A Moon Base Will Need a Transport System

Artist's impression of astronauts on the lunar surface, as part of the Artemis Program. How will they store power on the Moon? 3D printed batteries could help. Credit: NASA
Artist's impression of astronauts on the lunar surface, as part of the Artemis Program. How will they store power on the Moon? 3D printed batteries could help. Credit: NASA

Through the Artemis Program, NASA will return astronauts to the lunar surface for the first time since Apollo 17 landed in 1972. Beyond this historic mission, scheduled for September 2026, NASA plans to establish the infrastructure that will enable annual missions to the Moon, eventually leading to a permanent human presence there. As we addressed in a previous article, this will lead to a huge demand for cargo delivery systems that meet the logistical, scientific, and technical requirements of crews engaged in exploration.

Beyond this capacity for delivering crews and cargo, there is also the need for transportation systems that will address logistical needs and assist in exploration efforts. These requirements were outlined in a 2024 Moon to Mars Architecture white paper titled “Lunar Mobility Drivers and Needs.” Picking up from the concurrently-released “Lunar Surface Cargo,” this whitepaper addresses the need for lunar infrastructure that will enable the movement of astronauts and payloads from landing sites to where they are needed the most. As usual, they identified a critical gap between the current capabilities and what is to be expected.

Continue reading “A Moon Base Will Need a Transport System”

NASA's Skyrocketing Need for Cargo Deliveries to the Moon

Artist's impression of astronauts on the lunar surface, as part of the Artemis Program. Credit: NASA
Artist's impression of astronauts on the lunar surface, as part of the Artemis Program. Credit: NASA

NASA has big plans for the Moon. Through the Artemis Program, NASA plans to create a program of “sustained exploration and lunar development.” This will include the creation of the Lunar Gateway, an orbital habitat that will facilitate missions to and from the surface, and the Artemis Base Camp that will allow for extended stays. Through its Commercial Lunar Payload Services (CLPS) program, NASA has contracted with commercial partners like SpaceX and Blue Origin to deliver scientific experiments and crew to the lunar surface.

However, these efforts are expected to culminate in the creation of a permanent outpost and human presence on the Moon. This will require far more in the way of crew and payload services to ensure crews can be sustained in the long run. In a recent white paper, “Lunar Surface Cargo,” NASA researchers identified a significant gap between current cargo delivery capabilities and future demand. The paper indicates that this growing cargo demand can only be met by creating a “mixed cargo lander fleet.”

Continue reading “NASA's Skyrocketing Need for Cargo Deliveries to the Moon”

LEGO Bricks Printed out of Space Dust

A LEGO-style ESA space brick, 3D-printed using dust from a meteorite. Credit: The LEGO Group

There have been many proposals for building structures on the Moon out of lunar regolith. But here’s an idea sure to resonate with creators, mechanical tinkerers, model builders and the kid inside us all.

What about using actual LEGO bricks?

Researchers ground up a 4.5-billion-year-old meteorite and used the dust to 3D print LEGO-style space bricks. They actually click together like the plastic variety, with so far only one downside: they only come in one color, grey.

Want to see some of these lunar LEGOs? LEGO will showcase the space bricks at some of its stores.

Continue reading “LEGO Bricks Printed out of Space Dust”

Mysterious Swirls on the Moon Could Be Explained by Underground Magma

This is an image of the Reiner Gamma lunar swirl on the Moon, supplied by NASA's Lunar Reconnaissance Orbiter. Credits: NASA LRO WAC science team
This is an image of the Reiner Gamma lunar swirl on the Moon, supplied by NASA's Lunar Reconnaissance Orbiter. Credits: NASA LRO WAC science team

In the latest chapter of “The Mystery of the Lunar Swirls,” planetary scientists have a new theory to explain these odd markings on the Moon’s surface. It invokes underground magmas and strange magnetic anomalies.

Continue reading “Mysterious Swirls on the Moon Could Be Explained by Underground Magma”

NASA Releases a New 3D Animation of the Lunar Gateway

A detailed 3D animation of NASA's Gateway space station, showcasing its modules and structural components from various angles against the backdrop of deep space. NASA/Bradley Reynolds, Alberto Bertolin

To get to the Moon, NASA is building a Lunar Gateway in orbit to facilitate easier access to the Moon. With construction beginning in 2028 as part of Artemis IV there will be an ongoing programme of enhancements and additions. NASA has now released a fabulous new 3D animation of the Lunar Gateway to showcase what the final Gateway will look like. It includes modules from partner nations and an Orion lunar landers dock to carry astronauts. 

Continue reading “NASA Releases a New 3D Animation of the Lunar Gateway”

Making Rocket Fuel Out of Lunar Regolith

An illustration of a Moon base that could be built using 3D printing and ISRU, In-Situ Resource Utilization. Credit: RegoLight, visualisation: Liquifer Systems Group, 2018
An illustration of a Moon base that could be built using 3D printing and ISRU, In-Situ Resource Utilization. Credit: RegoLight, visualisation: Liquifer Systems Group, 2018

In the coming years, NASA and other space agencies plan to extend the reach of human exploration. This will include creating infrastructure on the Moon that will allow for crewed missions on a regular basis. This infrastructure will allow NASA and its international partners to make the next great leap by sending crewed missions to Mars (by 2039 at the earliest). Having missions operate this far from Earth for extended periods means that opportunities for resupply will be few and far between. As a result, crews will need to rely on In-Situ Resource Utilization (ISRU), where local resources are leveraged to provide for basic needs.

In addition to air, water, and building materials, the ability to create propellant from local resources is essential. According to current mission architectures, this would consist of harvesting water ice in the polar regions and breaking it down to create liquid oxygen (LOX) and liquid hydrogen (LH2). However, according to a new study led by engineers from McGill University, rocket propellant could be fashioned from lunar regolith as well. Their findings could present new opportunities for future missions to the Moon, which would no longer be restricted to the polar regions.

Continue reading “Making Rocket Fuel Out of Lunar Regolith”

China’s Chang’e-6 Probe Drops Off Samples From Moon’s Far Side

Chang'e-6 sample return capsule and Chinese flag
A Chinese flag flies next to the Chang'e-6 sample return capsule after its landing in Inner Mongolia. (Credit: CCTV / CNSA via Weibo)

Three weeks after it lifted off from the far side of the moon, China’s Chang’e-6 spacecraft dropped off a capsule containing first-of-its-kind lunar samples for retrieval from the plains of Inner Mongolia.

The gumdrop-shaped sample return capsule floated down to the ground on the end of a parachute, with the descent tracked on live television. After today’s touchdown, at 2:07 p.m. local time (0607 GMT), members of the mission’s recovery team checked the capsule and unfurled a Chinese flag nearby.

Chang’e-6, which was launched in early May, is the first robotic mission to land and lift off again from the moon’s far side — the side that always faces away from Earth. It’s also the first mission to bring dirt and rocks from the far side back to Earth.

“The Chang’e-6 lunar exploration mission achieved complete success,” Zhang Kejian, director of the China National Space Administration, said from mission control. Chinese President Xi Jinping extended congratulations to the mission team, the state-run Xinhua news service reported.

Continue reading “China’s Chang’e-6 Probe Drops Off Samples From Moon’s Far Side”

Two Seismometers are Going to the Moon to Measure Moonquakes

The Moon is shrinking and causing moonquakes. New seismometers will go there to measure them.
The Moon is shrinking and causing moonquakes. New seismometers will go to Shrodinger Basin to measure them.

Our Moon is shrinking and has been doing so since just after its formation ~4.5 billion years ago from a collision with the young Earth. That shrinkage, along with a constant rain of micrometeorites, causes lunar seismic activity. NASA plans to send two instruments to the Moon to measure its moonquakes. Those dual seismometers share technology first used on Mars by the InSight lander to measure more than a thousand marsquakes.

Continue reading “Two Seismometers are Going to the Moon to Measure Moonquakes”

Chinese Probe Collects Moon Samples and Heads for Earth

Chang'e-6 lander on the moon, as seen by a mini-rover nearby
An image captured by a camera-equipped rover shows China's Chang'e-6 lander with its robotic arm and a Chinese flag. (Credit: CLEP / CNSA)

China says its Chang’e-6 spacecraft has gathered up soil and rocks from the far side of the moon and has lifted off from the surface, beginning a journey to bring the samples back to Earth. The probe’s payload represents the first lunar samples ever collected from the far side.

In a status update, the China National Space Administration said the Chang’e-6 ascent module successfully reached lunar orbit, where it’s due to transfer the samples to a re-entry capsule hooked up to the probe’s orbiter. (Update: CNSA says the ascent module made its rendezvous with the orbiter and transferred the samples to the re-entry capsule on June 6.)

If all goes according to plan, the orbiter will leave the moon’s orbit, head back to Earth and drop off the re-entry capsule for retrieval in China’s Inner Mongolia region sometime around June 25.

Continue reading “Chinese Probe Collects Moon Samples and Heads for Earth”

Chinese Probe Lands on Moon’s Far Side to Collect Samples for Return

Image of lunar surface
An image captured during the Chang'e-6 probe's descent shows lunar terrain. (Credit: CLEP / CNSA)

After touching down on the moon’s far side, China’s Chang’e-6 lander is collecting samples to bring back to Earth — and sending back imagery documenting its mission.

Chang’e-6, which was launched May 3, went through weeks’ worth of in-space maneuvers that climaxed with its weekend landing in the moon’s South Pole-Aitken Basin region. The mission plan calls for the probe to collect samples of lunar soil and rock over the course of about two days, and then pack them up for the return trip.

If the operation is successful, Chang’e-6 would bring back the first fresh lunar samples ever collected on the moon’s far side — following up on the Chang’e-5 mission in 2020, which returned samples from the moon’s Earth-facing side.

Continue reading “Chinese Probe Lands on Moon’s Far Side to Collect Samples for Return”