Please (Again)– Mars Will NOT Look As Big As the Full Moon

Mars. Credit: NASA

[/caption]

I thought this year would be different and finally I could make it through the month of August without receiving a forwarded email from an excited acquaintance, wondering if I knew about this incredible news that will happen only once in a lifetime. The email claims Mars is coming closer to Earth and will look as big as the full moon!

Please, this is a complete falsehood and entirely not true. The email about this “once in a lifetime event” has been circulating like clockwork every August for the past five years and is full of errors. If you don’t believe me, here are Universe Today articles dubunking this erroneous email in 2007, 2006, and 2005. If you don’t believe Fraser, Phil Plait the Bad Astronomer debunks the email here, here , here, and here’s the original one back in 2003. I don’t know if the general public really is so uneducated/gullible/in the dark to fall for this every year, or if the folks who start circulating this email every year are trying to determine how uneducated/gullible/in the dark the world actually is.

This began in August 2003 when Mars actually did make its closest approach to Earth in the past 60,000 years. On August 27th, 2003, Mars was 55,758,006 kilometers (34,646,418 miles) away from Earth. Mars just looked like a bright “star” in the sky, not much different than how it usually looks to the naked eye whenever the two planets are at their closest approach. The view of Mars in a telescope was a little better than usual back in 2003, as the bigger telescopes could see the ice caps a little clearer, and possibly some other features. Someone got some bad information as to how big Mars would look at this closest approach and got excited about this bad information, then sent said bad information out in an email which spread like wildfire through the wonders of email forwarding.

This year in August, Mars is about 360 million kilometers (about 215 million miles) from Earth, not very close at all. Since Mars and the Earth are in different orbits around the Sun, and they each take different amounts of time to go around the sun (Earth 365 days, Mars 687 Earth days) the distance between the two planets grows and shrinks, with the closest approaches occurring about every 26 months. But the distance changes with every approach because of the way celestial mechanics works.

If you still need more info, NASA has a page debunking this email, too. Please, let’s work hard to let everyone know this Mars email is completely wrong so that we don’t have to write this article again next year.

Phoenix Lander: The Digging Continues

This mosaic of images shows the Phoenix worksite. Credit: NASA/JPL/Caltech/U of Arizona

[/caption]

Scientists and engineers from NASA’s Phoenix Mars Lander continue with digging operations around the lander with the spacecraft’s robotic arm. They are looking for new materials to analyze and are examining the soil and ice subsurface structure. “We expect to use the robotic arm heavily over the next several weeks, delivering samples to our instruments and examining trench floors and walls to continue to search for evidence of lateral and vertical variations in soil and ice structures,” said Ray Arvidson, Phoenix’s “dig czar,” from Washington University in St. Louis. New trenches opened recently and shown in the image here include the “Burn Alive 3” trench in the eastern portion of the arm’s reachable workspace.

The team is excavating one side of this trench down to the ice layer and plans to leave about 1 centimeter (0.4 inch) of soil above the ice on the other side. From this intermediate depth is where scientists hope to test a sample of soil in Phoenix’s Thermal and Evolved Gas Analyzer (TEGA).

Near the western end of the arm’s workspace, the team plans to dig as deep as possible in the “Cupboard” excavation area to study properties of the soil and ice in one of the polygon trough areas. Like on Earth, the polygon patterns form in areas of permafrost that goes through cycles of swelling and shrinking as the ground thaws and refreezes.

A sample from the Cupboard area may be delivered to the lander’s wet chemistry lab, part of the Microscopy, Electrochemistry and Conductivity Analyzer (MECA) to test for the presence of salts. In addition, the robotic arm will try to acquire ice-rich soil from “Upper Cupboard” and observe the material in the arm’s scoop to determine whether the sample sublimates. Melting is an indication of the presence of salt. If the sample melts and leaves behind a salty deposit, “Upper Cupboard” would be the location for the next sample for the wet chemistry lab. If no salts are detected, the team would
continue with plans to use the “Stone Soup” trench for acquiring the next wet chemistry lab sample.

If you’re wondering about the interesting names of the different areas, the team names the areas and trenches to make identification easier (instead of saying something like “that trench in the upper left corner of the image taken on Sol 45.”) The names are chosen from various fairy tales and myths.

A change has taken place for the scientists and engineers working with Phoenix. They are now working on Earth time instead of Mars time. This eliminates the constantly transitioning work period as a Mars sol is about 40 minutes longer than an Earth day. Undoubtedly, this has to make their lives much easier, instead of juggling their Earth life and Mars work every day.

Daily activities are being planned for the spacecraft as the lander performs activities that were sent up the previous day. Digging and documenting are done on alternate days to allow the science team time to analyze data and adjust activities accordingly.

In upcoming sols, the team plans to scrape the “Snow White” trench and experiment with acquiring and holding samples in the shade versus the sun. They want to find out if prolonged exposure to sunlight causes the acquired material to stick to the scoop, as has occurred with previous samples.

Source: Phoenix News site

More Frost on Mars Phoenix Lander

Phoenix Telltale. credit: NASA/JPL/Caltech/Uof Arizona

[/caption]
More early morning frost is showing up on the Phoenix spacecraft. The Surface Stereo Imager (SSI) took several pictures of the “Telltale” on the Phoenix Mars Lander, the device used to measure wind velocities at the landing site on Mars and created a movie of bright specks of frost accumulating on the mirror of the Telltale. The movie was created from a series of images taken by the Surface Stereo Imager (SSI)between 12:54 a.m. and 2:34 a.m. during the 80th Martian day, or sol, of the mission (Aug. 15, 2008 here on Earth). Sorry, we couldn’t load the movie on this page, the file was too big. But follow this link to see it — the frost is very cool (pun intended).

Phoenix’s SSI took these images through a blue filter (450 nanometer wavelength) that is used primarily for viewing items on the spacecraft rather than the workspace or horizon. In order to increase the number of frames, the size of the individual images downlinked from the spacecraft has been reduced. These have been shown superimposed upon a full image of the telltale from Sol 13 for context. The frost on the mirror sparkles in low-angle light from the sun, which is barely above the horizon at this hour.

Via Twitter, the Phoenix spacecraft said not to worry, this type of early morning frost is not a concern for the operation of the spacecraft.
The Telltale experiment is a passive instrument that provides information about winds at the landing site. It consists of a lightweight Kapton tube hanging in Kevlar fibers that will deflect as a result of wind forces. Images of the Telltale obtained by the onboard camera (SSI) using long exposure times provide information on the deflection and dynamics that can be related to wind velocities and turbulence.

During the early-morning period when these images were taken the wind was blowing steadily at about 5 meters per second (about 11 miles per hour) from the northeast, as indicated by the telltale.

The telltale is about 10 centimeters (4 inches) tall and the total mass of the active part is about 10 mg. The experiment was built by the University of Aarhus, Denmark.

Phoenix weather summary from Sol 63
Phoenix weather summary from Sol 63

Here’s some info on the weather on Mars, although Sol 63 is the latest available from the Mars Weather Station on Phoenix. To learn more about the Weather Station, follow this link.

Phoenix Camera Snaps Frost on Mars

Morning Frost on Mars. Image credit: NASA/JPL-Caltech/University of Arizona/Texas A&M University

[/caption]
It’s getting a little nippy at night on Mars. The Phoenix lander’s Surface Stereo Imager took this image at 6 a.m. on Sol 79 (August 14, 2008 here on Earth), and a thin layer of water frost is visible on the ground around the landing area. From subsequent images, the frost begins to disappear shortly after this image was taken as the sun rises on the Phoenix landing site.

The sun was about 22 degrees above the horizon when the image was taken, enhancing the detail of the polygons, troughs and rocks around the landing site.

This view is looking east southeast with the lander’s eastern solar panel visible in the bottom lefthand corner of the image. The rock in the foreground is informally named “Quadlings” and the rock near center is informally called “Winkies.”

This false color image has been enhanced to show color variations.

Earlier images taken in June, and put together here in sequence to form a movie, appears to show frost forming on Phoenix’s own legs.

What appears to be frost appears on Phoenix's legs.  Credit: Wanderingspace.net
What appears to be frost appears on Phoenix's legs. Credit: Wanderingspace.net

But this isn’t the first time that frost has been imaged on Mars. The Viking lander took the picture below in 1979 of its landing site at Utopia Planetia showing ample amounts of frost on the surface.

frost on Mars in a photograph taken by the Viking 2 lander on May 18, 1979.   NASA/JPL
frost on Mars in a photograph taken by the Viking 2 lander on May 18, 1979. NASA/JPL

In other news, the Phoenix lander also announced on Twitter that it has opened another TEGA oven door in preparation for receiving another sample of Martian soil to “bake and sniff.”

New Source: Phoenix Image Gallery, Wanderingspace.net

Mars Dust Grains Imaged by Atomic Force Microscope

3-D image of a dust grain from Phoenix's Atomic Force Microscope. Credit: NASA/JPL/Caltech/U of Arizona/U of Neuchatel

[/caption]

What is Mars ubiquitous dust really like, close-up? Scientists from the Phoenix missions are finding out with the Atomic Force Microscope (AFM), an instrument that is providing the highest magnification of anything seen from another world. A couple of months ago the Phoenix Mars Lander used its optical microscope to image small grains of the Martian soil. Now, the spacecraft has switched on the AFM to take the first-ever 3-dimensional image of a single particle of Mars’ dust. The AFM can detail the shapes of particles as small as about 100 nanometers, about one one-thousandth the width of a human hair. That is about 100 times greater magnification the optical microscope. The article is rounded, and about one micrometer, or one millionth of a meter, across. It is a speck of the dust that cloaks Mars. Such dust particlets color the Martian sky pink, feed storms that regularly envelop the planet and produce Mars’ distinctive red soil.

“This is the first picture of a clay-sized particle on Mars, and the size agrees with predictions from the colors seen in sunsets on the Red Planet,” said Phoenix co-investigator Urs Staufer of the University of Neuchatel, Switzerland, who leads a Swiss consortium that made the microscope.

“Taking this image required the highest resolution microscope operated off Earth and a specially designed substrate to hold the Martian dust,” said Tom Pike, Phoenix science team member from Imperial College London. “We always knew it was going to be technically very challenging to image particles this small.”

AFM's 8 sharp tips. Image: NASA
AFM's 8 sharp tips. Image: NASA

The device took about a dozen years to develop. The AFM maps the shape of particles in three dimensions by scanning them with a sharp tip at the end of a spring. During the scan, invisibly fine particles are held by a series of pits etched into a substrate microfabricated from a silicon wafer.

“I’m delighted that this microscope is producing images that will help us understand Mars at the highest detail ever,” Staufer said. “This is proof of the microscope’s potential. We are now ready to start doing scientific experiments that will add a new dimension to measurements being made by other Phoenix lander instruments.”

“After this first success, we’re now working on building up a portrait gallery of the dust on Mars,” Pike added.

Mars’ ultra-fine dust is the medium that actively links gases in the Martian atmosphere to processes in Martian soil, so it is critically important to understanding Mars’ environment, the researchers said.

Phoenix's robotic arm scoop brought a sample of soil to MECA, which includes the AFM.  Image: NASA/JPL/Caltech/U of Arizona
Phoenix's robotic arm scoop brought a sample of soil to MECA, which includes the AFM. Image: NASA/JPL/Caltech/U of Arizona

The particle seen in the atomic force microscope image was part of a sample scooped by the robotic arm from the “Snow White” trench and delivered to Phoenix’s microscope station in early July. The microscope station includes the optical microscope, the atomic force microscope and the sample delivery wheel. It is part of a suite of tools called Phoenix’s Microscopy, Electrochemistry and Conductivity Analyzer.

Source: Phoenix News Site

Evidence for Widespread Water on Early Mars

Mawrth Vallis on Mars. Credit: MRO/NASA/JPL

[/caption]

Images and data from the Mars Reconnaissance Orbiter (MRO) have revealed layers of clay-rich rock that suggests abundant water was once present on Mars. Scientists from the SETI Institute, the Jet Propulsion Laboratory and several universities have been studying data focused on the Mawrth Vallis area on Mars’ northern highland region. This is a heavily cratered, ancient area of the Red Planet whose surface geology resembles a dried-up, river valley through which water may have flowed. While their findings don’t provide evidence for life, it does suggest widespread and long-term liquid water in Mars’ past.

The researchers used the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) aboard MRO to examine infrared light reflected from clays situated in the many-kilometer wide channel of Mawrth Vallis.

The infrared spectra from CRISM show an extensive swath of phyllosilicate-bearing material. This is a type of iron and magnesium-rich clay that forms in liquid water, and can be found on Earth in oceans and river beds. It is familiar to anyone who’s nearly broken a shovel while trying to plant a tree. There is also evidence in the spectra for hydrated silica, which in its pure, clean form is known as opal.

The researchers combined their data on the composition of soils in this region with topographic information collected by MOLA, the Mars Orbiter Laser Altimeter, on board the Mars Global Surveyor spacecraft. They found layered aluminum clays lying on top of hydrated silica and iron/magnesium clays. These clays were likely formed when water came in contact with basalt – which is the dominant component of the Martian highlands, and probably was produced from volcanic ash, which once blanketed the planet.

CRISM image overlayed with MOLA data of Mawrth Vallis.  This covers an area about 10 kilometers (6.2 miles) wide. Fe/Mg-phyllosilicate is shown in red, Al-phyllosilicate is shown in blue, hydrated silica and an Fe2+ phase are shown in yellow/green.
CRISM image overlayed with MOLA data of Mawrth Vallis. This covers an area about 10 kilometers (6.2 miles) wide. Fe/Mg-phyllosilicate is shown in red, Al-phyllosilicate is shown in blue, hydrated silica and an Fe2+ phase are shown in yellow/green.

“We were surprised by the variety of clay minerals in this region,” says Janice Bishop of the SETI Institute. “But what’s interesting is that we find the same ordering of the clay materials everywhere in Mawrth Vallis. It’s like a layer-cake of clays, one on top of another. All these layers are topped with a ‘frosting’ of lava and dust. We can see the clay layers where an impact crater has carved a hole through the surface or where erosion has exposed them.”

Since phyllosilicates have been found in a number of outcrops on Mars in CRISM images, these new data suggest that whatever mechanism formed clays at Mawrth Vallis has probably operated over much greater areas of the Red Planet. Alteration by liquid water may have been widespread on early Mars.

Bishop is careful to note that this work is part of the long-term effort to establish just how widespread, and for what period of time, liquid water may have existed on Mars.

“This is not evidence for life,” she notes. “But it does suggest the long-term and common presence of liquid water – and concomitant active chemistry – on the Red Planet in the distant past.”

News Source: SETI Institute

Perchlorate on Mars Could be Potential Energy Source for Life; Phoenix Team Fires Back at Allegations

The trench known as Snow White on Sol 43 (NASA/JPL/UA)

[/caption]
It’s been a busy few days for the Phoenix Mars lander rumour-mill. On Friday, an article was published in Aviation Week reporting an undisclosed source from the NASA team analysing results from the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) had come forward saying Phoenix scientists were in communication with the White House. Apparently there had been new, “provocative” results to come from the MECA, possibly a bigger discovery than last Thursday’s announcement about the scientific proof of water in the Martian regolith. Naturally, the blogosphere went crazy in response to this news. Yesterday, the Phoenix team issued a press release focussing on conflicting results from the MECA and Thermal and Evolved-Gas Analyzer (TEGA) instruments. A MECA sample was found to contain a toxic substance known as perchlorate, usually an oxidizing by-product from industrial processes here on Earth. However, a recently analysed sample from the TEGA turned up no supporting evidence for perchlorate. The study is ongoing. Today, the Phoenix team organized a press conference to discuss a more positive view on the possible discovery of perchlorate, and fired back at recent allegations that science was being withheld from the public…

The Phoenix mission has had an outstanding record of transparency and communicating its science into the public domain. So, one can understand the frustration mission scientists felt when “outrageous” stories (according to Peter Smith, Phoenix principal investigator) were circulated by Aviation Week alleging secrecy about Phoenix findings, strongly indicating that something huge had been discovered and the White House had to be notified. “We want to set the record straight…we’re not with-holding anything” NASA spokesman Dwayne Brown declared at the special press briefing today. The Phoenix team went on to say that the sketchy details in the Aviation Week article led to the huge amount of “speculation” that was thrown around in follow-up stories.

Indeed, there was a significant finding in the works, but the scientists needed more time to analyse the results before issuing a press release on finding perchlorate in the MECA sample. Although the Aviation Week article did specifically say Phoenix was not capable of discovering life, it didn’t stop a number of reports indicating that life had been discovered on the Red Planet (hence the need to communicate the discovery with the President’s Science Advisor first). These speculative claims reached fever-pitch, prompting Phoenix’s Twitter feed to state “Heard about the recent news reports implying I may have found Martian life. Those reports are incorrect.” The speed at which these rumours spread was startling and probably took NASA completely off-guard. This is probably why the perchlorate discovery was announced before a complete and rigorous study could be carried out.

So is perchlorate the death-nail for the possibility of finding suitable conditions for life to be seeded? According to Phoenix scientists, oxidizing chemicals are not always ‘bad news’ for life. “It does not preclude life on Mars. In fact it is a potential energy source,” said William Boynton of the University of Arizona. Indeed, perchlorates have been found in Chile’s highly arid Atacama Desert, a location often used as an analogue for the Martian landscape. Organics in nitrate deposits associated with perchlorates have been found in these harsh conditions, possibly indicating life may form in similar circumstances on Mars.

Although the Phoenix scientists are fairly upbeat about this new finding, other scientists not associated with the mission are cautious. At first glance, perchlorate “is a reactive compound. It’s not usually considered an ingredient for life,” said Brown University geologist John Mustard. Regardless, we will have to wait until all the results are in, especially from the follow-up TEGA sample. Jumping to conclusions are obviously not very helpful to the Phoenix team currently trying to decipher what they are seeing from experiments being carried out by a robot, 400 million miles away.

Sources: Space.com, Phoenix, Space News Examiner

The White House is Briefed: Phoenix About to Announce “Potential For Life” on Mars

The surface zones where samples have been excavated by Phoenix (NASA)

[/caption]
It would appear that the US President has been briefed by Phoenix scientists about the discovery of something more “provocative” than the discovery of water existing on the Martian surface. This news comes just as the Thermal and Evolved Gas Analyzer (TEGA) confirmed experimental evidence for the existence of water in the Mars regolith on Thursday. Whilst NASA scientists are not claiming that life once existed on the Red Planet’s surface, new data appears to indicate the “potential for life” more conclusively than the TEGA water results. Apparently these new results are being kept under wraps until further, more detailed analysis can be carried out, but we are assured that this announcement will be huge

So why is there all this secrecy? According to scientists in communication with Aviation Week & Space Technology, the next big discovery will need to be mulled over for a while before it is announced to the world. In fact, the Jet Propulsion Laboratory science team for the MECA wet-chemistry instrument that made these undisclosed findings were kept out of the July 31st news conference (confirming water) so additional analysis could be carried out, avoiding any questions that may have revealed their preliminary results. They have also made the decision to discuss the results with the Bush Administration’s Presidential Science Advisor’s office before a press conference between mid-August and early September.

Although good news, Thursday’s announcement of the discovery of water on Mars comes as no surprise to mission scientists and some are amused by the media’s reaction to the TEGA results. “They have discovered water on Mars for the third or fourth time,” one senior Mars scientist joked. These new MECA results are, according to the Phoenix team, a little more complex than the water “discovery.” Scientists are keen to point out however, that this secretive news will in no way indicate the existence of life (past or present) on Mars; Phoenix simply is not equipped make this discovery. What it can do is test the Mars soil for compounds suitable to support life. The MECA instrument does have microscopes capable of resolving bacterial-scale life forms however, but this is not the focus of the forthcoming announcement, sources say.

This new MECA discovery, combined with TEGA data will probably expose something more compelling, completing another piece of the puzzle in the search for the correct conditions for life as we know it to survive on Mars. Critical to this search is to understand how the recently confirmed water and Mars regolith behave together under the Phoenix lander in the cold Martian arctic.

The MECA instrument had already made the landmark discovery that Mars “soil” was much like the soil more familiar on Earth. This finding prompted scientists to indicate that the minerals and pH levels in the regolith could support some terrestrial plants, indicating this would be useful for future Mars settlers.

What with the discovery of water, and the discovery that Mars soil is very much like the stuff we find on Earth, it is hard to guess as to what the MECA’s second soil test has discovered. What ever it is, it sounds pretty significant, especially as NASA and the University of Arizona are taking extraordinary steps to avoid any more details being leaked to the outside world. I just hope were not getting excited over something benign…

So what will this compelling discovery be? Leave your guess below…

Source: Aviation Week

Latest from HiRISE: Stairs, Polygons, Dunes and Troughs

Stair-Stepped Mounds in Meridiani Planum. Credit: NASA/JPL/University of Arizona


Meridiani Planum on Mars, where the Mars Rover Opportunity has been traversing the past four plus years, is not just covered with flat, endless plains. Of course, Opportunity has been entering and studying a few of the craters in the region.

Continue reading “Latest from HiRISE: Stairs, Polygons, Dunes and Troughs”

“We Have Water” on Mars, TEGA Test Confirms

Latest panorama from Mars. Credit: NASA/JPL/Caltech/U of Arizona

[/caption]
The Phoenix Mars lander finally was successful in delivering a fairly fresh sample of Martian soil to the Thermal and Evolved Gas Analyzer (TEGA) oven on Wednesday and a “bake and sniff” test identified water in the soil sample. “We have water,” said William Boynton of the University of Arizona, lead scientist for TEGA. “We’ve seen evidence for this water ice before in observations by the Mars Odyssey orbiter and in disappearing chunks observed by Phoenix last month, but this is the first time Martian water has been touched and tasted.”

The soil sample came from a trench approximately 2 inches deep. When the robotic arm first reached that depth, it hit a hard layer of frozen soil. Two attempts to deliver samples of icy soil on days when fresh material was exposed were foiled when the samples became stuck inside the scoop. Most of the material in Wednesday’s sample had been exposed to the air for two days, letting some of the water in the sample vaporize away and making the soil easier to handle.

“Mars is giving us some surprises,” said Phoenix principal investigator Peter Smith of the University of Arizona. “We’re excited because surprises are where discoveries come from. One surprise is how the soil is behaving. The ice-rich layers stick to the scoop when poised in the sun above the deck, different from what we expected from all the Mars simulation testing we’ve done. That has presented challenges for delivering samples, but we’re finding ways to work with it and we’re gathering lots of information to help us understand this soil.”

Phoenix's Workspace on Mars.  Credit:  NASA/JPL/Caltech/U of Arizona
Phoenix's Workspace on Mars. Credit: NASA/JPL/Caltech/U of Arizona

Also at the press conference announcing the results, NASA also announced a mission extension for Phoenix, through Sept. 30. The original prime mission of three months ends in late August. The mission extension adds five weeks to the 90 days of the prime mission.

“Phoenix is healthy and the projections for solar power look good, so we want to take full advantage of having this resource in one of the most interesting locations on Mars,” said Michael Meyer, chief scientist for the Mars Exploration Program at NASA Headquarters in Washington.

During the mission extension, the science team will attempt to determine whether the water ice ever thaws enough to be available for biology and if carbon-containing chemicals and other raw materials for life are present.

A full-circle, color panorama of Phoenix’s surroundings was recenlty completed by the spacecraft.

“The details and patterns we see in the ground show an ice-dominated terrain as far as the eye can see,” said Mark Lemmon of Texas A&M University, lead scientist for Phoenix’s Surface Stereo Imager camera. “They help us plan measurements we’re making within reach of the robotic arm and interpret those measurements on a wider scale.”

Original News source: Phoenix News site