Was Life on Mars Extinguished Prematurely by a Huge Impact?

Direct hit - could a huge impact on Mars have snuffed the chances of life? (Karen Carr)

[/caption]We keep sending missions to Mars with the key objective to search for past or present life. But what if a huge impact early in the Red Planet’s history hindered any future possibility for life to thrive? Recent studies into the Martian “crustal dichotomy” indicate the planet was struck by a very large object, possibly a massive asteroid. Now researchers believe that this same impact may have scrubbed any chance for life on Mars, effectively making the planet sterile. This asteroid may have penetrated the Martian crust so deep that it damaged the internal structure irreparably, preventing a strong magnetic field from enveloping the planet. The lack of a Mars magnetosphere thereby ended any chance for a nurturing atmosphere…

Mars looks odd. Early astronomers noticed it, and today’s observatories see it every time they look at the red globe. Mars has two faces. One face (the northern hemisphere) is composed of barren plains and smooth sand dunes; the other face (the southern hemisphere) is a chaotic, jagged terrain of mountains and valleys. It would appear the crustal dichotomy formed after a massive impact early in the development of Mars, leaving the planet geologically scarred for eternity. But say if this impact went beyond pure aesthetics? What if this planet-wide impact zone represents something a lot deeper?

To understand what might have happened to Mars, we have to first look at the Earth. Our planet has a powerful magnetic field that is generated near the core. Molten iron convects, dragging free electrons with it, setting up a huge dynamo outputting the strong dipolar magnetic field. As the magnetic field threads through the planet, it projects from the surface and reaches thousands of miles into space, forming a vast bubble. This bubble is known as the magnetosphere, protecting us from the damaging solar wind and prevents our atmosphere from eroding into space. Life thrives on this blue planet because Earth has a powerful magnetic solar wind defence.

Although Mars is smaller than Earth, scientists have often been at a loss to explain why there is no Martian magnetosphere. But according to the growing armada of orbiting satellites, measurements suggest that Mars did have a global magnetic field in the past. It has been the general consensus for some time that Mars’ magnetic field disappeared when the smaller planet’s interior cooled quickly and lost its ability to keep its inner iron in a convective state. With no convection comes a loss of the dynamo effect and therefore the magnetic field (and any magnetosphere) is lost. This is often cited as the reason why Mars does not have a thick atmosphere; any atmospheric gases have been eroded into space by the solar wind.

However, there may be a better explanation as to why Mars lost its magnetism. “The evidence suggests that a giant impact early in the planet’s history could have disrupted the molten core, changing the circulation and affecting the magnetic field,” said Sabine Stanley, assistant professor of physics at the University of Toronto, one of the scientists involved in this research. “We know Mars had a magnetic field which disappeared about 4 billion years ago and that this happened around the same time that the crustal dichotomy appeared, which is a possible link to an asteroid impact.”

During Mars’ evolution before 4 billion years ago, things may have looked a lot more promising. With a strong magnetic field, Mars had a thick atmosphere, protected from the ravages of the solar wind within its own magnetosphere. But, in an instant, a huge asteroid impact could have changed the course of Martian history forever.

Mars once had a much thicker atmosphere along with standing water and a magnetic field, so it would have been a very different place to the dry barren planet we see today.” – Monica Grady, professor of planetary and space sciences at the Open University.

Losing its magnetic field after the deep asteroid impact catastrophically damaged the internal workings of the planet, Mars quickly shed its atmosphere, thereby blocking its ability to sustain life in the 4 billion years since. What a sad story

Original source: Times Online (UK)

Phoenix Lander Will Listen to the Sounds of Mars

Phoenix MARDI. Credit: NASA / JPL / MSSS

[/caption]

We may be able to hear, for the first time, what it sounds like on the surface of Mars. The Phoenix Lander has a microphone on board, which will be switched on in upcoming days of operations. “This is definitely a first,” said Phoenix principal investigator Peter Smith. The microphone is a part of the Mars Descent Imager (MARDI) system on the underside of the lander designed to take images of Mars’ surface during the lander’s descent. However, the system was never used. Tests of the system during the flight to Mars revealed the possibility that using it might cause other parts of the landing system to not function correctly. But using it later wasn’t ruled out. So, after updated software is sent to the lander, the microphone will be turned on.

You may recall, Mars Express recorded the sounds of Phoenix descending (which sounded like Phoenix was screaming in delight!) But now we may be able to hear the sounds of Mars itself – a truly wondrous possibility.

There’s no guarantee the microphone will work, however. Once the system is checked and updated, the team plans to attempt turning the microphone on while the lander is digging or using the rasp on end of its robotic arm scoop, “just to make sure we hear something,” Smith said. “You at least want to know if there’s a chance of noise being created.”

No one knows what Mars sounds like, and Phoenix scientists aren’t sure how well the microphone will be able to pick up any noise. Smith said the microphone is similar to what is used on a standard cell phone. Also, sound waves don’t travel on Mars as they do Earth because of Mars’ thin atmosphere. It would be similar to listening to sound at an altitude of about 30,500 meters (100,000 feet) above Earth’s surface, Smith said.

If the team can hear Phoenix’s operations, then they’ll turn the microphone on while Phoenix is quiet and wait for any sounds.
View under the lander on Sol 8.  Credit: NASA/JPL/Caltech/U of AZ
Additionally, the descent imager might be turned on, as well. This provides the opportunity to take close up images directly underneath the lander, where the “Holy Cow” feature – which appears to be a large chunk of ice – is located.
Clumps "growing" on Phoenix's legs.  Credit: NASA/JPL/Caltech/ U of AZ
The imager might also be able to look at the clumps of materials that appear to be “growing” on Phoenix’s legs. The clumps are probably bits of Mars soil that “splashed” up on the legs during landing, but some of the clumps have moved around and appear to be increasing in size over the duration of the mission. Mission scientists aren’t sure what the clumps are and why they have such unusual behavior.

“It’s one of those wonderful Martian mysteries,” Smith said.

Post Script & Corrections: Thanks to Emily Lakdawalla of the Planetary Society for providing the correct image and information of the MARDI! The first image I had posted was of the Mars Microphone that the Planetary Society sent along with the Mars Polar Lander mission in 1999. Also, I incorrectly stated that the MARDI instrument was the same as the Mars Microphone on the MPL.

Sources: Planetary Blog, Space.com

Snow is Falling From Martian Clouds

Clouds on Mars are producing snow. Credit: NASA/JPL-Caltech/University of Arizona/Texas A&M University

[/caption]

Remember the movies of clouds floating above the Phoenix Lander? Further study with the lander’s Lidar instrument has detected snow falling from Martian clouds. “The clouds are composed of ice crystals, and some of the crystals are large enough to fall through the atmosphere,” said Jim Whiteway, lead scientist for the Meteorological Station on Phoenix. Whiteway and several researchers shared recent findings from Phoenix at a press briefing today. “So snow is falling from the clouds and we are going to be watching very closely over the next month for evidence that the snow is actually landing on the surface. This is a very important factor in the hydrological cycle on Mars, with the exchange of water between the surface and the atmosphere.”

“Nothing like this view has ever been seen on Mars,” Whiteway added.

From Phoenix images and data, scientists have observed water condensing in the atmosphere. In recent weeks, as the temperatures fall in onset of winter on Mars’ northern plains, frost, ground fog and clouds are prevalent. “This is now occurring every night,” said Whiteway. “The Lidar is able to probe the inner structure of the clouds. It emits pulses of light upward into the atmosphere and detects what is scattered back. The laser emits pulses of light 100 times per second, so if you were standing beside the lander looking upward, you’d see a continuous green beam.” Data and images of the beam show bright spots in beam is where it is reflecting off ice crystals, and also where it reflects off clouds, a few miles above the surface.

The snow starts falling from a height of 4 km and fall down to 2 km. At that point the observations stopped, as they were initially set up for a limited amount of time. Further observations will be done to see if the snow is actually falling down to the surface of the planet.

Other experiments with Martian soil have provided evidence of past interaction between minerals and liquid water. Two different instruments have detected calcium carbonate and clays. On Earth, these form only in the presence of liquid water.

How much calcium carbonate or clays are in the soil hasn’t been fully quantified yet, said Bill Boynton, lead scientist for the TEGA Instrument (Thermal and Evolved Gas Analyzer) But at least 3-6 per cent of the soil is calcium carbonate, and about 1 per cent is clay. There were suspicions of carbonates in Mars soil, and now both the TEGA and the MECA instruments have verified their presence.

Both TEGA, and the microscopy part of MECA, have also turned up hints of a clay-like substance. “We are seeing smooth-surfaced, platy particles with the atomic-force microscope, not inconsistent with the appearance of clay particles,” said Michael Hecht, MECA lead scientist at NASA’s Jet Propulsion Laboratory in Pasadena, Calif.

However, finding perchlorates in the soil leads to somewhat of a contradiction, as perchlorates would be sensitive to any water present. If large amounts of water were present in the past, the perchlorates should have dissolved. But they didn’t.

Another clue to the Mars soil puzzle is the dryness of the soil. The lander’s thermal and conductivity probe has indicated the soil is extremely dry around the lander, even though just under the surface, ice is present. “The dryness of the soil is a mystery here,” said Phoenix principal investigator Peter Smith. “We’re wondering if the perchlorate is absorbing or sucking up the water. We say dry because there aren’t any thin films of liquid water mixed with salts in the soil.” If percholate are mixed with water, brines could form, but the scientists have not seen evidence of a brine or remnants of a brine with cameras on board Phoenix. Perchlorates, however, are useful to microbes, which can use it as an energy source. “It’s an Interesting material to find on Mars, and there will be more research coming to find out what it might mean on Mars,” said Smith.

Another finding discussed was the pH levels of the soil. Hecht said the pH of the soil has been determined to be 8.3, which is lower than initially thought. Hecht said this is almost exactly the pH of ocean water on Earth, and the calcium carbonate may be responsible for this level of pH.

Image NASA/JPL-Caltech/University of Arizona/Imperial College London
Image NASA/JPL-Caltech/University of Arizona/Imperial College London

Hecht also discussed the unique images from the microscopes on board Phoenix. The first image, shows the soil is mostly composed of fine orange particles, and also contains larger grains, about a tenth of a millimeter in diameter, and of various colors. The soil is sticky, keeping together as a slab of material on the supporting substrate even when the substrate is tilted to the vertical.

The fine orange grains are at or below the resolution of the Optical Microscope. Mixed into the soil is a small amount – about 0.5 percent – of white grains, possibly of a salt. The larger grains range from black to almost transparent in appearance. At the bottom of the image, the shadows of the Atomic Force Microscope (AFM) beams are visible. This image is 1 millimeter x 2 millimeters.

Colored magnetic particles in Mars soil.  Image NASA/JPL-Caltech/University of Arizona/Imperial College London
Colored magnetic particles in Mars soil. Image NASA/JPL-Caltech/University of Arizona/Imperial College London

The second image shows a cluster of colored particles. “The reason they are all clustered like that is because they are strongly magnetic,” said Hecht. “All the fine red stuff has fallen off leaving all these little “Easter eggs” of all different colors and shapes. The particles are rounded because they’ve been tumbled by the wind across the sand and they’ve been polished. You also see a lot of angular particles that are clear, that are very white as if they are salts. So we can start to see the different animals in the zoo of Martian mineralogy.” Phoenix’s atomoic force microscope will be used in the coming weeks, and Hecht said the team should be able to provide a catalog of different particles found in these images.

Source: Phoenix new conference, press release

Ancient Groundwater Flows Revealed on Mars

Deformation bands on Mars. credit: NASA/JPL-Caltech/Univ. of Arizona

[/caption]
NASA’s Mars Reconnaissance Orbiter has revealed hundreds of small fractures exposed on the Martian surface that billions of years ago directed flows of water through underground Martian sandstone. Researchers used images from the spacecraft’s HiRISE (High Resolution Imaging Science Experiment) camera. Images of layered rock deposits at equatorial Martian sites show the clusters of fractures to be a type called deformation bands, caused by stresses below the surface in granular or porous bedrock. “Groundwater often flows along fractures such as these, and knowing that these are deformation bands helps us understand how the underground plumbing may have worked within these layered deposits,” said Chris Okubo of the U.S. Geological Survey in Flagstaff, Ariz.

Visible effects of water on the color and texture of rock along the fractures provide evidence that groundwater flowed extensively along the fractures. “These structures are important sites for future exploration and investigations into the geological history of water and water-related processes on Mars,” Okubo and co-authors state in a report published online this month in the Geological Society of America Bulletin.

Deformation bands in the Four Corners region of the US.  Credit:  Jon E. Olson
Deformation bands in the Four Corners region of the US. Credit: Jon E. Olson

Deformation band clusters in Utah sandstones, as on Mars, are a few meters or yards wide and up to a few kilometers or miles long. They form from either compression or stretching of underground layers, and can be precursors to faults. The ones visible at the surface have become exposed as overlying layers erode away. Deformation bands and faults can strongly influence the movement of groundwater on Earth and appear to have been similarly important on Mars, according to this study.

“This study provides a picture of not just surface water erosion, but true groundwater effects widely distributed over the planet,” said Suzanne Smrekar, deputy project scientist for the Mars Reconnaissance Orbiter at NASA’s Jet Propulsion Laboratory in Pasadena, Calif. “Groundwater movement has important implications for how the temperature and chemistry of the crust have changed over time, which in turn affects the potential for habitats for past life.”
Deformation bands form when sections of rock slide past each other and are similar to faults, such as the much larger San Andreas Fault in southern California. The discovery of deformation bands in HiRISE images advances understanding of how underground fractures would have affected the distribution and availability of ancient groundwater on Mars.

The HiRISE camera took the top image of layered rocks inside a crater in the Arabia Terra region of Mars on Feb. 13, 2007. The site is at 6.6 degrees north latitude, 14.1 degrees east longitude. Illumination is from the left. North is toward the top. The ground covered in this image spans about 150 meters (about 500 feet) east to west.

Source: NASA

Phoenix Lander Successful in Moving “Headless” Rock

"Headless" after being moved. Credit: NASA/JPL/Caltech/U of AZ

[/caption]

The robotic arm on NASA’s Phoenix Mars Lander slid a rock out of the way during the mission’s 117th Martian day (Sept. 22, 2008) in order to take a look at the soil underneath the rock, and to see at what depth the subsurface ice was under the rock. The lander’s Surface Stereo Imager took this image later the same day, showing the rock, called “Headless,” after the arm pushed it about 40 centimeters (16 inches) from its previous location. “The rock ended up exactly where we intended it to,” said Matt Robinson of NASA’s Jet Propulsion Laboratory, robotic arm flight software lead for the Phoenix team. And what was underneath the rock? Take a look:

Post flip.  Credit:  NASA/JPL/Caltech/Uof AZ
It’s hard to tell, exactly since the ground was disturbed from the moving. Some white material appears to be where the rock used to sit, but the Phoenix science team will have to study the area more closely. Look for official word from the team soon. It looks from this second image as though the thermal and conductivity probe was stuck in the ground a few times around the rock, searching for clues of any water molecules in the soil (look for the two separate marks left by the probe just to the right of the trench.)
Phoenix sol 118.  Credit:  NASA/JPL/Caltech/U of AZ

RAC (via the SSI).  Credit: NASA/JPL/Caltech/U of AZ
RAC (via the SSI). Credit: NASA/JPL/Caltech/U of AZ

Also in recent days, the two Phoenix cameras took portraits of each other. Above is the Robotic Arm Camera (RAC) and below is the the Surface Stereo Imager:

Phoenix Surface Stereo Image-twitterpic.  Credit:  Twitter
Phoenix Surface Stereo Image-twitterpic. Credit: Twitter

Source: Phoenix Gallery

Opportunity’s Next Adventure: The Big Drive

The Big Drive to Endeavour-crater. Credit: NASA/JPL

[/caption]

Opportunity, the intrepid Mars Exploration Rover, is going to put the pedal to the metal and head out for a crater nearly 12 kilometers (7 miles) away. That would match the distance the rover has traveled since landing in 2004. But the call of the unknown is compelling the rover science team to make the attempt. “We may not get there, but it is scientifically the right direction to go anyway,” said Steve Squyres, principal investigator for the science instruments on Opportunity and its twin rover, Spirit. For an “aging” rover (what age is 4 in rover years?), this might be setting the bar pretty high. But maybe it’s the journey and not the destination.

“This is a bolder, more aggressive objective than we have had before,” said John Callas, the project manager the rovers. “It’s tremendously exciting. It’s new science. It’s the next great challenge for these robotic explorers.”

“This crater is staggeringly large compared to anything we’ve seen before.” The crater, named Endeavour, is 22 kilometers (13.7 miles) across. “I would love to see that view from the rim,” Squyres said. “But even if we never get there, as we move southward we expect to be getting to younger and younger layers of rock on the surface. Also, there are large craters to the south that we think are sources of cobbles that we want to examine out on the plain. Some of the cobbles are samples of layers deeper than Opportunity will ever see, and we expect to find more cobbles as we head toward the south.”

The rover team estimates Opportunity may be able to travel about 110 yards each day it is driven toward the Endeavour crater. Even at that pace, the journey could take two years. But why not go for it, and see how long the rovers can last?

Opportunity's shadow with Victoria Crater in the background.  Credit:  NASA/JPL/ASU
Opportunity's shadow with Victoria Crater in the background. Credit: NASA/JPL/ASU

Opportunity, like Spirit, is well past its expected lifetime on Mars, and might not keep working long enough to reach the crater. However, two new resources not available during the 4-mile drive toward Victoria Crater in 2005 and 2006 are expected to aid in this new trek.

One is imaging from orbit of details smaller than the rover itself, using the High Resolution Imaging Science Experiment (HiRISE) camera on NASA’s Mars Reconnaissance Orbiter, which arrived at the Red Planet in 2006.

“HiRISE allows us to identify drive paths and potential hazards on the scale of the rover along the route,” Callas said. “This is a great example of how different parts of NASA’s Mars Exploration Program reinforce each other.”

Also, Opportunity now has a better “brain” for driving across the the plains of Mars. A new version of flight software uplinked to Opportunity and Spirit in 2006, boosts their ability to autonomously choose routes and avoid hazards such as sand dunes.

During its first year on Mars, Opportunity found geological evidence that the area where it landed had surface and underground water in the distant past. The rover’s explorations since have added information about how that environment changed over time. Finding rock layers above or below the layers already examined adds windows into later or earlier periods of time.

Source: JPL

Anything Under That Rock on Mars? Phoenix to Take a Peek

The rock "Headless." NASA/JPL-Caltech/University of Arizona/ Texas A&M University

[/caption]
Ever wondered what might crawl out from under a rock on Mars? The Phoenix lander is going to attempt to find out today by trying to nudge a rock aside today with its robotic arm to see what might be underneath. Engineers have developed a plan to try moving a rock on the north side of the lander. This rock, roughly the size and shape of a VHS videotape, is called “Headless.” Even though the Phoenix mission has been extended for a second time – the mission is now on through December, the team feels like it’s time to pull out all the stops and do as much work as possible. “We’re getting towards fall in the northern plains of Mars and our sun is dropping lower day by day,” said mission principal investigator Peter Smith on NPR’s Science Friday. “Our days are getting precious.” So, even though Phoenix’s robotic arm was not designed to move rocks, the team wants to give it a shot. “The appeal of studying what’s underneath is so strong we have to give this a try,” said Michael Mellon, a Phoenix science team member at the University of Colorado, Boulder.

“We don’t know whether we can do this until we try,” said Ashitey Trebi Ollennu, a robotics engineer at NASA’s Jet Propulsion Laboratory, Pasadena, Calif. “The idea is to move the rock with minimum disturbance to the surface beneath it. You have to get under it enough to lift it as you push it and it doesn’t just slip off the scoop.”

The lander receives commands for the whole day in the morning, so there’s no way to adjust in mid-move if the rock starts slipping. Phoenix took stereo-pair images of Headless to provide a detailed three-dimensional map of it for planning the arm’s motions. On Saturday, Sept. 20, the arm enlarged a trench close to Headless. Commands sent to Phoenix Sunday evening, Sept. 21, included a sequence of arm motions for today, intended to slide the rock into the trench.

If the technique works, the move would expose enough area for digging into the soil that had been beneath Headless.

Morning frost on Mars.  NASA/JPL-Caltech/University of Arizona/ Texas A&M University
Morning frost on Mars. NASA/JPL-Caltech/University of Arizona/ Texas A&M University

The scientific motive is related to a hard, icy layer found beneath the surface in trenches that the robotic arm has dug near the lander. Excavating down to that hard layer underneath a rock might provide clues about processes affecting the ice.

“The rocks are darker than the material around them, and they hold heat,” Mellon said. “In theory, the ice table should deflect downward under each rock. If we checked and saw this deflection, that would be evidence the ice is probably in equilibrium with the water vapor in the atmosphere.”

An alternative possibility, if the icy layer were found closer to the surface under a rock, could by the rock collecting moisture from the atmosphere, with the moisture becoming part of the icy layer.

Source: JPL

Why is Mars’ Southern Polar Cap Crooked?

Mars Express Data from Mars South Pole. Credits: ESA/ Image Courtesy of F. Altieri (IFSI-INAF) and the OMEGA team

[/caption]
Like Earth, Mars has frozen polar caps, but unlike Earth, these caps are made of carbon dioxide ice as well as water ice. During the southern hemisphere’s summer, much of the ice cap sublimates, or evaporates directly to a gas, but leaves behind what is known as the residual polar cap. The problem is that while the winter cap is symmetrical about the south pole, the residual cap is offset by some three to four degrees. Using data from ESA’s Mars Express spacecraft, scientists say two things are to blame: the Martian weather system, and interestingly, so is the largest impact crater on Mars – even though it is nowhere near the south pole.

Using the Planetary Fourier Spectrometer (PFS) onboard Mars Express, Marco Giuranna of the Istituto di Fisica dello Spazio Interplanetario CNR (IFSI), Rome, Italy, and colleagues have measured the temperature of Mars’ atmosphere from the ground up to an altitude of 50 km above the south polar region.

They charted the way the atmosphere changes in temperature and other characteristics over more than half a Martian year, and monitored the way carbon dioxide builds into the southern ice cap as the autumn turns into winter on Mars. “It is not a straightforward process. We found that two regional weather systems developed from mid-fall through the winter,” says Giuranna.

These weather systems are derived from strong eastward winds that blow straight into the Hellas Basin, the largest impact structure on Mars with a diameter of 2300 km and a depth of 7 km. The crater’s depth and the steep rise of the walls deflect the winds and create what are called Rossby waves on Earth. This creates a low pressure system near the south pole in the western hemisphere and a high-pressure system in the eastern hemisphere, again near the south pole.

Giuranna found that the temperature of the low-pressure system is often below the condensation point for carbon dioxide, so the gas condenses and falls from the sky as snow and builds up on the ground as frost. In the high-pressure system, the conditions are never appropriate for snow, so only ground frost occurs. Thus, the south polar cap is built by two different mechanisms.

The areas that have extensive snow cover do not sublimate in the summer because they reflect more sunlight back into space than the surface frost. Frost grains tend to be larger than snow grains and have rougher surfaces. The ragged texture traps more sunlight, driving the sublimation.

So the western area of the southern polar cap, built of snow and frost, not only has a larger amount of carbon dioxide ice deposited but also sublimates more slowly during the summer, while the western area built of frost disappears completely. This explains why the residual cap is not symmetrically placed around the south pole.

“This has been a martian curiosity for many years,” says Giuranna. Thanks to Mars Express, planetary scientists now understand a new facet of this amazing, alien world.

Source: ESA

Phoenix Lander Working Hard Before Summer’s End on Mars

The Phoenix Mars Lander is working as fast as it can to dig and deliver as many samples as possible before the power produced by Phoenix’s solar panels declines due to the end of the Martian summer. This image, from Sol 107 (Sept. 12 here on Earth), shows the lander has delivered a sample of soil from the “Snow White” trench to the Wet Chemistry Laboratory. A small pile of soil is visible on the lower edge of the second cell from the top. This deck-mounted lab is part of Phoenix’s Microscopy, Electrochemistry and Conductivity Analyzer (MECA).

The Wet Chemistry Laboratory mixes Martian soil with an water-based solution from Earth as part of a process to identify soluble nutrients and other chemicals in the soil. Preliminary analysis of this soil confirms that it is alkaline, and composed of salts and other chemicals such as perchlorate, sodium, magnesium, chloride and potassium. This data validates prior results from that same location, said Michael Hecht of NASA’s Jet Propulsion Laboratory, Pasadena, Calif., the lead scientist for MECA.

In the coming days, the Phoenix team will also fill the final four of eight single-use ovens on another soil-analysis instrument, the Thermal and Evolved Gas Analyzer, or TEGA.

Source: Phoenix news site

Newest Mission to Mars: MAVEN

Why do planets like Mars have a different atmosphere than Earth? Credit: NASA

[/caption]

Did Mars once have a thick atmosphere? Could the climate on the Red Planet have supported water and possibly life in the past? These are the questions NASA hopes to answer in great detail with the newest orbiter mission to Mars. Called the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft, the $485 million mission is scheduled for launch in late 2013. MAVEN is part of the Mars Scout Program, which is designed to send a series of small, low-cost, principal investigator-led missions to the Red Planet. The Phoenix Mars Lander was the first spacecraft selected in this program. “This mission will provide the first direct measurements ever taken to address key scientific questions about Mars’ evolution,” said Doug McCuistion, director of the Mars Exploration Program at NASA Headquarters in Washington.

Evidence from orbit and the planet’s surface points to a once denser atmosphere on Mars that supported the presence of liquid water on the surface. As part of a dramatic climate change, most of the Martian atmosphere was lost. MAVEN will make definitive scientific measurements of present-day atmospheric loss that will offer clues about the planet’s history.

“The loss of Mars’ atmosphere has been an ongoing mystery,” McCuistion said. “MAVEN will help us solve it.”

The science team will be led from the University of Colorado at Boulder, and its Laboratory for Atmospheric and Space Physics. The principal investigator for the mission is Bruce Jakosky from UC Boulder. “We are absolutely thrilled about this announcement,” said Jakosky. “We have an outstanding mission that will obtain fundamental science results for Mars. We have a great team and we are ready to go.”

Artist depiction of the MAVEN spacecraft.  Credit:  NASA
Artist depiction of the MAVEN spacecraft. Credit: NASA

Lockheed Martin of Littleton, Colo., will build the spacecraft based on designs from NASA’s Mars Reconnaissance Orbiter and 2001 Mars Odyssey missions.
MAVEN was evaluated to have the best science value and lowest implementation risk from 20 mission investigation proposals submitted in response to a NASA Announcement of Opportunity in August 2006.

After arriving at Mars in the fall of 2014, MAVEN will use its propulsion system to enter an elliptical orbit ranging 90 to 3,870 miles above the planet. The spacecraft’s eight science instruments will take measurements during a full Earth year, which is roughly equivalent to half of a Martian year.
MAVEN’s instrument suites include a remote sensing package that will determine global characteristics of the upper atmosphere, and the spacecraft will dip to an altitude of 80 miles above the planet. A particles and fields payload contains six instruments that will characterize the solar wind, upper atmosphere and the ionosphere – a layer of charged particles very high in the Martian atmosphere.

The third instrument suite, a Neutral Gas and Ion Mass Spectrometer will measure the composition and isotopes of neutral and charged forms of gases in the Martian atmosphere

During and after its primary science mission, the spacecraft may be used to provide communications relay support for robotic missions on the Martian surface.

More information on MAVEN.

Sources: NASA, UC Boulder