LRO Takes Closer Look at Moon Caves

Spectacular high Sun view of the Mare Tranquillitatis pit crater revealing boulders on an otherwise smooth floor. Image is 400 meters wide, north is up, NAC M126710873R [NASA/GSFC/Arizona State University].

As promised, the Lunar Reconnaissance Orbiter is taking more detailed looks at the lunar pits, or lava tubes that have been discovered by LRO and the Kaguya spacecraft. These are deep holes on the moon that could open into vast underground tunnels, and could serve as a safe, radiation shielding habitats for future human lunar explorers. Plus, they are just plain intriguing! This image of a pit found in the Sea of Tranquility (Mare Tranquillitatis) was taken as the Sun was almost straight overhead, illuminating the region. By comparing this image with previous images that have different lighting, scientists can estimate the depth of the pit. They believe it to be over 100 meters!

See more “in-depth” look at more of the caves on the Moon, below:

Two views of Mare Ingenii pit Credit: NASA/GSFC/Arizona State University.

These two images show a pit in Mare Ingenii, which reveal different portions of the floor as the Sun crosses from west to east. Again, by measuring the shadows in different lighting, the Sea of Cleverness pit appears to be about 70 meters deep and about 120 meters wide.

These long, winding lava tubes are like structures we have on Earth. They are created when the top of a stream of molten rock solidifies and the lava inside drains away, leaving a hollow tube of rock. There have been hints that the Moon had lava tubes based on observations of long, winding depressions carved into the lunar surface by the flow of lava, called sinuous rilles.

If a human geologist could ever climb down inside these tubes on the Moon, we could learn so much about the Moon’s history, and sort of travel back in time by studying the different layers on the Moon, just like we do on Earth.

Three views of the Marius Hills pit. Credit: NASA/GSFC/Arizona State University.

LROC has now imaged the Marius Hills pit three times, each time with very different lighting. The center view has an incidence angle of 25° that illuminates about three-quarters of the floor. The Marius pit is about 34 meters deep and 65 by 90 meters wide.

Read more about the Ingenii, Tranquillitatis, and Marius pits at the LROC website, and you can search the nearby area for clues in the full LROC NAC frame that may help determine if an extended lava tube system still exists beneath the surface.

Source: LROC website

Daylight Occultation of Venus by the Moon

Composite images of Venus occultation on Sept. 11, 2010. Credit: Kerneels Mulder

On September 11, 2010 South Africa had an amazing view of a full daylight occultation of Venus by the Moon, and Kerneels Mulder captured it, and shared it with Universe Today. He sent us this video created from the images he took of the event, and below is a composite look at all the images, showing Venus as it reappears from behind the Moon.

“The occultation happened in full daylight, with the Moon only 40° from the Sun, making it difficult to capture detailed images,” Mulder wrote us. “Venus disappeared behind the dark side of the Moon at around 14:20 (GMT+2) and reappeared on the bright side of the Moon at 15:54 (GMT+2).”

Mulder said the sight was amazing. “With the naked eye Venus was easily visible as a bright dot close to the crescent Moon. The 3.5” refractor used during imaging showed an even more awe-inspiring view with both the crescents of the Venus and the Moon visible in the same field of view.”

[/caption]

New Moon Mission: Chandrayaan-2 Payloads Selected

Proposed flight plan for the Chandrayaan-2 mission. Credit: ISRO

[/caption]

Seven instruments will be aboard India’s second unmanned mission to the Moon, Chandrayaan-2, the Indian Space Research Organization (ISRO) announced today. The mission, which is a cooperative effort between ISRO and the Russian Federal Space Agency, will include an orbiter, a lander and a rover, which officials hope will launch in 2013. The instruments will study the Moon in a variety of wavelengths, and there will be five instruments on the orbiter and two on the rover. They include:

For the orbiter:

1. Large Area Soft X-ray Spectrometer (CLASS) and Solar X-ray monitor (XSM) for mapping major elements present on the lunar surface.

2. L and S band Synthetic Aperture Radar (SAR), which will probe the first few tens of meters of the lunar surface for the presence of different constituents, including water ice. SAR is expected to provide further evidence confirming the presence of water ice below the permanently shadowed regions of the Moon.

3. Imaging IR Spectrometer (IIRS) will map the lunar surface over a wide wavelength range for the study of minerals, water molecules and hydroxyl present.

4. Neutral Mass Spectrometer (ChACE-2) to carry out a detailed study of the lunar exosphere.

5. Terrain Mapping Camera-2 (TMC-2)to create a three-dimensional map essential for studying the lunar mineralogy and geology.

For the rover:

1. Laser induced Breakdown Spectroscope (LIBS).

2. Alpha Particle Induced X-ray Spectroscope (APIXS).

Both those instruments are expected to carry out elemental analysis of the lunar surface near the landing site.

ISRO didn’t rule out adding addition payloads later “if possible within the mission constraints,” they said in a statement.

The lander is being built by Russia, while the orbiter and rover are being built by ISRO.

Chandrayaan-2 spacecraft weighs about 2,650 kg at lift-off of which the orbiter’s weight is about 1,400 kg and lander about 1,250 kg. It will be launched onboard a Geosynchronous Satellite Launch Vehicle (GSLV) from the Satish Dhawan Space Centre, in India.

Chandrayaan-1 was an extremely successful mission that lasted 10 –months until the orbiter experienced communications and navigation problems in August 2009, abruptly ending the mission. Data from the 11 instruments on Chandrayaan-1 are still being analyzed, but have already contributed to finding water and hydroxyl across the Moon’s surface and water ice in craters on the lunar poles.

Source: The Times of India

Tonight’s the Night Mars Will NOT Look as Big as the Full Moon

The night sky on August 27, 2010. Image from EarthSky.org

[/caption]

I wasn’t going to write an article about the Mars-Moon Hoax this year because I thought it was too passé — we’ve written articles about this email-circulated fallacy every year since 2003 and another article would be like beating a dead horse because surely, there’s no one out there anymore that actually believes Mars can look as big as the full Moon.

But I just looked at some stats and saw that our article on the topic from 2007, “Will Mars Look as Big as the Full Moon On August 27? Nope” has gotten like a gazillion hits the past few days, so obviously people are Googling the topic, wondering if Mars will look as big as the full Moon tonight.

Short answer: No. If you looked at the night sky last night, Mars was not as big as the full Moon then, and it won’t be that big tonight. Moreover, it won’t be that big, ever. It is impossible for Mars to ever look as big as the full Moon. And this year (2010) in August, Mars is just barely visible, as a faint object low in the west after sunset. Take a look at the sky chart above from EarthSky.org which shows you where it is. And you can read more about Mars in 2010 at the EarthSky.org website, which is a great resource for all sorts of science topics and is written by some of the world’s top scientists.

The confusion arises from an erroneous and completely hoaxy email that started in 2003 when Mars was about as close to Earth it will ever get, but still, it was very far away, about 55,758,006 kilometers (34,646,418 miles). It did not look as big as the full Moon then, and it certainly never will. Take a look at JPL’s blog post, “Five Things About Viewing Mars in August” written by outreach specialist Jane Houston Jones. She writes:

“The moon is one-quarter the size of Earth and is relatively close — only about 384,000 kilometers (about 239,000 miles) away. On the other hand, Mars is one-half the size of Earth and it orbits the sun 1-1/2 times farther out than Earth’s orbit. The closest it ever gets to Earth is at opposition every 26 months. The last Mars opposition was in January and the next one is in March 2011.

At opposition, Mars will be 101 million kilometers (63 million miles) from Earth, almost twice as far as in 2003. So from that distance, Mars could never look the same as our moon.”

NASA usually writes an article about this every year as well — and this year it is called “The Mutating Mars Hoax.”

Every year, Universe Today has been debunking the erroneous email that has been going around since 2003. If you’d like to look back, here are a few: 2009, 2008, 2007, 2006, and 2005. If you don’t believe Fraser and me, Phil Plait the Bad Astronomer debunks the email here, here , here, and here’s the original one back in 2003.

And by the way, I stole the title for this article from my friend Rob Sparks, who said on Twitter this morning, “Today’s the day Mars won’t look as big as the full Moon.” He wrote a great blog post about the Mars-Moon hoax on his “Half-Astrophysics” blog.

So, yes, tonight is the night Mars will NOT look as big as the full Moon, and that goes for every other night, as well.

Just remember, you can’t always believe everything you read in a forwarded email!

Desert RATS – On The Move

NASA's Desert RATS will conduct field tests at the end of this month.

 

[/caption]

For some fourteen years now NASA‘s Desert Research and Technology Studies (Desert RATS) team has been testing out the viability of many of NASA’s vehicles, space suits, habitats and robotic systems in extreme environments.   Like their durable name-sake, the Desert RATS have proven to be resilient and flexible, adapting to the changing NASA environment. When it was announced that NASA would move away from the Constellation Program and toward other objectives such as asteroids and possibly Mars – the Desert RATS picked up the challenge and modified their regimen to reflect this change.

Testing this year will take place from Aug. 31 until Sept. 15 and will shakedown many new design concepts. The former Electric Lunar Rovers, now dubbed Space Exploration Vehicles will be tested at the site requiring simulated astronauts to live in these vehicles for a week. 

No Desert RATS expedition would be incomplete without some incredible robots to assist their human companions. There are the Tri-ATHLETEs (Terrain Hex-Legged Extra-Terrestrial Explorer) – these wheeled, spidery creations have six independent ‘legs’ each with a wheel at the base and can be fitted with different ‘tops” for each mission. Robonaut 2, one of NASA’s new robotic rock-stars, has been converted into a four-wheeled variant dubbed Centaur 2 and will be tested this year. This variation could be a potential mode of transport for NASA

However, this year’s rotation is all about the “hab.” The Habitat Demonstration Unit (HDU) Project is an inter-agency project consisting of NASA architects, scientists and engineers. These groups are working to develop living quarters, workspaces, and laboratories for future space missions, working under the “build a little – test a little” philosophy. This area will serve as a laboratory, a place for maintenance and a staging area in the event of a medical emergency. 

Robonaut-1 is seen here in its Centaur configuration. Photo Credit: NASA/Joe Bibby

“This allows us to have far greater flexibility,” said Tracy Gill, NASA’s Deputy Project Manager for the habitat element of this project. “These habitats are currently in the process of being developed further to make them even more adaptable.” 

NASA is working with the National Space Grant Foundation to develop an inflatable “loft” that will be attached to the HDU. This will mean that astronauts won’t have to don a space suit to travel from their living quarters to where they work – they would simply have to go “upstairs.” In an effort to promote science, technology, engineering and math (known as STEM) in college-age students, the X-Hab Academic Innovation Competition is working to sponsor development of these inflatable habitat concepts. The goal is for senior and graduate-level design students to design, manufacture, assemble, and test an inflatable loft that will be integrated on top of an existing NASA built hard shell prototype. 

As with any year the Desert RATS test out new concepts, this year promises to display many futuristic ideas that one day may be used in the real world(s). This year is slightly different however, in that the elements being tested are designed to be readily adaptable toward whatever NASA will eventually be called to do. During the Apollo era, astronauts were trained by “the King” – Farouk El-Baz. El-Baz worked with the astronauts so that they would be intimately familiar with the lunar surface, that they had the training and tools to get the job done. These annual event – would make “the King” – proud.

 

MESSENGER Looks Back at the Earth and Moon

Earth and Moon from 114 Million Miles.Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

[/caption]

A new image to add to the family photo album! The MESSENGER spacecraft is working its way to enter orbit around Mercury in March of 2011, and while wending its way, took this image of the Earth and Moon, visible in the lower left. When the image was taken in May 2010, MESSENGER was 183 million kilometers (114 million miles) away from Earth. For context, the average separation between the Earth and the Sun is about 150 million kilometers (93 million miles). It’s a thought provoking image (every one of us is in that image!), just like other Earth-Moon photos — Fraser put together a gallery of Earth-Moon images from other worlds, and this one will have to be added. But this image was taken not just for the aesthetics.

This image was taken as part of MESSENGER’s campaign to search for vulcanoids, small rocky objects hypothesized to exist in orbits between Mercury and the Sun. Though no vulcanoids have yet been detected, the MESSENGER spacecraft is in a unique position to look for smaller and fainter vulcanoids than has ever before been possible. MESSENGER’s vulcanoid searches occur near perihelion passages, when the spacecraft’s orbit brings it closest to the Sun. August 17, 2010 was another such perihelion, so if MESSENGER was successful in finding any tiny asteroids lurking close to the Sun, we may hear about it soon.

Source: MESSENGER

Tumbling Boulders Leave Trails on the Moon

mages from Moon Zoo showing trails from tumbling boulders in the Montes Alpes/Vallis Alpes region on the Moon. Credit: NASA/LRO/Moon Zoo.

[/caption]

There’s probably a great story in this image, if only someone was there to witness it as it happened! This is an image from Moon Zoo, the citizen science project from the Zooniverse that asks people to look at images from the Lunar Reconnaissance Orbiter and search for craters, boulders and more. And often, the Zooites find some very interesting features on the Moon, like this one and the ones below that include tracks from rolling, bounding, tumbling and sometimes bouncing boulders. Then the task for the scientists is to figure out what actually happened to get these boulders moving — was it an impact, are the boulder on the bottom of a hill, or was it some other unknown catalyst? As Zooniverse founder Chris Lintott says, “The Moon has its own landscape that is really quite dramatic, so it’s a world well worth exploring.”

LRO image from Moon Zoo.

Why look for tumbling boulders? Moon Zoo scientist Dr. Katie Joy gave this explanation:

“One of the main reasons we are asking Moon Zoo users to search for scars left behind by tumbling boulders is to help support future lunar exploration initiatives. Boulders that have rolled down hillsides from crater walls, or massifs like the Apollo 17 landing site, provide samples of geologic units that may be high up a hillside and thus difficult to access otherwise by a rover or a manned crew vehicle. If mission planning can include traverses to boulders that have rolled down hills, and we can track these boulders back up to the part of hillside from where they have originated, it provides a neat sampling strategy to accessing more geological units than would have been possible otherwise… Thus we hope to use Moon Zoo user data to produce a map of known boulder tracks (and terminal boulders) across the Moon.”

LRO image from Moon Zoo of boulder tracks.

See more unique boulder tracks images in the Moon Zoo forum thread on boulders.

If you want to join in on the fun of looking for mysteries on the Moon, check out Moon Zoo, or the Zooniverse for more citizen science projects where you can get involved in helping scientists do real science.

There’s Water On the Moon’s Surface, But Interior Could Be Dry

Hadley Rille, the landing site for Apollo 15. Credit: NASA

[/caption]

With all the recent news of water on the Moon, a new paper published today in the journal Science may offer a surprise – or it may bring us back to previous assumptions about the Moon. A new analysis of eleven lunar samples from the Apollo missions by Zachary Sharp from the University of New Mexico and his colleagues indicates that when the Moon formed, its interior was essentially dry. While the recent findings of ubiquitous water and hydroxyl on the surface as well as water ice in the lunar poles are not challenged by this new finding, it does dispute — somewhat — two other recent papers that proposed a wetter lunar interior than previously thought. “The recent LCROSS findings were of water on the lunar surface due to cometary impacts, and the ice is from the comets themselves,” Sharp told Universe Today. “We are talking about water that was present in the molten early Moon 4.5 billion years ago.”

The accepted theory of how the Moon formed is that a Mars-sized body slammed into our early Earth, creating a big disk of debris that would ultimately form into the Moon.

Although planetary scientists are still refining models of the Moon’s formation, there is much to suggest a dry Moon. Any water would have been vaporized by the high temperatures generated by the impact and cataclysm that followed, and vapor would have escaped into space. The assumption is that the only way there could be water in the Moon’s interior if is the impactor was especially water-rich, and also if the Moon solidified quickly, which is considered unlikely.

But earlier this year, Francis McCubbin and his team from the Carnegie Institution for Science released their findings of a surprisingly high abundance of water molecules — as high as several thousand parts per million — bound to phosphate minerals within volcanic lunar rocks, which would have formed well beneath the lunar surface and date back several billion years.

Additionally, in 2008, Alberto Saal of Brown University and colleagues found a slightly lower abundance of water in the lunar mantle, but it was significantly higher than the previous estimate of 1 part per billion.
These two findings have been pushing lunar scientists to find possible alternative explanations for the Moon’s formation to account for all the water.

But now, Sharp and his team studied a wide range of lunar basalts and measured the composition of chlorine isotopes. Using gas source mass spectrometry they found a wide range of chlorine isotopes contained in the samples which are 25 times greater than what is found in rocks and minerals from Earth and from meteorites.
Chlorine is very hydrophilic, or attracted to water, and is an extremely sensitive indicator of hydrogen levels. Sharp and his team say that, if lunar rocks had initial hydrogen contents anywhere close to those of terrestrial rocks, then the fractionation of chlorine into so many different isotopes would never have happened on the Moon. Because of this Sharp and his colleagues say their results suggest a very dry interior of the Moon.

Sharp proposes that Saal and McCubbin’s calculations of high hydrogen contents in some lunar samples are not typical, and perhaps those samples are the product of certain igneous processes that resulted in their “extremely volatile enrichment.” They do not, however, represent the high and variable isotopic chlorine values reported in the majority of lunar rocks, Sharp said.

Still, there could be a compromise between the varied findings. “There are uncertainties that one has to take into account when doing this type of study, ” Sharp told Universe Today, “and if we take the low estimates of Saal and McCubbin’s papers, they are not so different from our findings.”

But the discrepancies, however small, show that perhaps we can’t make generalizations about the entire Moon from limited samples.

“We have not yet looked for water in a wide range of lunar samples,” said Jeff Taylor from the University of Hawaii, who was not involved in any of the aforementioned studies. “It is quite possible that the initial differentiation of the Moon and subsequent processes such as mantle overturn concentrated whatever water the Moon had into certain areas. Until we measure more samples, including samples from the farside (represented by many of the lunar meteorites and eventually by sample-return missions), we will not know for sure how much water is in the bulk Moon.”

In combination, all the recent studies of the lunar surface show there is likely a complex chemistry on the Moon that we have yet to understand.

“In other words,” said Taylor, “we need more work!”

Source: Science News

Earlier Papers:

Nominally hydrous magmatism on the Moon by Francis McCubbin et al., 2010.

Volatile content of lunar volcanic glasses and the presence of water in the Moon’s interior, Alberto Saal et al. Nature.

Radar Images Reveal Tons of Water Likely at the Lunar Poles

High-resolution view from LRO of an unusual crater near Moon’s north pole, Rozhdestvensky (110 miles, or 177 kilometers in diameter). Credit: NASA

[/caption]

Radar has been used since the 1960s to map the lunar surface, but until recently it has been difficult to get a good look at the Moon’s poles. In 2009, the Mini-SAR radar instrument on the Chandrayaan-1 spacecraft was able to map more than 95% of both poles at 150 meter radar resolution, and now the Mini-RF instrument on the Lunar Reconnaissance Orbiter — which has 10 times the resolution of the Mini-SAR — is about halfway through its first high-resolution mapping campaign of the poles. The two instruments are revealing there are likely massive amounts of water in the permanently shadowed craters at the poles, with over 600 million metric tons at the north pole alone. “If that was turned into rocket fuel, it would be enough to launch the equivalent of one Space Shuttle per day for over 2,000 years,” said Paul Spudis, principal investigator for the Mini-SAR, speaking at the annual Lunar Forum at the Ames Research Center in July.

Both Spudis and Ben Bussey, principal investigator for LRO’s Mini-RF shared images from their respective instruments at the Forum, highlighting polar craters that exhibit unusual radar properties consistent with the presence of ice.

They have found over 40 craters on the Moon’s north pole that exhibit these properties.

Both instruments provide details of the interior of shadowed craters, not able to be seen in visible light. In particular, a measurement called the circular polarization ratio (CPR) shows the characteristics of the radar echoes, which give clues to the nature of the surface materials in dark areas. The instruments send pulses of left-polarized radio waves to measure the surface roughness of the Moon. While smooth surfaces send back a reversed, right-polarized wave, rough areas return left-polarized waves. Ice, which is transparent to radio waves, also sends back left-polarized waves. The instruments measure the ratio of left to right circular polarized power sent back, which is the CPR.

Few places – even in our solar system — have a CPR greater than 1 but such places have thick deposits of ice, such as Martian polar caps, or the icy Galilean satellites. They are also seen in rough, rocky ejecta around fresh, young craters, but there, scientists also observe high CPR outside the crater rim such as in this image, below of the Main L crater on the Moon.

The fresh impact crater Main L (14 km diameter), which shows high CPR inside and outside its rim. The histograms at right show that the high CPR values within (red line) and outside the crater rim (green line) are nearly identical. Credit: NASA

Most of the Moon has low CPR, but dozens of anomalous north pole craters, such as a small 8 km crater within the larger Rozhdestvensky crater, had a high CPR on the inside, with a low CPR on the rims. That suggests some material within the craters, rather than surface roughness, caused the high CPR signal.

“Geologically, we don’t expect rough, fresh surfaces to be present inside a crater rim but absent outside of it,” Spudis said. “This confirms the high CPR in these anomalous craters is not caused by surface roughness, and we interpret this to mean that water ice is present in these craters.”

An “anomalous” crater on the floor of Rozhdestvensky, near the north pole of the Moon. The histogram of CPR values clearly shows that interior points (red line) have higher CPR values than those outside the crater rim (green line). Credit: NASA

Additionally, the ice would have to be several meters thick to give this signature. “To see this elevated CPR effect, the ice must have a thickness on the order of tens of wavelengths of the radar used,” he said. “Our radar wavelength is 12.6 cm, therefore we think that the ice must be at least two meters thick and relatively pure.”

Recent Mini-SAR images (top image) from LRO confirm the Chandrayaan-1 data, with even better resolution. The Mini-RF, Bussey said, is equivalent to a combination of the Arecibo Observatory and the Greenbank Radio telescope in looking at the Moon. “Our polar campaign will map from 70 degrees to the poles and so far we are very pleased with the coverage and quality of the data,” Bussey said.

Spudis said they are seeing less anamolous craters on the Moon’s south pole, but both he and Bussey are looking forward to comparing more data between the two radar instruments to learn more about the permanently shadowed craters on the Moon.

Additionally, other instruments on LRO will also provide insights into the makeup of these anomalous craters.

For more information see these NASA web pages:
NASA Radar Finds Ice Deposits at Moon’s North Pole
A Cool Look at a Lunar Crater

Water Cycle on the Moon Remains a Mystery

This schematic shows the daytime cycle of hydration, loss and rehydration on the lunar surface. Credit: University of Maryland/McREL.

[/caption]

“Water cycle on the Moon” is a phrase that many people – including lunar scientists – were never expecting to hear. This surprising new finding of ubiquitous water on the surface of the Moon, revealed and confirmed by three different spacecraft last year, has been one of the main topics of recent discussion and study by lunar researchers. But figuring out the cycle of how water appears and disappears over the lunar day remains elusive. As of now, scientists suspect a few different processes that could be delivering water and hydroxyl (OH) to the lunar surface: meteorites or comets hitting the Moon, outgassing from the Moon’s interior, or the solar wind interacting with the lunar regolith. But so far, none of the details of any of these processes are adding up.

Dana Hurley from The Johns Hopkins University Applied Physics Laboratory is part of team of scientists attempting to model the lunar water cycle, and she discussed the work at the NASA Lunar Science Institute’s third annual Lunar Forum at Ames Research Center, July 20-22, 2010.

“When we do the model, we assume the way that the water is lost is through photodissociation, and so that sets the timescale,” Hurley told Universe Today. “And using that timescale the amount that is coming in through the solar wind or micrometeorites can’t add up to the amount observed if it is in steady state, so something is not jiving.”

Photodissociation involves the breaking up of a substance into simpler components by the radiant energy of sunlight.

It appears the amount of water varies over the course of the lunar day. Two observations a week apart by a spectrometer on the repurposed Deep Impact spacecraft (now called EPOXI) showed the region that was near the Moon’s terminator at dawn had a detectable amount of water and hydroxyl, and a week later when it was near noon, those substances were gone. But the new region at dawn then had H2O and OH.

One theory holds that the water and hydroxyl are, in part, formed from hydrogen ions in the solar wind. By local noon, when the moon is at its warmest, some water and hydroxyl are lost. By evening, the surface cools again, and the water and hydroxyl return.

But, Hurley said, the solar wind in steady state does not reproduce the observed surface density of water and hydroxyl.

Additionally, looking at the other possible sources — the known source rate of micrometeoroids and comets — doesn’t provide the amount of observed H20 and OH either.

“We’d really like to have a lot more observations to understand how it evolves over the course of the day,” Hurley said.

Water in Polar Regions on the Moon Credit: ISRO/NASA/JPL-Caltech/Brown Univ./USGS

In her talk, Hurley said her team has been trying to look at all possible angles and ideas, including recent larger comet hits on the Moon, or potentially a seasonal event where water deposited at winter poles could be released when it warms up in summer. But so far none of these ideas have been tested or modeled, and as of now do not provide a solution to the daily cycle of water that was observed.

She also noted that since there are obviously some unique processes going on, the interaction between the surface and atmosphere needs more study.

“The surface and atmosphere are coupled,” Hurley said in an interview with Universe Today. “The atmosphere is produced from the surface; there is no atmosphere that lasts for a long time on the Moon and it is constantly being produced and lost. And so it is coming from the surface, either from something that is coming from the lunar regolith grains or something that is interacting with those grains, whether it is solar wind or something that is impacting. So, the surface is the source of the atmosphere and that atmosphere comes back and interacts with the surface again. And you really have to understand that whole system.”

So, what is her best guess as to the source of the water?

Hurley said there has to be some sort of recycling going on within the regolith, and perhaps a complex surface chemistry that allows the H20 and OH to exist for longer periods of time, which would better explain the surface density.

“What I’ve looked at is what could be happening in the atmosphere and how things hop around from the surface up and then back down to the surface,” she said. “The lunar regolith is rather loose, and these small particles and gases can go down within the regolith and be within the top several centimeters and work their way down and back out. So there is an exchange going on in that top layer that is kind of acting as a reservoir. That is my best guess of what is going on.”