Now You Can See MU69 in Thrilling 3D

This image of Ultima Thule can be viewed with red-blue stereo glasses to reveal the Kuiper Belt object's three-dimensional shape. Credit: NASA/JHUAPL/SwRI/NOAO

Got your 3D glasses handy? Then prepare for the most realistic views of Ultima Thule yet! Yes, it seems that every few weeks, there’s a new image of the Kuiper Belt Object (KBO) that promises the same thing. But whereas all the previous contenders were higher-resolution images that allowed for a more discernible level of detail, these images are the closest we will get to seeing the real thing up close!

Continue reading “Now You Can See MU69 in Thrilling 3D”

Pluto and Charon Don’t Have Enough Small Craters

New Horizons image of the small craters on Pluto's moon Charon. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

In 2015, the New Horizons mission became the first robotic spacecraft to conduct a flyby of Pluto. In so doing, the probe managed to capture stunning photos and valuable data on what was once considered to be the ninth planet of the Solar System (and to some, still is) and its moons. Years later, scientists are still poring over the data to see what else they can learn about the Pluto-Charon system.

For instance, the mission science team at the Southwest Research Institute (SwRI) recently made an interesting discovery about Pluto and Charon. Based on images acquired by the New Horizons spacecraft of some small craters on their surfaces, the team indirectly confirmed something about the Kuiper Belt could have serious implications for our models of Solar System formation.

Continue reading “Pluto and Charon Don’t Have Enough Small Craters”

The Latest Images of Ultima Thule are in, and they are the Sharpest Yet!

The most detailed image of Ultima Thule yet. Credits: NASA/Johns Hopkins Applied Physics Laboratory/Southwest Research Institute, National Optical Astronomy Observatory

On December 31st, 2018, the New Horizons probe conducted the first flyby in history of a Kuiper Belt Object (KBO). Roughly half an hour later, the mission controllers were treated to the first clear images of Ultima Thule (aka. 2014 MU69). Over the course of the next two months, the first high-resolution images of the object were released, as well as some rather interesting findings regarding the KBOs shape.

Just recently, NASA released more new images of Ultima Thule, and they are the clearest and most detailed to date! The images were taken as part of what the mission team described as a “stretch goal”, an ambitious objective to take pictures of Ultima Thule mere minutes before the spacecraft made its closest approach. And as you can no doubt tell from the pictures NASA provided, mission accomplished!

Continue reading “The Latest Images of Ultima Thule are in, and they are the Sharpest Yet!”

New Horizons took this shot of MU69 as it sped away from its encounter

Graphic of Ultima Thule showing its true shape. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

On December 31st, 2018, NASA’s New Horizons mission made history by being the first spacecraft to rendezvous with the Kuiper Belt Object (KBO) named Ultima Thule (2014 MU69). This came roughly two and a half years after New Horizons became the first mission in history to conduct a flyby of Pluto. This latest encounter led to some stunning images of the KBO as the spacecraft made it’s approach.

But of course, these were not the last images New Horizons was going to capture of this object. While making its flyby of Ultima Thule on New Year’s Day, the spacecraft took a number of images that revealed something very interesting about Ultima Thule’s shape. Rather than consisting of two spheres that are joined together, Ultima Thule is actually made up of two segments – one that looks like a pancake, the other a walnut.

Continue reading “New Horizons took this shot of MU69 as it sped away from its encounter”

Here it is, the high resolution photo of MU69 we’ve all been waiting for.

High-resolution image of Ultima Thule. Credit: NASA/JHUAPL/SwRI

On December 31st, 2018, NASA’s New Horizons mission made history by being the first spacecraft to rendezvous with a Kuiper Belt Object (KBO) named Ultima Thule (2014 MU69). This came roughly two and a half years after New Horizons became the first mission in history to conduct a flyby of Pluto. Much like the encounter with Pluto, the probe’s rendezvous with Ultima Thule led to a truly stunning encounter image.

And now, thanks to a team of researchers from the John Hopkins University Applied Physics Lab (JHUAPL), this image has been enhanced to provide a more detailed and high-resolution look at Ultima Thule and its surface features. Thanks to these efforts, scientists may be able to learn more about the history of this object and how it was formed, which could tell us a great deal about the early days of the Solar System.

Continue reading “Here it is, the high resolution photo of MU69 we’ve all been waiting for.”

The Pictures are Here! New Horizons Close Up View of 2014 MU69

This image taken by the Long-Range Reconnaissance Imager (LORRI) is the most detailed of Ultima Thule returned so far by the New Horizons spacecraft. It was taken at 5:01 Universal Time on January 1, 2019, just 30 minutes before closest approach from a range of 18,000 miles (28,000 kilometers), with an original scale of 730 feet (140 meters) per pixel. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

On December 31st, 2018, NASA and the New Horizon‘s team (plus millions of people watching the live stream at home) rang in the New Year by watching the New Horizons mission make the first rendezvous in history with a Kuiper Belt Object (KBO). About thirty minutes after the probe conducted its flyby of Arrokoth (2014 MU69), the mission controllers were treated to the first clear images ever taken of a KBO.

Since the first approach photographs were released (which were pixilated and blurry), the New Horizons team has released new images from the spacecraft that show Ultimate Thule in color and greater detail. It’s appearance, which resembles that of a snowman, beautifully illustrates the kinds of processes that created our Solar System roughly four and a half billion years ago.

Continue reading “The Pictures are Here! New Horizons Close Up View of 2014 MU69”

New Horizons Sees its Next Target for the First Time: Ultima Thule. Flyby Happens January 1, 2019

Composite image (left) produced by adding 48 different exposures from the News Horizons Long Range Reconnaissance Imager (LORRI) taken on Aug. 16, 2018 and a magnified view (right) of the region in the yellow box taken by LORRI in September 2017. Credits: NASA/JHUAPL/SwRI

In July of 2015, NASA’s New Horizons mission made history when it became the first spacecraft to conduct a flyby of Pluto. Since that time, the spacecraft’s mission was extended so it could make its way farther into the outer Solar System and become the first spacecraft to explore some Kuiper Belt Objects (KBOs). It’s first objective will be the KBO known as 2014 MU69, which was recently given the nickname “Ultima Thule” (“ultima thoo-lee”).

Continue reading “New Horizons Sees its Next Target for the First Time: Ultima Thule. Flyby Happens January 1, 2019”

Pluto has “Sand Dunes”, but Instead of Sand, it’s Grains of Frozen Methane

NASA's New Horizons spacecraft captured this image of Sputnik Planitia — a glacial expanse rich in nitrogen, carbon monoxide and methane ices — that forms the left lobe of a heart-shaped feature on Pluto’s surface. SwRI scientists studied the dwarf planet’s nitrogen and carbon monoxide composition to develop a new theory for its formation. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

In July of 2015, the New Horizons mission made history when it conducted the first flyby in history of Pluto. In the course of conducting its flyby, the probe gathered volumes of data about Pluto’s surface, composition, atmosphere and system of moons. It also provided breathtaking images of Pluto’s “heart”, its frozen plains, mountain chains, and it’s mysterious “bladed terrain”.

These strange features showed people for the first time how radically different the surface of Pluto is from Earth and the other planets of the inner Solar System. But strangely, they also showcased how this distant world is also quite similar to Earth. For instance, in a new study, a team of researchers working on the images from the New Horizons mission noticed “dunes” on the surface of Pluto that resemble sand dunes here on Earth.

The study, titled “Dunes on Pluto“, was recently published in the journal Science. The study was led by Matthew Telfer, a Lecturer in Physical Geography from the University of Plymouth, with significant contributions provided by Eric J. R. Parteli and Jani Radebaugh – geoscientists from the University of Cologne, and Brigham Young University, respectively.

The fine smudges on Sputnik Planum have been identified as transverse dunes because of the way they run perpendicular to the dark “wind streaks”. Credit: NASA/JPL/New Horizons

They were joined by members from the Carl Sagan Center at the SETI Institute, NASA’s Ames Research Center, the Lowell Observatory, the Southwest Research Institute (SwRI), the National Optical Astronomy Observatory, the Massachusetts Institute of Technology (MIT), the Johns Hopkins University Applied Physics Laboratory (JHUAPL), and multiple universities.

On Earth, dunes are formed by wind-blown sand that create repeated ridges in the desert or along beaches. Similar patterns have been observed along river beds and alluvial plains, where water deposits sediment over time. In all cases, dune-like formations are the result of solid particles being transported by a moving medium (i.e. air or water). Beyond Earth, such patterns have been observed on Mars, Titan, and even on Comet 67P/Churyumov-Gerasimenko.

However, when consulting images from New Horizons probe, Telfer and his colleagues noted similar formations in the Sputnik Planitia region on Pluto. This region, which constitutes the western lobe of the heart-shaped Tombaugh Regio, is essentially a massive ice-covered basin. Already, researchers have noted that the surface appears to consist of irregular polygons bordered by troughs, which appear to be indications of convection cells.

As Dr. Telfer told Universe Today via email:

“We first saw some features looked kind of dune-like within the first few days, but as time passed, and new images came in, most of these seemed less and less convincing. But one area became more and more convincing with every pass. This is what we’re reporting on.”

Another interesting feature is the dark streams that are a few kilometers long and are all aligned in the same direction. But equally interesting were the features that Telfer and his team noticed, which looked like dunes that ran perpendicular to the wind streaks. This indicated that they were transverse dunes, the kinds that pile up due to prolonged wind activity in the desert.

New Horizon images showing the patterns on Pluto’s surface that were hypothesized to be dunes. Credit: NASA/JPL/University of Arizona

To determine if this was a plausible hypothesis, the researchers constructed models that took into account what kind of particles would make up these dunes. They concluded that either methane or nitrogen ice would be able to form sand-sized grains that could be transported by typical winds. They then modeled the physics of Pluto’s winds, which would be strongest coming down the slopes of the mountains that border Sputnik Planum.

However, they also determined that Pluto’s winds would not be strong enough to push the particles around on their own. This is where sublimation played a key role, where surface ice goes from a solid phase directly to a gas when warmed by sunlight. This sublimation would provide the upward force necessary to lift the particles, at which point they would be caught by Pluto’s winds and blown around.

As Dr. Telfer explained, this conclusion was made possible thanks to the immense amount of support his team got, much of which came from the New Horizons Geology, Geophysics and Imaging Science Theme Team:

“Once we’d done the spatial analysis that made us really sure that these features made sense as dunes, we had the great opportunity to hook up with Eric Parteli at Cologne; he showed us through his modelling that the dunes should form, as long as the grains become airborne in the first place. The NASA New Horizons team really helped here, as they pointed out that mixed nitrogen/methane ices would preferentially fling methane ice grains upwards as the ices sublimated.”

Comparison of dune features on Pluto with those on Earth and Mars. Credit: NASA/JPL/University of Arizona

In addition to showing that Pluto, one of the most distant objects in the Solar System, has a few things in common with Earth, this study has also shown just how active Pluto’s surface is. “It shows us that not only is Pluto’s surface affecting its atmosphere, the converse is also true,” said Dr. Telfer. “We have a really dynamic world’s surface, so far out in the solar system.

On top of that, understanding how dunes can form under Pluto’s conditions will help scientists to interpret similar features found elsewhere in the Solar System. For example, NASA is planning on sending a mission to Titan in the coming decade to study its many interesting surface features, which include its dune formations. And many more missions are being sent to explore the Red Planet before a crewed mission takes place in the 2030s.

Knowing how such formations were created are key to understanding the dynamics of the planet, which will help answer some of the deeper questions about what is taking place on the surface.

Further Reading: ArsTechnica, Science

Pluto is What You Get When a Billion Comets Smash Together

NASA's New Horizons spacecraft captured this image of Sputnik Planitia — a glacial expanse rich in nitrogen, carbon monoxide and methane ices — that forms the left lobe of a heart-shaped feature on Pluto’s surface. SwRI scientists studied the dwarf planet’s nitrogen and carbon monoxide composition to develop a new theory for its formation. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

Pluto has been the focus of a lot of attention for more than a decade now. This began shortly after the discovery of Eris in the Kuiper Belt, one of many Kuiper Belt Objects (KBOs) that led to the “Great Planetary Debate” and the 2006 IAU Resolution. Interest in Pluto also increased considerably thanks to the New Horizons mission, which conducted the first flyby of this “dwarf planet” in July of 2015.

The data this mission provided on Pluto is still proving to be a treasure trove for astronomers, allowing for new discoveries about Pluto’s surface, composition, atmosphere, and even formation. For instance, a new study produced by researchers from the Southwest Research Institute (and supported by NASA Rosetta funding) indicates that Pluto may have formed from a billion comets crashing together.

The study, titled “Primordial N2 provides a cosmochemical explanation for the existence of Sputnik Planitia, Pluto“, recently appeared in the scientific journal Icarus. The study was authored by Dr. Christopher R. Glein – a researcher with the Southwest Research Institute’s Space Science and Engineering Division – and Dr. J. Hunter Waite Jr, an SwRI program director.

The first Kuiper Belt is home to more than 100,000 asteroids and comets there over 62 miles (100 km) across. Credit: JHUAPL

The origin of Pluto is something that astronomers have puzzled over for some time. An early hypothesis was that it was an escaped moon of Neptune that had been knocked out of orbit by Neptune’s current largest moon, Triton. However, this theory was disproven after dynamical studies showed that Pluto never approaches Neptune in its orbit. With the discovery of the Kuiper Belt in 1992, the true of origin of Pluto began to become clear.

Essentially, while Pluto is the largest object in the Kuiper Belt, it is similar in orbit and composition to the icy objects that surround it. On occasion, some of these objects are kicked out of the Kuiper Belt and become long-period comets in the Inner Solar System. To determine if Pluto formed from billions of KBOs, Dr. Glein and Dr. Waite Jr. examined data from the New Horizons mission on the nitrogen-rich ice in Sputnik Planitia.

This large glacier forms the left lobe of the bright Tombaugh Regio feature on Pluto’s surface (aka. Pluto’s “Heart”). They then compared this to data obtained by the NASA/ESA Rosetta mission, which studied the comet 67P/Churyumov–Gerasimenko (67P) between 2014 and 2016. As Dr. Glein explained:

“We’ve developed what we call ‘the giant comet’ cosmochemical model of Pluto formation. We found an intriguing consistency between the estimated amount of nitrogen inside the glacier and the amount that would be expected if Pluto was formed by the agglomeration of roughly a billion comets or other Kuiper Belt objects similar in chemical composition to 67P, the comet explored by Rosetta.”

New Horizon’s July 2015 flyby of Pluto captured this iconic image of the heart-shaped region called Tombaugh Regio. Credit: NASA/JHUAPL/SwRI

This research also comes up against a competing theory, known as the “solar model”. In this scenario, Pluto formed from the very cold ices that were part of the protoplanetary disk, and would therefore have a chemical composition that more closely matches that of the Sun. In order to determine which was more likely, scientists needed to understand not only how much nitrogen is present at Pluto now (in its atmosphere and glaciers), but how much could have leaked out into space over the course of eons.

They then needed to come up with an explanation for the current proportion of carbon monoxide to nitrogen. Ultimately, the low abundance of carbon monoxide at Pluto could only be explained by burial in surface ices or destruction from liquid water. In the end, Dr. Glein and Dr. Waite Jr.’s research suggests that Pluto’s initial chemical makeup, which was created by comets, was modified by liquid water, possibly in the form of a subsurface ocean.

“This research builds upon the fantastic successes of the New Horizons and Rosetta missions to expand our understanding of the origin and evolution of Pluto,” said Dr. Glein. “Using chemistry as a detective’s tool, we are able to trace certain features we see on Pluto today to formation processes from long ago. This leads to a new appreciation of the richness of Pluto’s ‘life story,’ which we are only starting to grasp.”

While the research certainly offers an interesting explanation for how Pluto formed, the solar model still satisfies some criteria. In the end, more research will be needed before scientists can conclude how Pluto formed. And if data from the New Horizons or Rosetta missions should prove insufficient, perhaps another to New Frontiers mission to Pluto will solve the mystery!

Further Reading: SwRI, Icarus

Pluto’s Charon Gets Mountains Named After Sci-Fi Authors Octavia Butler and Arthur C. Clarke, as Well as Many Others From History and Legend. I Approve!

Map projection of Charon, the largest of Pluto’s five moons, annotated with its first set of official feature names. With a diameter of about 1215 km, the France-sized moon is one of largest known objects in the Kuiper Belt, the region of icy, rocky bodies beyond Neptune. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

In 2015, the New Horizons mission made history by being the first spacecraft to conduct a flyby of Pluto. In addition to revealing things about the planet’s atmosphere, its geology and system of moons, the probe also provided the first clear images of the surface of Pluto and its largest moon, Charon. Because of this, scientists are now able to study Pluto and Charon’s many curious surface features and learn more about their evolution.

Another interesting thing that has resulted from this surface imaging has been the ability to name these features. Recently, the IAU Working Group for Planetary System Nomenclature officially approved of a dozen names that had been proposed by NASA’s New Horizons team. These names honor legendary explorers and visionaries, both real and fictitious, and include science fiction authors Octavia Butler and Arthur C. Clarke.

Aside from being Pluto’s largest moon, Charon is also one of the larger bodies in the Kuiper Belt. Because of its immense size, Charon does not orbit Pluto in the strictest sense. In truth, the barycenter of the Pluto-Charon system is outside Pluto, meaning the two bodies almost orbit each other. The moon also has a wealth of features, which include valleys, crevices, and craters similar to what have been seen on other moons.

Artist’s impression of New Horizons’ close encounter with the Pluto–Charon system. Credit: NASA/JHU APL/SwRI/Steve Gribben

For some time, the New Horizons team has been using a series of informal names to describe Charon’s many features. The team gathered most of them during the online public naming campaign they hosted in 2015. Known as  “Our Pluto“, this campaign consisted of people from all over the world contributed their suggestions for naming features on Pluto and Charon.

The New Horizons team also contributed their own suggestions and (according to the IAU) was instrumental in moving the new names through approval. As Dr. Alan Stern, the New Horizon team leader, told Universe Today via email: “We conduced a public feature name bank process in 2015 before flyby. Once flyby was complete our science team created a naming proposal for specific features and sent it to IAU.”

A similar process took place last year, where the IAU officially adopted 14 place names that were suggested by the New Horizons team – many of which were the result of the online naming campaign. Here too, the names were those that the team had been using informally to describe the many regions, mountain ranges, plains, valleys and craters that were discovered during the spacecraft’s flyby.

The names that were ultimately selected honored the spirit of epic exploration, which the New Horizons mission demonstrated by being the first probe to reach Pluto. As such, the names that were adopted honored travelers, explorers, scientists, pioneering journeys, and mysterious destinations. For example, Butler Mons honors Octavia E. Butler, a celebrated author and the first science fiction writer to win a MacArthur fellowship.

Global map of Pluto’s moon Charon pieced together from images taken at different resolutions. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

Similarly, Clarke Montes honors Sir Arthur C. Clarke, the prolific writer and futurist who co-wrote the screenplay for 2001: A Space Odyssey (which he later turned into a series of novels). Stanley Kubrik, who produced and directed 2001: A Space Odyssey, was also honored with the feature Kubrik Mons. Meanwhile, several craters were named in honor of fictional characters from famous stories and folklore.

The Revati Crater is named after the main character in the Hindu epic narrative Mahabharata while the Nasreddin Crater is named for the protagonist in thousands of folktales told throughout the Middle East, southern Europe and parts of Asia. Nemo Crater honors the captain of the Nautilus in Jule’s Verne’s novels Twenty Thousand Leagues Under the Sea (1870) and The Mysterious Island (1874).

The Pirx Crater is name after the main character in a series of short stories by Polish sci-fi author Stanislaw Lem, while the Dorothy Crater takes its name from the protagonist in The Wizard of Oz, one of several children’s stories by L. Frank Baum that was set in this magical land.

As Rita Schulz, chair of the IAU Working Group for Planetary System Nomenclature, commented, “I am pleased that the features on Charon have been named with international spirit.” Dr. Alan Stern expressed similar sentiments. When asked if he was happy with the new names that have been approved, he said simply, “Very.”

Artist’s impression of NASA’s New Horizons spacecraft encountering 2014 MU69 (Ultima Thule), a Kuiper Belt object that orbits 1.6 billion km (1 billion mi) beyond Pluto, on Jan. 1st, 2019. Credits: NASA/JHUAPL/SwRI/Steve Gribben

Even though the encounter with the Pluto system happened almost three years ago, scientists are still busy studying all the information gathered during the historic flyby. In addition, the New Horizons spacecraft will be making history again in the not-too-distant future. At present, the spacecraft is making its way farther into the outer Solar System with the intention of rendezvousing with two Kuiper Belt Objects.

On Jan. 1st, 2019, it will rendezvous with its first destination, the KBO known as 2014 MU69 (aka. “Ultima Thule“). This object will be the most primitive object ever observed by a spacecraft, and the encounter will the farthest ever achieved in space exploration. Before this intrepid exploration mission is complete, we can expect that a lot more of the outer Solar System will be mapped and named.

Further Reading: IAU