Did An Ancient Icy Impactor Create the Martian Moons?

A composite image of Mars and its two moons, Phobos (foreground) and Deimos (background). Credit: NASA/JPL/University of Arizona

The Martian moons Phobos and Deimos are oddballs. While other Solar System moons are round, Mars’ moons are misshapen and lumpy like potatoes. They’re more like asteroids or other small bodies than moons.

Because of their odd shapes and unusual compositions, scientists are still puzzling over their origins.

Continue reading “Did An Ancient Icy Impactor Create the Martian Moons?”

If Europa has Geysers, They’re Very Faint

Jupiter's second Galilean moon, Europa. Its smooth surface has fewer craters than other moons, but they help us understand its icy shell. (Credit: NASA/JPL/Galileo spacecraft)
The Hubble spotted evidence of geysers coming from Jupiter's moon Europa, but nobody's been able to find them again. (Credit: NASA/JPL/Galileo spacecraft)

In 2013, the Hubble Space Telescope spotted water vapour on Jupiter’s moon Europa. The vapour was evidence of plumes similar to the ones on Saturn’s moon Enceladus. That, and other compelling evidence, showed that the moon has an ocean. That led to speculation that the ocean could harbour life.

But the ocean is obscured under a thick, global layer of ice, making the plumes our only way of examining the ocean. The plumes are so difficult to detect they haven’t been confirmed.

Continue reading “If Europa has Geysers, They’re Very Faint”

A New Tabletop Experiment to Search for Dark Matter

Astronomers are getting a new tool to help them in the hunt for Dark Matter. This is a rendering of the BREAD design, which stands for Broadband Reflector Experiment for Axion Detection. The ‘Hershey’s Kiss’-shaped structure funnels potential dark matter signals to the copper-colored detector on the left. The detector is compact enough to fit on a tabletop. Image courtesy BREAD Collaboration

What is Dark Matter? We don’t know. At this stage of the game, scientists are busy trying to detect it and map out its presence and distribution throughout the Universe. Usually, that involves highly-engineered, sophisticated telescopes.

But a new approach involves a device so small it can sit on a kitchen table.

Continue reading “A New Tabletop Experiment to Search for Dark Matter”

Perseverance Finds its Dream Rock

This Martian rock, named Bunsen Peak, contains minerals that formed in the presence of water. On Earth, these water-deposited carbonate minerals are good at preserving ancient organic material. Image Credit: NASA/JPL-Caltech

If there’s a Holy Grail on Mars, it’s probably a specific type of rock: A rock so important that it holds convincing clues to Mars’ ancient habitability.

Perseverance might have just found it.

Continue reading “Perseverance Finds its Dream Rock”

How Animal Movements Help Us Study the Planet

This map shows how elephants moved across Kruger National Park in South Africa over one year. Image Credit: Thaker, M., et al. (2019)

Scientists have been underutilizing a key resource we can use to help us understand Earth: animals. Our fellow Earthlings have a much different, and usually much more direct, relationship with the Earth. They move around the planet in ways and to places we don’t.

What can their movements tell us?

Continue reading “How Animal Movements Help Us Study the Planet”

Want to Leave the Solar System? Here’s a Route to Take

A future interstellar probe mission aims to travel beyond the heliosphere to the local interstellar medium to understand where our home came from and where it is going. Credit: John Hopkins Applied Physics Laboratory.

The edge of the Solar System is defined by the heliosphere and its heliopause. The heliopause marks the region where the interstellar medium stops the outgoing solar wind. But only two spacecraft, Voyager 1 and Voyager 2, have ever travelled to the heliopause. As a result, scientists are uncertain about the heliopause’s extent and its other properties.

Some scientists are keen to learn more about this region and are developing a mission concept to explore it.

Continue reading “Want to Leave the Solar System? Here’s a Route to Take”

This New Map of 1.3 Million Quasars Is A Powerful Tool

This figure from the research shows the sky distribution of the new Quaia quasar catalogue in Galactic coordinates and is displayed using a Mollweide projection. The grey region across the center is the Milky Way, a blind spot in the Quaia catalogue. Image Credit: K. Storey-Fisher et al. 2024

Quasars are the brightest objects in the Universe. The most powerful ones are thousands of times more luminous than entire galaxies. They’re the visible part of a supermassive black hole (SMBH) at the center of a galaxy. The intense light comes from gas drawn toward the black hole, emitting light across several wavelengths as it heats up.

But quasars are more than just bright ancient objects. They have something important to show us about the dark matter.

Continue reading “This New Map of 1.3 Million Quasars Is A Powerful Tool”

Science Fiction is Learning About Exoplanets From Science

Artist’s impression of a sunset seen from the surface of an Earth-like exoplanet. Credit: ESO/L. Calçada

As long as it has existed as a genre, there has been a notable relationship between science fiction and science fact. Since our awareness of the Universe and everything in it has changed with time, so have depictions and representations in popular culture. This includes everything from space exploration and extraterrestrial life to extraterrestrial environments. As scientists keep pushing the boundaries of what is known about the cosmos, their discoveries are being related to the public in film, television, print, and other media.

In the field of science communication, however, there is a certain hesitancy to use science fiction materials as an educational tool. In a recent paper that appeared in the Journal of Science Communication (JCOM), a team from the St Andrews Centre for Exoplanet Science and the Space Research Institute (IWF) of the Austrian Academy of Sciences focused on a specific area of scientific study – extrasolar planets. After analyzing a multimedia body of science fiction works produced since the first confirmed exoplanet discovery, they found that depictions have become more realistic over time.

Continue reading “Science Fiction is Learning About Exoplanets From Science”

Now You Can See Exactly Where Hubble and JWST are Pointed

Graphics of the Hubble and James Webb Space Telescopes. Credit: NASA/STScI.

Hubble and JWST are busily scanning the sky, sending home enormous amounts of data. They shift from target to target, completing the required observations.

But have you ever wondered what those two space telescopes are doing right at this moment? Now, you can do just that at the new Space Telescope Live website. It will show you what each observatory is scanning, where the objects are in the sky, and what researchers hope to learn. You can even go back or forward in time and see what each telescope has been looking at in the past or what observations are coming up.

Continue reading “Now You Can See Exactly Where Hubble and JWST are Pointed”

How We Get Planets from Clumping Dust

This artist’s impression shows a young star surrounded by a protoplanetary disk, where dust grains gather together to form planetesimals—the building blocks of new planets. © ESO/L. Calçada

Our gleaming Earth, brimming with liquid water and swarming with life, began as all rocky planets do: dust. Somehow, mere dust can become a life-bearing planet given enough time and the right circumstances. But there are unanswered questions about how dust forms any rocky planet, let alone one that supports life.

Continue reading “How We Get Planets from Clumping Dust”