13 Things That Saved Apollo 13, Part 5: Unexplained Shutdown of the Saturn V Center Engine

Apollo 13 launch. Credit: NASA

Note: To celebrate the 40th anniversary of the Apollo 13 mission, for 13 days, Universe Today will feature “13 Things That Saved Apollo 13,” discussing different turning points of the mission with NASA engineer Jerry Woodfill.

While oxygen tank number two on the Apollo 13 spacecraft was an accident waiting to happen, another problem on the Saturn V rocket could have destroyed Apollo 13 before it reached Earth orbit. During the second-stage boost, the center – or inboard — engine shut down two minutes early. The shutdown wasn’t a problem, as the other four engines were able to compensate for the loss by operating for an extra four minutes. But why the engine shut down is a mystery that may have saved the mission.

“A catastrophic failure should have ensued,” said Apollo engineer Jerry Woodfill, “and would have, except for the unexplained behavior of the engine’s shutoff system. In fact, even the NASA Apollo 13 accident report fails to deal with the seriousness of the event.”

When the center engine shut down, it caused a few moments of uneasiness for Mission Control and the crew. Speaking after the flight, Commander Jim Lovell said that when NASA gave them the OK to carry on with the flight, “We all breathed a sigh of relief on the spacecraft. Hey, that was our crisis over with and we thought we’d have a smooth flight from then on.”

Woodfill said that the quick assessment in Mission Control was that a minor electrical signal failed to keep the engine operating so that it shut down prematurely. But that wasn’t the problem.
[/caption]
What happened was the Saturn V rocket experienced dangerous so-called “pogo” thrust oscillations, a problem NASA knew about. While a fix had been planned for Apollo 14, time did not permit its implementation on Apollo 13’s Saturn V.

“While a clerical error caused Apollo 13’s oxygen tank to explode,” said Woodfill, “because its heater design had not been updated for 65 volt operation, and the tank was a virtual bomb (see Part 1), similarly NASA’s failure to fix a known serious booster flaw should have destroyed Apollo 13.”

The Saturn V rocket had five J-2 engines, each producing 200,000 pounds of thrust, together creating the 1 million pounds of thrust needed for a mission to the Moon.

On previous Saturn flights, these pogo oscillations had occurred during launch. The phenomenon occurred as the fuel lines and structure of the rocket resonated at a common frequency. The resonance tended to amplify in force and potential destruction with each bounce of the “pogo” mechanism. So damaging was the phenomena on the unmanned Apollo 6 mission that an entire outer panel of the Saturn 5 ejected into space.

Launch of Apollo 6. Credit: NASA

“The oscillations are like a jack hammer and it was so dreadful on Apollo 6 that it tore off a panel on the booster, and threatened the mission,” said Woodfill. “Apollo 6’s orbit was supposed to be circular, but because of the pogo effect and failure of second stage engines, the orbit became an elongated orbit of about 60 by 180 miles.”

Woodfill said if Apollo 13 had ended up in that type of orbit, it would have been bad but not fatal. However, Apollo 13 was a much different situation than Apollo 6.

The Apollo 6 mission carried a mock lunar lander of more modest mass than the “full-up” lander which Apollo 13 carried to orbit. With the added mass for Apollo 13, the pogo forces were suddenly a magnitude greater in intensity. A mission report said that the engine experienced 68g vibrations at 16 hertz, flexing the thrust frame by 3 inches (76 mm).

Woodfill said that if the center engine had continued running a few more seconds, the oscillations may have destroyed the vehicle. “That engine was pounding horizontally up and down, a quarter foot, at the rate of 16 times a second,” he said. “The engine had become a two ton sledge hammer, a deadly pogo stick of destruction, putting enormous forces on the supporting structures.”

What shut the engine down?

“It is, to this day, not fully understood, but it had something to do with fooling the engine’s thrust chamber pressure sensor that pressure was too low,” said Woodfill. He has studied the mission report, but says the complete analysis of why the engine shut down isn’t included.

“Though the shutdown command came from a low thrust chamber pressure sensor assessment, actually, the engine was operating correctly,” he said. ” The sensor had nothing to do with the pogo phenomenon. For some inexplicable reason, it was like something sucked the pressure out of the chamber and a sensor turned the engine off. But no one knows exactly why.”

Woodfill said those who later examined the situation said it was altogether lucky that the sensor shut down the engine. “Something intervened, stopping the engine from pounding its way from the mount into the fragile fuel tanks. This would have destroyed the Apollo 13 launch vehicle.”

As it was, the engine shutdown likely saved the Apollo 13 mission.

Tomorrow, Part 6: Navigation

Other articles from the “13 Things That Saved Apollo 13” series:

Introduction

Part 1: Timing

Part 2: The Hatch That Wouldn’t Close

Part 3: Charlie Duke’s Measles

Part 4: Using the LM for Propulsion

Part 5: Unexplained Shutdown of the Saturn V Center Engine

Part 6: Navigating by Earth’s Terminator

Part 7: The Apollo 1 Fire

Part 8: The Command Module Wasn’t Severed

Part 9: Position of the Tanks

Part 10: Duct Tape

Part 11: A Hollywood Movie

Part 12: Lunar Orbit Rendezvous

Part 13: The Mission Operations Team

Also:

Your Questions about Apollo 13 Answered by Jerry Woodfill (Part 1)

More Reader Questions about Apollo 13 Answered by Jerry Woodfill (part 2)

Final Round of Apollo 13 Questions Answered by Jerry Woodfill (part 3)

Never Before Published Images of Apollo 13’s Recovery

Listen to an interview of Jerry Woodfill on the 365 Days of Astronomy podcast.

Hubble: It Was Twenty Years Ago Today

That NASA sent the Hubble into space, to stay.

The date was 24 April, 1990; “Liftoff of the Space Shuttle Discovery, with the Hubble Space Telescope, our window on the universe”.

Over the next ten days I’ll be reviewing these twenty years, starting with the first two today; I hope you will enjoy the show.

Of course, the Hubble’s history goes back many years before 1990; astrophysicist Lyman Spitzer is credited with the first paper proposing a space-based optical observatory, in 1946! He spent a good half century working on the idea (Trivia fact: Spitzer really knew his plasma physics; among other things he founded the Princeton Plasma Physics Laboratory, in 1951; the PPPL is home to some exciting magnetic reconnection experiments). Not so well-known, in the US at least, is that European involvement in the Hubble – via the European Space Agency (ESA) – dates from 1975, 15 years before its launch (Trivia fact: ESA’s Space Telescope European Coordinating Facility (ST-ECF) issued its first newsletter in March 1985).

HST WF/PC first light image (Credit: NASA/ESA/STScI)

For all the brilliant engineering, the best money could buy, the Hubble’s primary mirror was ground to exquisite precision and accuracy … but precisely and accurately wrong; the “presence of significant spherical aberration” was announced by NASA at the end of June, 1990. (Trivia fact: the cause of the mis-grinding was a field lens in the reflective null corrector used to test the figure of the primary mirror; it was “mis-located by about 1.3mm” Did heads roll as a result?)

However, because the primary mirror was ground so precisely and accurately, if wrongly, images sent back from the Hubble could be processed to largely remove the unintended blur, and so after a half year or so of rather intense work, the scientific show did go on.

Supernova 1987A (Credit: NASA, ESA, STScI)

And what a show it was!
Saturn's North Polar Hood (Credit: NASA, ESA, STScI)

Take a trip down memory lane, check out Hubble’s image of Saturn’s North Polar Hood; it’s zoomable!

But a faulty mirror and image processing are not quite the real thing; sometimes there are image processing artifacts, as this 1991 image of a nearby supernova-to-be shows:

Eta Carinae (Credit: NASA, ESA)

Of course it wasn’t only pretty pictures that the Hubble returned to Earth; a great many papers based on the astronomical data from the Hubble were published in its first two years of operation, covering a wide range of topics (perhaps I’ll base a future Universe Puzzle on this, maybe ‘what was the first such paper?’). And it wasn’t only images; the Hubble carried an instrument called the Faint Object Spectrograph, which worked in a part of the electromagnetic spectrum accessible only from space, the far ultraviolet (click on this link to read about limits on He I emission, the He I Gunn-Peterson effect, and Ly-alpha absorption spectrum “at z roughly 0.5”).

What’s your favorite from the first two years?

3C 273, 2003 HST image (Credit: NASA/J.Bahcall(IAS))

Mine’s The Ultraviolet Absorption Spectrum of 3C 273; not only is about the iconic quasar 3C 273, not only is it a classic John Bahcall paper (he writes so well!), not only does it illustrate well the scientific power of spectroscopy, but shines a light on composition of the intracluster medium.

Tomorrow: 1992 and 1993, including COSTAR and the first servicing mission.

Sources: HubbleSite, European Homepage for the NASA/ESA Hubble Space Telescope, The SAO/NASA Astrophysics Data System

Obama Compromises, Brings Back Orion Capsule; Allows for Heavy Lift Sooner

President Obama has proposed to completely cancel NASA’s Project Constellation to send humans to the Moon, Mars and Beyond, thus calling into question whether US Leadership in Space will continue. Artists concept of NASA’s cancelled Orion crew exploration vehicle shown here in on a science mission in lunar orbit. Credit: NASA

[/caption]

In what could be considered a compromise in his proposed budget for NASA, President Obama is reviving the Orion crew capsule concept that he had canceled with the rest of the Constellation program earlier this year, according to an article by Seth Borenstein of the Associated Press. This should mean more jobs and less reliance on the Russians, officials said Tuesday. While Orion, still won’t go to the moon. It will go unmanned to the International Space Station to stand by as an emergency vehicle to return astronauts home, officials were quoted in the article.

Borenstein also reported that NASA will speed up development of a heavy lift rocket. It would have the power to blast crew and cargo far from Earth, although no destination has been chosen yet. The rocket supposedly would be ready to launch several years earlier than under the old moon plan.

The two moves are being announced before the “Space Summit” on Thursday, a visit to Kennedy Space Center by Obama. They are designed to counter criticism of the Obama administration’s space plans as being low on detail, physical hardware, and local jobs.

The President’s plan had been met with much criticism, including an open letter to Obama drafted by several former astronauts, flight directors and other former NASA officials.

A briefing at the White House Now said that the president is committed to choosing a single heavy-lift rocket design by 2015 and then starting its construction.

Reportedly, the new Obama program will mean 2,500 more Florida jobs than the old Bush program, a senior White House official told Borenstein. In addition, as we reported earlier, the commercial space industry on Tuesday released a study that said the president’s plan for private ships to fly astronauts to and from the space station would result in 11,800 jobs.

“We wanted to take the best of what was available from Constellation,” the NASA official told The Associated Press as part of a White House briefing.

Read the full Associated Press article here.

Unmanned Robo-Plane Makes First Science Observations

The Global Hawk is a robotic plane that can fly autonomously to study Earth’s atmosphere, and can get to the area called the “Ignorosphere” that previously hasn’t been studied very well. The plane is carrying 11 instruments, and recently made its first science flight over the Pacific Ocean. “The Global Hawk is a fantastic platform because it gives us expanded access to the atmosphere beyond what we have with piloted aircraft,” said David Fahey, co-mission scientist and a research physicist at NOAA’s Earth System Research Laboratory in Boulder, Colo. “We can go to regions we couldn’t reach or go to previously explored regions and study them for extended periods that are impossible with conventional planes.”
Continue reading “Unmanned Robo-Plane Makes First Science Observations”

President Obama Visits Kennedy Space Center on April 15

What role will NASA play in the future of US manned space flight after the shuttle is retired at the height of its capability ?

[/caption]A few details have finally emerged about Presidents Obama’s short visit to the Kennedy Space Center on April 15 to discuss his new plans for NASA as part of his 2011 NASA Budget Request to Congress. Obama’s visit to KSC will begin at 1:30 PM and end at 3:45 PM, when he departs for a longer visit to a political fundraiser. Check this story from the Miami Herald about the fundraiser.

In February 2010 President Obama announced the complete termination of Project Constellation including the Ares 1 and Ares 5 booster rockets and the Orion Manned Capsule. Project Constellation was proposed by President Bush in 2004 with a new vision to return humans to the moon by 2020 and then Mars thereafter.

Instead, Obama proposes to rely on commercial providers to develop ‘space taxis’ to ferry US astronauts to low earth orbit and the International Space Station. No one can say with any certainty when these vehicles will be available.

President Obama has not announced any specific plans, targets, destinations or timelines for NASA to replace those cancelled as part of Constellation. There are no current plans to develop a Heavy Lift booster. there are only funds for technology development.

There has been harsh criticism of the Presidents new plans for NASA from both Democrats and Republicans who see a loss of US Leadership in Space. Even Sen. Bill Nelson (D) of Florida says “President Obama made a mistake [cancelling Constellation]. Because that is the perception. That he killed the space program.”

This visit was initially dubbed a “Space Summit” by the White House, but will now span barely 2 hours in length (including travel time between KSC venues) and apparently not involve significant interaction with or questions from the many thousands of space workers who are about to lose their jobs.

The format of the visit has also been changed from a sort of town hall meeting to a formal address by President Obama to a selected audience of about 200. His remarks will be followed by brief breakout sessions on a few space topics to implement the new directives given to NASA by the White House.

Here is a portion of the Statement from the White House dealing with the President’s Remarks:

THE WHITE HOUSE April 12, 2010

Office of Media Affairs MEDIA ADVISORY: M10-054

PRESIDENT OBAMA TO DELIVER REMARKS AT KENNEDY SPACE CENTER

WASHINGTON – On the afternoon of Thursday, April 15 President Barack Obama will visit Cape Canaveral, Florida and deliver remarks on the bold new course the Administration is charting for NASA and the future of U.S. leadership in human space flight.

Both the arrival and departure of Air Force One at the Shuttle Landing Facility and his remarks at the NASA Operations and Checkout Building are open to the media.

Air Force One Scheduled Arrival: 1:30 PM
Air Force One Scheduled Departure: 3:45 PM

President Obama Remarks at Kennedy Space Center
NASA Operations and Checkout Building

The opening session, including the President’s remarks, and the closing session of the conference are open to pre-credentialed media. The breakout sessions in between will be closed press and streamed at http://www.nasa.gov/ntv.

Where Is NASA Going and How Are We Going to Get There?

Constellation Program. Image Credit: NASA

[/caption]

Everyone seems to be a little confused and in the dark about the direction NASA will be headed if Obama’s proposed FY2011 budget passes. Yesterday’s hastily called press briefing answered a few question, but not the big issues of where we’ll be going and how we’re going to get beyond low Earth orbit. Yes, Bolden did say that Mars is the ultimate destination but everyone knows we can’t just pick and go to Mars. NASA needs a vehicle to get there, and getting there will require doing it in incremental steps, such as going to the Moon or asteroids first. There’s no plan (yet) for a vehicle and no plans for those incremental steps. Hopefully Obama’s “Space Summit” on April 15 will provide some answers.

I’m of two minds about this whole deal.

First, I love the space shuttle. I’ve just spent two months at Kennedy Space Center. I experienced the launch of Endeavour, got to see Endeavour and Discovery up closer than I ever imagined, saw behind the scenes processing, met people who work with the shuttles every day, and talked with people whose livelihood depends on NASA sending people to space.

And admittedly, any talk of extending the shuttle program makes my heart leap just a little. It’s a beautiful, marvelous, incredible machine – many say the most complex device ever invented by humans. And why shouldn’t we keep flying it? NASA managers like Mike Moses, Mike Leinbach and John Shannon say that since the Columbia accident we now know the shuttle and understand the risks better than ever. Right now, it definitely would be safer to fly on a shuttle than to fly on a new, untested commercial rocket.

And the jobs lost – not only at KSC but at Johnson Space Center, other NASA centers and contractors — by ending the shuttle and canceling Constellation means individuals who have these incredible skill sets for getting people to space may not be needed anymore. There are things they know that just can’t be replaced, replicated or restarted five or ten years down the road.

Bolden said yesterday that there should be new jobs under the new budget which provides more money for NASA, but nobody really knows yet how many and where.

One of the most poignant questions asked by a reporter at yesterday’s press briefing came at the very end: What’s to say that when a new administration enters the White House that we won’t come back to starting over again with a whole new program?

“If we execute the budget as proposed and prove that we are on a sustainable path, that is the best protection for a subsequent administration not having to change course,” said Lori Garver, Deputy NASA Administrator. “That’s the goal, to not be in this position every four years. These technologies we will be developing will allow us to leave low Earth orbit and go to interesting places. We’ll be able to determine the best places to go, and we should have the data to do it and the capabilities to do it that are more affordable, which has been the goal since the beginning to the space program.”

So this is where my other mind kicks in.

Change is hard. It’s really hard when people’s lives and livelihood are affected. But without change, we get comfortable and getting comfortable means we do the same things over and over.

Running NASA the same way ever since the end of Apollo, while giving us the amazing vehicle that is the space shuttle, has not gotten humans beyond low Earth Orbit, and I think everyone agrees we want to be able to go other places.

Last year NASA turned 50 and there were some comments about NASA reaching middle age and acting like it, too. Change is what keeps us young, and change keeps us on our toes. When you’re willing to change and get out of your comfort zone, you make a commitment to the unknown. And that’s what NASA should be all about. Our memories can’t be bigger than our dreams.

Perhaps the hardest thing about these proposed changes to NASA is that Obama and Bolden are asking for change without telling us exactly what the change is. Maybe they don’t know yet, but this is something we can’t just figure out along the way.

There’s the famous saying that life is not about the destination but the journey, or the other saying that the best thing about being in a race is competing in it. But most journeys have a map and most races have a finish line.

If the proposed budget and plan goes through, this will give us a shot at journeying beyond. Now we just need to know where we’re going and how we’re going to get there.

I started writing this to report on yesterday’s briefing by Charlie Bolden, Lori Garver and other NASA officials, but clearly it turned into something different. Here are a few links to articles by other journalists who wrote about the briefing and what might be coming next:

Reuters: NASA Maps Plan for Revamped Space Program

NASA Chief Maps Out Space Agency’s Future Beyond Shuttle by Tariq Malik at Space.com

NASA Chief Charts Agency’s Shuttle-Less Future by Seth Borenstein, AP

The Write Stuff Blog at the Orlando Sentinel quickly distills what the changes will mean for the different NASA Centers:

Plans for Kennedy Space Center under Obama 2011 budget

What JSC can Expect from the NASA Reshuffle

What Marshall Can Expect from the NASA Reshuffle

Houston Chronicle’s Eric Berger, The SciGuy: Job Cuts Worry Space Center Boss and Answers Coming Today on NASA’s Future

Congressional Reactions to NASA’s Work Assignments by Jeff Foust at Space Politics

NASA Announces Programs and Costs for the Next Five Years by Dennis Overbye, New York Times

And finally, this NASA budget page provides links to all the NASA documents published about the new budget

Mother of Pearl Colored Clouds form above Kennedy after Discovery Blast Off

‘Mother of Pearl’ Colored Clouds form above the Countdown clock at the Kennedy Space Center Press Site about 23 minutes after the April 5, 2010 launch of Space Shuttle Discovery, as 3 excited Science Journalists point out (from left, Rob van Mackelenbergh, Jacob Kuiper and Ken Kremer). Credit: Jacob Kuiper

[/caption]

(Editor’s Note: Ken Kremer is at the Kennedy Space Center for Universe Today covering the flight of Discovery)

Beautiful billowing clouds of all shapes, sizes and appearance always form from rocket exhaust plumes following a mighty rocket launch, whether it’s from the Space Shuttle or an unmanned rocket like the Atlas for the SDO launch (see my exhaust plume photo).

Well I’ve never witnessed anything like the magnificently colored clouds following Monday’s (April 5) predawn launch of Shuttle Discovery. They are known as “Mother of Pearl” clouds – according to Jacob Kuiper, Senior Meteorologist with the Royal Netherlands Meteorological Institute (KNMI).

Kuiper and myself observed the launch together with journalist Rob van Mackelenbergh (Dutch Society for Spaceflight, NVR) at the Kennedy Space Center (KSC) Press Site, located across the street from the iconic Vehicle Assembly Building where Shuttle’s are prepared for launch. See our STS 131 Launch day photo mosaic below of the day’s thrilling events.

At first the wispy clouds were nearly all white and set against the still dark sky. Then the sky overhead was suddenly lit on fire with a growing multitude of these pastel colored “Mother of Pearl” clouds – also called “Nacreous” clouds.

“The Mother of Pearl Clouds began turning from white to hues of pink and yellow. Starting about 10 minutes after the launch of Space Shuttle Discovery, its exhaust plume turned into a magnificently colorful panorama. Generally, this continues until about 40 minutes or more after blast off”, Kuiper told me as we stood next to the world famous Countdown clock and gazed in awe at the colored clouds above.

STS 131 Launch Day Mosaic: Crew walkout to Astro Van and ride to launch pad; Discovery Blast off and Countdown Clock at KSC Press site at T Plus 4 Seconds; Pastel Colored ‘Mother of Pearl’ Clouds which formed above the Countdown Clock at T Plus 23 Minutes as three science journalists are in awe. Click to Enlarge. Credit: Rob van Mackelenbergh, Ken Kremer and Jacob Kuiper

“Launching northeast in the predawn sky here on the ground means as the shuttle and its exhaust plumes head to orbit they’re going to catch the rising sunlight and that’s what creates the spectacular clouds we saw on launch morning !” KSC spokesman Allard Beutel explained to me.

Mother of Pearl Clouds form above US Flag at Kennedy Space Center from STS 131 Launch Exhaust Plume. Credit: Ken Kremer
The wispy clouds are transient events – constantly evolving in mere seconds as they are blown in a multitude of directions. Indeed it’s quite easy to let your imagination run wild and dream all sorts of fantastical things ranging from mythical creatures to assorted life forms and even people. Certainly someone has sighted Elvis in the rocket plumes.

“Atmospheric layers between 15 and 85 kilometers height normally contain very low quantities of water vapor. But the final exhaust product of the Shuttle’s external tank (hydrogen and oxygen) provides an enormous amount of water vapor”, Kuiper said.

“In the very cold atmosphere layers, the vapor turned into a tremendous mass of ice crystals and tiny super cooled water droplets. These crystals reflect and bend the solar rays very efficiently and create a nice spectrum of colors”.

“The lowest clouds, turned pink and orange, because at that height the sun just rises and most rays are a bit more reddish due to a certain extinction of the atmosphere. The higher portions of the exhaust plume hardly experience any extinction,” Kuiper explained.

Graphic of Nacreous clouds over Antartica. Atmospheric layers in the Antarctic winter. Nacreous clouds show colours similar to those on the inside of a Mother-of-Pearl shell. The clouds only occur at high polar latitudes in winter, requiring temperatures less than approximately -80ºC to form. Nacreous clouds also known as Mother-of-Pearl clouds, are rare cloud formations which are composed of ice crystals and form when temperatures are well below the ice frost point which is typically below -83C. The only place where these temperatures exist is in the stratosphere, some 20km (6 miles) above the surface. © Dr. Andrew Klekociuk, Australian Antarctic Division

“The yellow/white light of the sun – there a few more degrees above the horizon – is reflected immediately and causes the yellow and white, sometimes blueish colors. In the lowest segment of the atmospheric layers starting around 15 kilometers height, nature is able to form these clouds under very special circumstances. There they are called ‘Mother of Pearl’ clouds”.

“In layers around the Mesopause (about 85 km), clouds sometimes appear in the weeks around June 21 (northerly latitudes). These clouds are called Noctilucent clouds – or NLC. Both types can be produced due to the exhaust plumes from a Space Shuttle launch”, said Kuiper.

By far the largest and most long lasting rocket exhaust clouds derive from the Space Shuttle because it’s the most powerful rocket in the US Fleet – although not for much longer after the shuttle is retired and the US completely loses its Heavy Lift boost capability.

Internet sources: www.knmi.nl, www.weerboek.nl

Earlier STS 131 related articles by Ken Kremer:

Spectacular Radar Failed Belly Flip (Video) and Docking links Discovery to ISS

Antenna Glitch hinders Data Flow from Inspection of Discovery

Discovery Dazzles with Two Dawns in One Day

Discovery Unveiled on Easter Sunday to the Heavens Above

Countdown Clock Ticking for Discovery Blast off on April 5

Soyuz Blasts off with Russian American Crew for Easter ISS arrival

STS 131 Launch Contrails over the Kennedy Space Center on 5 April 2010. Credit: John O’Connor

Flock of Birds fly in front of Pastel colored clouds which formed above Kennedy Space Center from STS 131 Launch Exhaust Plume. Credit: Ken Kremer

Wispy contrails from the launch of space shuttle Discovery on the STS-131 mission glow in rainbow colors in the early morning hours as the sun rises over the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. Shuttle Discovery lifted off at 6:21 a.m. EDT on April 5, 2010. Credit: NASA/Kim Shiflett

Spectacular Radar Failed Belly Flip (Video) and Docking links Discovery to ISS

Space shuttle Discovery comes out of its 8 minute long back flip maneuver underneath the International Space Station as ISS astronauts collect high resolution photos of the heat shield for analysis to confirm it is intact and safe to land. Credit: NASA TV

Space Shuttle Discovery performed a spectacular “Radar Failed” rendezvous and docking at the International Space Station this morning (April 7) at 3:44 AM as the two massive ships were flying in formation some 225 miles over the Caribbean Sea near Caracas, Venezuela. Discovery’s blast off on April 5 began a two day pursuit of the station.

Hatches between Discovery and the ISS were opened at 5:11 AM EDT this morning, bringing together the seven-person shuttle crew and the six-person space station crew, to begin nine days of joint work and operations. The primary goal of the STS 131 mission is to outfit the station with numerous new science experiments, install a new crew sleeping quarter and to resupply stocks of essential parts and provisions.

[/caption]Discovery’s cargo bay is packed with the 27,000 pound Leonardo Multi Purpose Logistics module built by the Italian Space Agency and a nearly 4,000 pound ammonia cooling tank.

The joint crew of 13 people marks several notable historic firsts in space exploration, including the largest ever gathering of female astronauts and Japanese astronauts in space.

For the first time in history there are four female astronauts simultaneously working together in space. Discovery Mission Specialists Dottie Metcalf-Lindenburger, Stephanie Wilson and Japan Aerospace Exploration Agency (JAXA) astronaut Naoko Yamazaki join ISS Expedition 23 Flight Engineer Tracy Caldwell Dyson who rocketed to orbit just days ago on April 3 and arrived at the ISS on Easter Sunday.

This NASA image was taken by the centerline camera inside Discovery’s docking port as she initiates final approach to the International Space Station shortly before docking at 3:44 AM on April 7, 2010 during the STS-131 mission. Credit: NASA TV

Expedition 23 Flight Engineer Soichi Noguchi and Mission Specialist Yamazaki are the first JAXA Astronauts to fly in space at the same time. A horde of Japanese media and officials were on hand at KSC to witness the launch of Discovery. This space first is a source of great pride in Japan.

The flawless maneuvers linking the two giant ships together were conducted with “no radar” because of the failure of the high speed Ku-Band communications antenna normally used shortly after blast off on April 5.

The STS 131 astronaut crew led by Shuttle Commander Alan Poindexter had to rely on back up navigation systems to precisely track the station and guide Discovery to a position in front of the ISS and then gently dock at the Harmony module (Node 2). The crew are trained to rendezvous and dock without radar.

Station Commander Oleg Kotev and NASA astronaut TJ Creamer took high resolution images of Discovery’s heat shield during the 8 minute back flip maneuver to document the condition and integrity of the many thousands of critical thermal protection tiles fastened to the belly, wing leading edges and nose cap of Discovery.

The pair snapped hundreds of photos using 400 mm and 800 mm cameras through portholes from their location inside the Russian Zvezda Service Module. These photos will be thoroughly scrutinized by imagery experts back at Mission Control in Houston to look for any signs of damage to the heat shield before NASA commits Discovery to the scorching heat of reentry and a return landing back on Earth.

Earlier STS 131 related articles by Ken Kremer:

Antenna Glitch hinders Data Flow from Inspection of Discovery

Discovery Dazzles with Two Dawns in One Day

Discovery Unveiled on Easter Sunday to the Heavens Above

Countdown Clock Ticking for Discovery Blast off on April 5

Soyuz Blasts off with Russian American Crew for Easter ISS arrival

NASA Extends Contract With Russia For Rides on the Soyuz

Soyuz capsule docked to the ISS. Credit: NASA

[/caption]
For those who are upset that NASA will be relying on (and paying) the Russian Federal Space Agency to ferry US astronauts to and from the International Space Station after the space shuttle is retired, there’s now more to be in a tizzy about. NASA has signed a $335 million modification to the current ISS contract, adding additional flights into 2014. The previous contract allowed for crew transportation, rescue and related services until 2013. The new extension raises the price of a seat on the Soyuz to $55.8 million, from the $26.3 million per astronaut NASA is paying now, and $51 million a seat for flights in 2011 and 2012.

From the NASA press release:

The firm-fixed price modification covers comprehensive Soyuz support, including all necessary training and preparation for launch, crew rescue, and landing of a long-duration mission for six individual
station crew members.

In this contract modification, space station crew members will launch on four Soyuz vehicles in 2013 and return on two vehicles in 2013 and two in 2014.

Under the contract modification, the Soyuz flights will carry limited cargo associated with crew transportation to and from the station, and disposal of trash. The cargo allowed per person is approximately 110 pounds (50 kilograms) launched to the station, approximately 37 pounds (17 kilograms) returned to Earth, and trash disposal of approximately 66 pounds (30 kilograms).

Source: NASA

Antenna Glitch hinders Data Flow from Inspection of Discovery

Spectacular Predawn Liftoff of Space Shuttle Discovery this morning (April 5) at 6:21 AM EDT from Launch Pad 39 A at the Kennedy Space Center on the STS 131 mission bound for the International Space Station with crew of 7 astronauts. My view with other onlookers from the famous Countdown Clock at the Press Site at KSC about 3 miles away from the pad at T Plus 4 Seconds ! Credit: Ken Kremer

[/caption]

(Editor’s Note: Ken Kremer is at the Kennedy Space Center for Universe Today covering the flight of Discovery)

Following their spectacular predawn blastoff on Monday April 5, the crew of seven astronauts aboard Space Shuttle Discovery is busy with many important chores in preparing for their scheduled link up with the International Space Station on Wednesday (April 7).

Today the astronauts completed the crucial inspection of the orbiters heat shield but cannot beam the video views back to analysts waiting in Houston because of a communications glitch.

Shortly after achieving orbit, the crew discovered a significant malfunction with the orbiters Ku-Band Antenna which the crew uses to transmit and receive information at high speed back and forth with the ground through the orbiting Tracking and Data Relay Satellite (TDRSS) system.

The dish shaped antenna failed to complete its standard activation sequence. Troubleshooting and power cycling efforts by the astronauts and engineers on the ground have been unsuccessful thus far in resolving the problem.

In the Orbiter Processing Facility, the Ku-band communications antenna is stowed in the payload bay of Discovery before the bay's doors are closed. Photo credit: NASA/Jim Grossmann

The antenna is used for high data rate communications with the ground such as transmission of voice and video data and files including television. The shuttle’s radar system also uses the dish antenna during rendezvous operations with the station.

Loss of the antenna is not expected to affect the objectives or safety of the 13 day flight of STS 131. Discovery can safely rendezvous and dock with the ISS using several alternate communications systems – such as the S-band and UHF – and back up capabilities for the radar, all of which are functioning normally. The ISS is also equipped with a Ku-Band antenna that can transmit video of the docking including the belly flop on final approach.

NASA Kennedy Space Center spokesman Allard Beutel told me that, “We’re going to pretty much work with the idea that we will not get the Ku antenna back for this mission so teams are working plans accordingly.”

Inside the Orbiter Processing Facility Bay 3 at NASA's Kennedy Space Center, space shuttle Discovery's payload bay doors are closing. Seen at center is the Ku-band antenna which is used on orbit to transmit and receive information from the ground through the Tracking and Data Relay Satellite system. The Ku-Band antenna has failed initial activation tests on the STS 131 mission. Voice and data can be transmitted by multiple alternate communications systems. Credit: NASA/Chris Rhodes

Today (April 6), the astronauts completed the now standard inspection of Discovery’s heat shield with the Orbiter Boom Sensing System (OBSS) on the shuttles robotic arm to carefully scrutinize the thermal protection system for any signs of damage. This critical task is essential to confirm the complete integrity of the heat shield which protects the orbiter and human crew from the scorching heat generated during re-entry through the Earth’s atmosphere and ensures a safe landing back at KSC at the conclusion of the flight.

Normally, the video of the heat shield inspection data is quickly beamed back to the ground via the Ku-Band antenna for a rapid analysis by imagery experts at Mission Control in Houston. Due to the malfunctioning antenna, the crew recorded the data on five or six 40-minute tapes that will be down linked after docking on Wednesday, using the stations Ku-Band system. The Damage Assessment Team review will be delayed, but this issue will not affect the quality of data it reviews.

According to Flight Director Richard Jones the detailed examination of Discovery’s heat shield and nose cap went well and a preliminary review found no problems or areas for concern.

Docking to the ISS is set for Wednesday, April 7 at 3:44 AM

Earlier STS 131 articles by Ken Kremer:

Discovery Dazzles with Two Dawns in One Day

Discovery Unveiled on Easter Sunday to the Heavens Above

Countdown Clock Ticking for Discovery Blast off on April 5