (YH-1) orbiter. Main propulsion is the Fregat upper stage that failed to ignite twice following flawless liftoff on Nov. 9. Credit: Roskosmos

Further details will be reported as they emerge.

Meanwhile, NASA’s car sized Curiosity Mars Science Laboratory (MSL) Rover is posied atop an Atlas V rocket at her Florida launch pad awaiting a Nov. 25 liftoff.

Read Ken’s continuing features about Phobos-Grunt here:
Russia’s Bold Sample Return Mission to Mars and Phobos Blasts Off
Russian Mars Moon Sample Probe Poised to Soar atop Upgraded Rocket – VideoAwesome Action Animation Depicts Russia’s Bold Robot Retriever to Mars moon Phobos
Phobos-Grunt and Yinghuo-1 Encapsulated for Voyage to Mars and Phobos
Phobos and Jupiter Conjunction in 3 D and Amazing Animation – Blastoff to Martian Moon near
Russia Fuels Phobos-Grunt and sets Mars Launch for November 9
Phobos-Grunt and Yinghou-1 Arrive at Baikonur Launch Site to tight Mars Deadline
Phobos-Grunt: The Mission Poster
Daring Russian Sample Return mission to Martian Moon Phobos aims for November Liftoff

Carl Sagan’s Influence: Favorite Quotes from Readers

Today would have been Carl Sagan’s 77th birthday, and the past few years November 9th has been designated as “Carl Sagan Day” by people who appreciate Sagan’s influence — not only on science, but also the public’s understanding of it. We asked our readers to share their favorite Saganese: their most cherished quotes from the man who has inspired many. Here are our readers’ favorite quotes, images and videos:

F Alejandro Espinosa, @Tadeo_Meneo, @Otto J. Mäkelä, Brad Goodspeed – “Somewhere, something incredible is waiting to be known.” Thilina Heenatigala said of this quote, “As a kid I loved this quote, it gives the feeling of wanting to know more, to discover our Universe.”

Anthony Collini – “I’m not very good at singing songs, but here’s a try…whoop, bow…”

Christine Reece – This quote seems to apply to us more and more: “Our species needs, and deserves, a citizenry with minds wide awake and a basic understanding of how the world works.” I’m frustrated by all the attempts to remove science from classrooms in the U.S. Our children deserve and need better from us.

Dan Dalessio – “Who are we? We find that we live on an insignificant planet of a humdrum star lost in a galaxy tucked away in some forgotten corner of a universe in which there are far more galaxies than people.”

Robert Goodwin – “All civilizations become either spacefaring or extinct.”

Silex Anthropos – “It is of interest to note that while some dolphins are reported to have learned English – up to fifty words used in correct context – no human being has been reported to have learned dolphinese.”

The 13.7 billion year lifetime of the universe mapped onto a single year. This image helps to put cosmology, evolution, and written history in context. In addition to dates of important events, dates for availability for different types of evidence are shown. From the series, 'Cosmos.'

Beth Perry Steger – It is not a quote but a calendar he displayed in the Cosmos series. It shows the Big Bang on Jan 1. Throughout the year he demonstrates when planets formed, when Earth became habitable, and in December it shows people came to be. It gives a sense of the vast history of our solar system and how “new” homo sapiens came into the picture.

Esther Porter, Damian Lima – “Some part of our being knows this is where we came from. We long to return. And we can. Because the cosmos is also within us. We’re made of star-stuff. We are a way for the cosmos to know itself.”

Adnan Yousuf – “But the fact that some geniuses were laughed at does not imply that all who are laughed at are geniuses. They laughed at Columbus, they laughed at Fulton, they laughed at the Wright Brothers. But they also laughed at Bozo the Clown.”

Don Davis – “I don’t want to believe, I want to know”

Amy Fredericks, Yuri Aviani – “If you want to make an apple pie from scratch, you must first invent the Universe.”

Linda Lee – “The sky calls to us. If we do not destroy ourselves, we will one day, venture to the stars.” These quotes are important to me because he was able to speak passionate words into my little world, help me think bigger than just my immediate surroundings, look up, and embrace the Universe.

Nathan Shickle, Nathan Mickelson, – “It is far better to grasp the Universe as it really is than to persist in delusion, however satisfying and reassuring.” Heather Archuletta said this quote was special to her: Because he cared more for truth and wisdom than anyone I had ever seen on TV, and I am so grateful he lived in an age where he couldn’t be burned at the stake for embracing reality.

@Osiriscombe Sam – “Imagination will often carry us to worlds that never were. But without it we go nowhere.”

Tracey Robinson – “…we will one day venture to the stars.

@TabletopExplainer – “Extraordinary claims require extraordinary evidence.”

Raúl Alva – “Science is much more a way of thinking than it is a body of knowledge.”

Joe Rhea – “It’s perilous and foolhardy for the average citizen to remain ignorant about global warming, say, or ozone depletion, air pollution, toxic and radioactive wastes, acid rain, topsoil erosion, tropical deforestation, exponential population growth. Jobs and wages depend on science and technology.”

@NextStepinSpace suggested a video that we posted last week about “The Gift of Apollo”

And you can read a post from Fraser on the influence Carl Sagan had on his life, including the inspiration to start Universe Today.

I count myself among those who say they might not be where they are today were it not for Carl Sagan. Reading his books such as “Cosmos” and “Demon Haunted World” broadened my horizons when I needed it most. One of my favorite books of all time is “Pale Blue Dot” which really puts everything in perspective.

Russian Mars Moon Sample Probe Poised to Soar atop Upgraded Rocket – Video

Russia’s historic Phobos-Grunt sample return mission to Mars and Phobos poised on top of Zenit-2SB rocket at Baikonur Cosmodrome, Kazakhstan. Liftoff is slated for November 9, 2011 at 00:26 a.m. Moscow time [Nov. 8, 3:36 p.m. EST] from Launch Pad 45. Credit: Roscosmos. See Zenit Rocket rollout Video and Images below

[/caption]

After an absence of almost two decades, Russia is at last on the cusp of resuming an ambitious agenda of interplanetary science missions on Tuesday Nov. 8 3:16 p.m. EST (Nov. 9, 00:16 a.m. Moscow Time) by taking aim at Mars and scooping up the first ever soil and rocks gathered from the mysterious moon Phobos. Russia’s space program was hampered for many years by funding woes after the breakup of the former Soviet Union and doubts stemming from earlier mission failures. The Russian science ramp up comes just as US space leadership fades significantly due to dire NASA budget cutbacks directed by Washington politicians.

Russia’s daring and highly risky Phobos-Grunt soil sampling robot to the battered Martian moon Phobos now sits poised at the launch pad at the Baikonur Cosmodrome in Kazahkstan atop a specially upgraded booster dubbed the “Zenit-2SB” rocket according to Alexey Kuznetsov, Head of the Roscosmos Press Office in an exclusive interveiw with Universe Today. Roscosmos is the Russian Federal Space Agency. Watch the awesome Mars mission animation in my article here. See Zenit Rocket rollout video and images below.

“The Phobos-Grunt automatic interplanetary station will launch on November 9, 2011 at 00:26 a.m. Moscow time [Nov. 8, 3:36 p.m. EST],” Kuznetsov confirmed to Universe Today.

The Roscosmos video and photos here show the Zenit rocket rollout starting from Building 45 where the final prelaunch processing was conducted late last week mounting the nose cone holding the Phobos-Grunt and companion Yinghuo-1 spacecraft to the upgraded Fregat upper stage.

Russia’s Phobos-Grunt automatic interplanetary station - lander. Credit: Roscosmos

If successful, Phobos Grunt will complete the Earth to Mars round trip voyage in some 34 months and the history making soil samples will plummet through the Earth’s atmosphere in August 2014 to waiting Russian military helicopters.

Following an 11 month interplanetary journey, the spaceship will enter Mars orbit and spend several months searching for a suitable landing site on Phobos. The probe is due to touchdown very gently on Phobos surface in Feb. 2013 using radar and precision thrusters accounting for the moon’s extremely weak gravity. After gathering samples with two robotic arms, the soil transferred to the Earth return capsule will take off in the ascent vehicle for the trip back home.

“The Zenit can launch spacecraft from Baikonur into LEO, MEO, HEO and elliptical near-Earth orbits (including GTO and geostationary orbit) and to escape trajectories as well,” Kuznetsov explained.

Zenit-2SB rocket rollout from Building 45 at Baikonur with Russia’s Phobos-Grunt automatic interplanetary station. Credit: Roscosmos

The Zenit-2SB booster with Phobos-Grunt and the piggybacked Yinghuo-1 Mars orbiter from China were rolled out horizontally by train on a railed transporter on Nov. 6, raised and erected vertically into launch position at Launch Pad 45 at Baikonur.

“The ‘Zenit-2SB’ rocket belongs to the rocket family using nontoxic fuel components – liquid oxygen and kerosene,” Kuznetsov elaborated. “The Zenit was manufactured by the A.M. Makarov Yuzhny Machine-Building Plant in Ukraine.”

“This “Zenit-2” rocket modification has significant improvements,” Kuznetsov told me. “The improvements include a new navigation system, a new generation on-board computer, and better performance by mass reduction and increase in thrust of the second stage engine.”

Zenit-2SB rocket rollout on train car to Baikonur launch pad with Phobos-Grunt sampling return mission to Mars and Phobos. Credit: Roscosmos

Likewise the upper stage was upgraded for the historic science flight.

“The Zenit’s Fregat upper stage has also been modified. The “Phobos Grunt” automatic interplanetary station cruise propulsion system was built onto the base of the “Fregat-SB” upper stage. Its main task is to insert the automatic interplanetary station onto the Mars flight path and accomplish the escape trajectory.”

“The “Phobos Grunt” automatic interplanetary station mission was constructed by the Russian Academy of Sciences Space Research Institute in Moscow and the spacecraft was manufactured by NPO Lavochkin in Moscow,” Kuznetsov told me.

The 12,000 kg Phobos-Grunt automatic interplanetary station is equipped with a powerful 50 kg payload of some 20 science instruments provided by a wide ranging team of international scientists and science institutions from Europe and Asia.

The audacious goal is to bring back up to 200 grams of pristine regolith and rocks that help unlock the mysteries of the origin and evolution of Phobos, Mars and the Solar System

Zenit-2SB rocket rollout on train to launch pad at Baikonur with Russia’s Phobos-Grunt automatic interplanetary station. Credit: Roscosmos

Zenit-2SB rocket erected vertically to launch position at Baikonur launch pad with Russia’s Phobos-Grunt Mars spacecraft. Credit: Roscosmos

Russia’s Phobos-Grunt sample return mission to Mars and Phobos poised atop Zenit rocket at Pad 45 at Baikonur Cosmodrome. Kazakhstan. Liftoff set for November 9, 2011 at 00:26 a.m. Moscow time - Nov. 8, 3:36 p.m. EST. Credit: Roscosmos.

NASA’s Curiosity Mars Science Laboratory (MSL) Rover has also arrived at her Florida launch pad awaiting Nov. 25 liftoff.

Join me in wishing all the best to Roscosmos and NASA for this duo of fabulous Mars missions in 2011 that will help unravel our place in the Universe – like never before!

Read Ken’s continuing features about Phobos-Grunt upcoming Nov 9 launch here:
Awesome Action Animation Depicts Russia’s Bold Robot Retriever to Mars moon Phobos
Phobos-Grunt and Yinghuo-1 Encapsulated for Voyage to Mars and Phobos
Phobos and Jupiter Conjunction in 3 D and Amazing Animation – Blastoff to Martian Moon near
Russia Fuels Phobos-Grunt and sets Mars Launch for November 9
Phobos-Grunt and Yinghou-1 Arrive at Baikonur Launch Site to tight Mars Deadline
Phobos-Grunt: The Mission Poster
Daring Russian Sample Return mission to Martian Moon Phobos aims for November Liftoff

Star Lab: Space Science on the Wings of Starfighters

4Frontiers Corporation is testing an experimental launcher that will be launched into space via the F-1-4 Starfighter jet aircraft. Photo Credit: Alan Walters/awaltersphoto.com

[/caption]

CAPE CANAVERAL, Fla – A NewSpace company based out of New Port Richey in Florida is working to provide suborbital access to space for firms with scientific payloads. The Star Lab project is an experimental suborbital launcher, designed to provide frequent, less expensive access to sub-orbit. This could allow educational and scientific institutions across the nation to conduct experiments that would normally be impractical.

“If Star Lab proves itself viable, as we feel it will, this could open the door to a great many scientific institutions conducting their research by using the Star Lab vehicle,” said Mark Homnick the CEO of 4Frontiers Corporation.

On Oct. 27th, the Star Lab launcher was tested out while attached to the F-104 carrier aircraft via a series of fast-taxis up and down NASA's Shuttle Landing Facility located in Florida. Photo Credit: NASA.gov

4Frontiers is working to launch their Star Lab sounding rocket vehicle into sub-orbital space via an F-104 Starfighter that is part of the Starfighters demo team based out of Kennedy Space Center. 4Frontiers hopes to launch a prototype early next year with commercial flights to follow about six months later.

On Thursday Oct. 27, Star Lab began the first of its tests as it was mounted to a F-104 Starfighter and the aircraft then conducted several fast-taxi runs up and down NASA’s Shuttle Landing Facility (SLF) with the Star Lab vehicle affixed to one of its pylons. On the last of these fast taxis, the jet aircraft deployed its drogue chute. These maneuvers were conducted to collect data to test the Star Lab vehicle’s response.

In terms of providing access to space, compared to more conventional means, the Star Lab project is considered to be an innovative and cost-effective means for scientific firms to test their experiments in the micro-gravity environment. Photo Credit: Alan Walters/awaltersphoto.com

The Star Lab suborbital vehicle is an air-launched sounding rocket, which is designed to be reusable and can reach a maximum altitude of about 120km.

The Star Lab vehicle carrying scientific payloads is launched from the venerable F-104 Starfighter jet. After the Star Lab payload stage reaches its predetermined altitude, it will descend by parachute into the Atlantic Ocean off the coast of Florida. Star Lab is capable of carrying up to 13 payloads per flight.

Members of the Starfighters Demo Team along with technicians working on the Star Lab program work to attach the vehicle to the F-104 Starfighter. Photo Credit: Star Lab

All of these payloads will have access to the outside, sub-orbital space environment. One payload on each mission will be deployable by way of an ejectable nosecone on the Star Lab vehicle. 4Frontiers Corporation will handle integrating the payloads into the vehicle. After the craft splashes down, private recovery teams will collect and return it to 4Frontiers. It in turn will have the payloads off-loaded and the Star Lab vehicle will then be reprocessed for its next mission.

“Today, 4Frontiers and Starfighters, with the assistance of the Florida Space Grant Consortium, unveiled to the public for the first time the Star Lab suborbital project. Star Lab is an air-launched reusable sounding vehicle, built using COTS (Commercial Off The Shelf) technology and able to reach altitudes of up to 120km,” said 4Frontiers’ Business Development Manager Panayot Slavov. “With its very reasonable price structure, frequent flight schedule and numerous educational and research opportunities, the vehicle and the project will turn into the suborbital research platform of choice for all those who are interested in experimenting and learning about suborbital space.”

The project was created through a cooperative agreement between the 4Frontiers Corporation, Starfighters Aerospace, Embry-Riddle Aeronautical University and the University of Central Florida with funding provided by the NASA Florida Space Grant Consortium.

If all goes according to plan firms wanting to send their payloads into suborbit could achieve this goal via the Star Lab project. Photo Credit: Starfighters Aerospace

Absorption Lines Shed New Light on 90 Year Old Puzzle

Gemini North Observatory, Maunakea Hawaii. Image Credit: Gemini Observatory/AURA

[/caption]

Using the Gemini North Telescope, astronomers studying the central region of the Milky Way have discovered 13 diffuse interstellar bands with the longest wavelengths to date. The team’s discovery could someday solve a 90-year-old mystery about the existence of these bands.

“These diffuse interstellar bands—or DIBs—have never been seen before,” says Donald Figer, director of the Center for Detectors at Rochester Institute of Technology and one of the authors of a study appearing in the journal Nature.

What phenomenon are responsible for these absorption lines, and what impact do they have on our studies of our galaxy?

Figer offers his explanation of absorption lines, stating, “Spectra of stars have absorption lines because gas and dust along the line of sight to the stars absorb some of the light.”

Figer adds, “The most recent ideas are that diffuse interstellar bands are relatively simple carbon bearing molecules, similar to amino acids. Maybe these are amino acid chains in space, which supports the theory that the seeds of life originated in space and rained down on planets.”

“Observations in different Galactic sight lines indicate that the material responsible for these DIBs ‘survives’ under different physical conditions of temperature and density,” adds team member Paco Najarro (Center of Astrobiology, Madrid).

The discovery of low energy absorption lines by Figer and his team helps to determine the nature of diffuse interstellar bands. Figer believes that any future models that predict which wavelengths the particles absorb will have to include the newly discovered lower energies, stating, “We saw the same absorption lines in the spectra of every star. If we look at the exact wavelength of the features, we can figure out the kind of gas and dust between us and the stars that is absorbing the light.”

Spectra of the newly discovered Diffuse Interstellar Bands (DIB's).
Image Credit: Geballe, Najarro, Figer, Schlegelmilch, and de la Fuente.

Since their discovery 90 years ago, diffuse interstellar bands have been a mystery. To date, the known bands that have been identified before the team’s study occur mostly in visible wavelengths. Part of the puzzle is that the observed lines don’t match the predicted lines of simple molecules and can’t be traced to a single source.

“None of the diffuse interstellar bands has been convincingly identified with a specific element or molecule, and indeed their identification, individually and collectively, is one of the greatest challenges in astronomical spectroscopy, recent studies have suggested that DIB carriers are large carbon-containing molecules.” states lead author Thomas Geballe (Gemini Observatory).

One other benefit the newly discovered infrared bands offer is that they can be used to better understand the diffuse interstellar medium, where thick dust and gas normally block observations in visible light. By studying the stronger emissions, scientists may gain a better understanding of their molecular origin. So far, no research teams have been able to re-create the interstellar bands in a laboratory setting, mostly due to the difficulty of reproducing temperatures and pressure conditions the gas would experience in space.

If you’d like to learn more about the Gemini Observatory, visit: http://www.gemini.edu/
Read more about RIT’s Center for Detectors at: http://ridl.cis.rit.edu/

Source: Rochester Institute of Technology Press Release

TV Viewing Alert: New Mini-Series: Fabric of the Cosmos

A new 4-part mini-series debuts tonight on PBS station in the US, featuring theoretical physicist Brian Greene. The series is called “Fabric of the Cosmos” and is based on Greene’s 2004 book of the same name. It premieres tonight (Nov. 2, 2011) on NOVA, with subsequent episodes airing November 9, 16 and 23. The series will probe the most extreme realms of the cosmos, from black holes to dark matter, to time bending and parallel realities.

Check your local listings for time.

Closing the Clamshell on a Martian Curiosity

In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, sections of an Atlas V rocket payload fairing engulf NASA's Mars Science Laboratory (MSL) as they close in around it. The blocks on the interior of the fairing are components of the fairing acoustic protection (FAP) system, designed to protect the payload by dampening the sound created by the rocket during liftoff. Launch of MSL aboard a United Launch Alliance Atlas V rocket is planned for Nov. 25 from Space Launch Complex-41 on Cape Canaveral Air Force Station. Credit: NASA/Jim Grossmann

[/caption]

Curiosity’s clamshell has been closed.

And it won’t open up again until a few minutes after she blasts off for the Red Planet in just a little more than 3 weeks from now on Nov. 25, 2011 – the day after Thanksgiving celebrations in America.

The two halves of the payload fairing serve to protect NASA’s next Mars rover during the thunderous ascent through Earth’s atmosphere atop the powerful Atlas V booster rocket that will propel her on a fantastic voyage of hundreds of millions of miles through interplanetary space.

Spacecraft technicians working inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center (KSC) in Florida have now sealed Curiosity and her aeroshell inside the payload fairing shroud. The fairing insulates the car sized robot from the intense impact of aerodynamic pressure and heating during ascent. At just the right moment it will peal open and be jettisoned like excess baggage after the rocket punches through the discernable atmosphere.

Clamshell-like payload fairing about to be closed around Curiosity at KSC. Credit: NASA/Jim Grossmann

The next trip Curiosity takes will be a few miles to the Launch Pad at Space Launch Complex 41 at adjacent Cape Canaveral Air Force Station. She will be gingerly loaded onto a truck for a sojourn in the dead of night.

Curiosity in front of one payload fairing shell. Credit: NASA/Jim Grossmann

“Curiosity will be placed onto the payload transporter on Tuesday and goes to Complex 41 on Wednesday, Nov. 2,” KSC spokesman George Diller told Universe Today. “The logo was applied to the fairing this weekend.”

At Pad 41, the payload will then be hoisted atop the United Launch Alliance Atlas V rocket and be bolted to the Centaur upper stage.

Installation of Curiosity’s MMRTG (Multi-Mission Radioisotope Thermoelectric Generator) power source is one of the very last jobs and occurs at the pad just in the very final days before liftoff for Mars.

The MMRTG will be installed through a small porthole in the payload fairing and the aeroshell (see photo below).

MMRTG power source will be installed on Curiosity through the porthole at right just days before Nov. 25 launch. Credit: NASA/Jim Grossmann

The plutonium dioxide based power source has more than 40 years of heritage in interplanetary exploration and will significantly enhance the driving range, scientific capability and working lifetime of the six wheeled rover compared to the solar powered rovers Spirit and Opportunity.

After a 10 month voyage, Curiosity is due to land at Gale Crater in August 2012 using the revolutionary sky crane powered descent vehicle for the first time on Mars.

Camera captures one last look at Curiosity before an Atlas V rocket payload fairing is secured around it. Credit: NASA/Jim Grossmann

Curiosity has 10 science instruments to search for evidence about whether Mars has had environments favorable for microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release the gasses so that its spectrometer can analyze and send the data back to Earth.

Technicians monitor Curiosity about to be engulfed by the two halves of the payload fairing. Credit: NASA/Jim Grossmann

Payload fairing sealed around Curiosity at the Payload Hazardous Servicing Facility at KSC. Credit: NASA/Jim Grossmann

Atlas V rocket at Launch Complex 41 at Cape Canaveral, Florida
An Atlas V rocket similar to this one utilized in August 2011 for NASA’s Juno Jupiter Orbiter will blast Curiosity to Mars on Nov. 25, 2011 from Florida. Credit: Ken Kremer

Phobos-Grunt, Earth’s other mission to Mars courtesy of Russia is due to blast off first from the Baikonur Cosmodrome on November 9, 2011.

Read Ken’s continuing features about Curiosity starting here:
Curiosity Buttoned Up for Martian Voyage in Search of Life’s Ingredients
Assembling Curiosity’s Rocket to Mars
Encapsulating Curiosity for Martian Flight Test
Dramatic New NASA Animation Depicts Next Mars Rover in Action

Read Ken’s continuing features about Russia’s Phobos-Grunt Mars mission here:
Russia Fuels Phobos-Grunt and sets Mars Launch for November 9
Phobos-Grunt and Yinghou-1 Arrive at Baikonur Launch Site to tight Mars Deadline
Phobos-Grunt: The Mission Poster
Daring Russian Sample Return mission to Martian Moon Phobos aims for November Liftoff