Nearsighted No More: Astronomers Resolve Milky Way’s Mysterious X-Ray Glow


The map above details the Galactic ridge X-ray emission, first detected 25 years ago and observed recently by NASA’s Rossi X-ray Timing Explorer (RXTE) observatory. The inset shows the zoomed Chandra image of the region, close to the center of the galaxy. 

The mysterious — and formerly blurry — X-ray source puzzled astronomers for a quarter century, but a new paper release today by the journal Nature has helped to clear the air.

Region close to the Galactic Center obtained by Spitzer infrared telescope in three spectral band. The field of view of CHANDRA is shown by the white square. Credit: M. Revnivtsev


Lead author Mikhail Revnivtsev, of Munich Technical University in Garching, Germany, and his colleagues report that the formerly unresolved X-ray glow has a spectrum characteristic of a hot (100 million degrees Kelvin) optically thin plasma, with a prominent iron emission line.

But the gravitational well of the Galactic disk is far too shallow to confine such a hot interstellar medium; it would flow away at a velocity of a few thousand kilometers per second, exceeding the speed of sound in the gas.

Replenishing such energy losses would require a source that exceeds all plausible energy sources in the Milky Way — including supernovae — by orders of magnitude, they write.

Based on their observations, the team is proposing that the hot plasma is instead bound to many faint sources: plain old stars.

“Here we report that at energies of 6–7 keV, more than 80 percent of the seemingly diffuse X-ray emission is resolved into discrete sources, probably accreting white dwarfs and coronally active stars,” they write.

“Such stellar X-ray sources are of the common ‘garden variety’ in the Sun’s neighbourhood,” writes Michael Shull, an astrophysicist at the University of Colorado at Boulder, in an accompanying editorial. “However, at the distance of the Galactic ridge from Earth, their combined light becomes a diffuse blur, the X-ray equivalent of the many stars that make up the Milky Way, as Galileo first saw with his telescope in visible light.”

Shull notes that the results are a testament to the increased power of telescopes like Chandra, which de-mystified the source of the X-ray glow — and he cautions astronomers about describing faint backgrounds at all wavelengths, before getting a good look.

“As Revnivtsev and colleagues’ work demonstrates, sometimes the exotic explanation can be set aside by more accurate imaging and spectroscopy,” he writes.

LOWER IMAGE CAPTION: Region close to the Galactic Center obtained by Spitzer infrared telescope in three spectral band. The field of view of CHANDRA is shown by the white square. Credit: M. Revnivtsev

Source: Nature

Stars at Milky Way Core ‘Exhale’ Carbon, Oxygen

Carbon exists only in a fine-tuned universe( 'Cat's Eye' Planetary Nebula)


Carbon and oxygen have been spotted in the dust around stars in the center of the Milky Way galaxy, suggesting that the stars have undergone recent disruptions of some kind — and hinting how stars can send heavy elements — like oxygen, carbon, and iron — out across the universe, paving the way for life.

Scientists have long expected to find carbon-rich stars in our galaxy because we know that significant quantities of carbon must be created in many such stars. But carbon had not previously shown up in the clouds of gas around these stars, said Matthew Bobrowsky, an astrophysicist at the University of Maryland and a co-author of a new study reporting the discovery.

“Based on our findings, this is because medium-sized stars rich in carbon sometimes keep that carbon hidden until very near the end of their stellar lives, releasing it only with their final ‘exhalations’,” explained Bobrowsky.

The new results appear in the February issue of the journal Astronomy and Astrophysics.

Bobrowsky and his team, led by J. V. Perea-Calderón at the European Space Astronomy Centre in Madrid, Spain, used the Spitzer Space Telescope to view each star and its surrounding clouds of dust and particles, called a planetary nebulae. The researchers measured the light emitted by the stars and the surrounding dust and were able to identify carbon compounds based on the wavelengths of light emitted by the stars. Looking in an area at the center of the Milky Way called the “Galactic Bulge,” the team observed 26 stars and their planetary nebulae and found 21 with carbon “signatures.”

But the scientists did not just find carbon around these stars; they also found oxygen in these 21 dust clouds, revealing a surprising mixture of ingredients for space dust. They report in their paper that this is likely due to a thermal pulse where a wave of high-pressure gas mixes layers of elements like carbon and oxygen and spews them out into the surrounding cloud.

The finding of carbon and oxygen in the dust clouds surrounding stars suggests a recent change of chemistry in this population of stars, according to the authors.

“Stars in the center of the Milky Way are old and ‘metal-rich’ with a high abundance of heavy elements,” Bobrowsky said. “They are different in chemical composition than those found in the disc, farther out from the center.”

Studying the chemistry of the stars helps scientists learn how the matter that makes up our earth and other planets in our galaxy left its stellar birthplaces long ago. 

As a star burns hotter and hotter, the hydrogen gas that originally made up almost all of its mass is converted, through nuclear fusion, first to helium, and then to progressively heavier elements. The hottest region in the core fuses together the heaviest elements. And these can reach the surface of the star only when its life is almost over.

“The Big Bang produced only hydrogen and helium,” Bobrowsky said. “Heavier elements like carbon and oxygen only come from getting ‘cooked up’ in stars. Nuclear reactions in stars created the heavier elements found in ‘life as we know it’.”

In the last 50,000 years of their 10 billion-year lives, sun-sized stars expel carbon atoms along with hydrogen and helium to form a surrounding cloud of gas that soon disperses into space, perhaps to eventually become the stuff of new stars, solar systems, or perhaps even life on some earth-like planet. Much larger stars expel their heavier matter in massive explosions called supernovae.

“All the heavy elements [which astronomers call ‘metals,’ and include all elements heavier than hydrogen and helium] on Earth were created by nuclear fusion reactions in previous generations of stars,” said Bobrowsky. “Those earlier stars expelled those elements into space and then our solar system formed out of that gas containing all the heavy elements that we now find in Earth and in life on Earth.”

LEAD IMAGE CAPTION: Cat’s Eye Nebula. Researchers have found carbon and oxygen in dusty planetary nebulae surrounding stars at the center of the Milky Way. Credit: NASA/JPL-Caltech/J. Hora (Harvard-Smithsonian CfA)

Source: Astronomy & Astrophysics and Spitzer, via AAS

Triple Whammy: Milky Way More Massive, Spinning Faster and More Likely to Collide


For many of us, looking closely in the mirror and stepping on the bathroom scale just after the holidays can reveal a substantial surprise. Likewise, astronomers looking closely at the Milky Way have found our galaxy is more massive than previously thought. High-precision measurements of the Milky Way disclose our galaxy is rotating about 100,000 miles per hour faster than previously understood. That increase in speed, said Mark Reid of the Harvard-Smithsonian Center for Astrophysics, increases the Milky Way’s mass by 50 percent. The larger mass, in turn, means a greater gravitational pull that increases the likelihood of collisions with the Andromeda galaxy or smaller nearby galaxies. So even though we’re faster, we’re also heavier and more likely to be annihilated. Bummer!

The scientists are using the National Science Foundation’s Very Long Baseline Array (VLBA) radio telescope to remake the map of the Milky Way. Taking advantage of the VLBA’s unparalleled ability to make extremely detailed images, the team is conducting a long-term program to measure distances and motions in our Galaxy. At the American Astronomical Society’s meeting in Long Beach, California, Reid said they are using trigonometric parallax to make the measurements. “This is exactly what surveyors use on Earth to measure distances,” he said. “And this is gold standard of measurement in astronomy.”

Trigonometric parallax was first used in 1838 to measure the first stellar distance. However, with better technology, the accuracy is now about 10,000 times greater.

Our solar system is about 28,000 light-years from the Milky Way’s center. At that distance, the new observations indicate, we’re moving at about 600,000 miles per hour in our Galactic orbit, up from the previous estimate of 500,000 miles per hour.

The scientists observed 19 regions of prolific star formation across the Galaxy. In areas within these regions, gas molecules are strengthening naturally-occurring radio emission in the same way that lasers strengthen light beams. These areas, called cosmic masers, serve as bright landmarks for the sharp radio vision of the VLBA. By observing these regions repeatedly at times when the Earth is at opposite sides of its orbit around the Sun, the astronomers can measure the slight apparent shift of the object’s position against the background of more distant objects.

The astronomers found that their direct distance measurements differed from earlier, indirect measurements, sometimes by as much as a factor of two. The star-forming regions harboring the cosmic masers “define the spiral arms of the Galaxy,” Reid explained. Measuring the distances to these regions thus provides a yardstick for mapping the Galaxy’s spiral structure.

The star forming regions are shown in the green and blue dots on the image above. Our sun (and us!) are where the red circle is located.

The VLBA can fix positions in the sky so accurately that the actual motion of the objects can be detected as they orbit the Milky Way’s center. Adding in measurements of motion along the line of sight, determined from shifts in the frequency of the masers’ radio emission, the astronomers are able to determine the full 3-dimensional motions of the star-forming regions. Using this information, Reid reported that “most star-forming regions do not follow a circular path as they orbit the Galaxy; instead we find them moving more slowly than other regions and on elliptical, not circular, orbits.”

The researchers attribute this to what they call spiral density-wave shocks, which can take gas in a circular orbit, compress it to form stars, and cause it to go into a new, elliptical orbit. This, they explained, helps to reinforce the spiral structure.

Reid and his colleagues found other surprises, too. Measuring the distances to multiple regions in a single spiral arm allowed them to calculate the angle of the arm. “These measurements,” Reid said, “indicate that our Galaxy probably has four, not two, spiral arms of gas and dust that are forming stars.” Recent surveys by NASA’s Spitzer Space Telescope suggest that older stars reside mostly in two spiral arms, raising a question of why the older stars don’t appear in all the arms. Answering that question, the astronomers say, will require more measurements and a deeper understanding of how the Galaxy works.

So, now that we know we’re more massive, how do we compare with other galaxies in our neighborhood? “In our local group of galaxies, Andromeda was thought to be the dominant big sister,” said Reid at the conference, “but we’re basically equal in size and mass. We’re not identical twins, but more like fraternal twins. And its likely the two galaxies will collide sooner than we thought, but it depends on a measurement of the sideways motion, which hasn’t been done yet.”

The VLBA is a system of 10 radio-telescope antennas stretching from Hawaii to New England and the Caribbean. It has the best resolving power, of any astronomical tool in the world. The VLBA can routinely produce images hundreds of times more detailed than those produced by the Hubble Space Telescope. The VLBA’s tremendous resolving power, equal to being able to read a newspaper in Los Angeles from the distance of New York, is what permits the astronomers to make precise distance determinations.

Source: AAS, Harvard-Smithsonian Center for Astrophysics