New Horizons’ Next Flyby Target Just Got Weirder!

Artist's impression of NASA's New Horizons spacecraft encountering a Pluto-like object in the distant Kuiper Belt. Credits: NASA/JHUAPL/SwRI/Alex Parker

Since it made its historic flyby of Pluto in July of 2015, the New Horizons mission has been venturing farther into the outer Solar System. With the spacecraft still healthy and its system in working order, the mission was extended to include the exploration of additional Kuiper Belt Objects (KBOs). The first target for this part of its mission is the KBO known as 2014 MU69, which New Horizons is currently making its way towards.

In the past, NASA believed this object was a spherical chunk of ice and rock measuring 18–41 km (10–30 mi) in diameter. However, a more recent occultation observation has led the New Horizon‘s team to conclude that MU69 may actually be a large object with a chunk taken out of it (an “extreme prolate spheroid”) or two objects orbiting very closely together or touching – aka. a close or contact binary.

In 2015, MU69 was identified as one of two potential destinations for New Horizons and was recommended to NASA by the mission science team. It was selected because of the immense opportunities for research it presented. As Alan Stern, the Principle Investigator (PI) for the New Horizons mission at the Southwest Research Institute (SwRI), indicated at the time:

“2014 MU69 is a great choice because it is just the kind of ancient KBO, formed where it orbits now, that the Decadal Survey desired us to fly by. Moreover, this KBO costs less fuel to reach [than other candidate targets], leaving more fuel for the flyby, for ancillary science, and greater fuel reserves to protect against the unforeseen.”

Artist’s concept of a binary object, which new data suggests 2014 MU69 (the next flyby target for NASA’s New Horizons mission) could be. Credits: NASA/JHUAPL/SwRI/Alex Parker

The most recent observation of the KBO took place on July 17th, 2017, when the object passed in front of a star. This provided the New Horizon’s team with an opportunity to measure the resulting dip in the star’s luminosity – aka. an occultation – using a series of telescopes that they had deployed to a remote part of Patagonia, Argentina. These sorts of observations are performed regularly in order to obtain estimates of an asteroid’s size and position.

In the case of MU69’s occulation, the New Horizons team was able to obtain vital data that will help the mission planners to plot the trajectory of their flyby. In addition, the data revealed things about MU69’s size, shape, orbit, and the environment that surrounds it. It was because of this that the team began to question earlier estimates on the object’s size and shape.

Based on their new observations, they are confident that the object is no more than 30 km (20 mi) long, if it is an extreme prolate spheroid.  If, however, it is a binary, the two objects that compose it are believed to measure about 15-20 km (9-12 mi) in diameter each. Alan Stern expanded on these new findings in a recent NASA press statement, saying:

“This new finding is simply spectacular. The shape of MU69 is truly provocative, and could mean another first for New Horizons going to a binary object in the Kuiper Belt. I could not be happier with the occultation results, which promise a scientific bonanza for the flyby.”

Artist’s concept of Kuiper Belt object 2014 MU69 as a single body (above) with a large chunk taken out of it. Credits: NASA/JHUAPL/SwRI/Alex Parker

The recent stellar occulation was the third of three observations conducted for the New Horizons mission. To prepare for the event, the New Horizons team traveled to Argentina and South Africa on June 3rd. On July 10th, a week before the occultation, NASA’s airborne Stratospheric Observatory for Infrared Astronomy (SOFIA) provided support by studying the space around MU69.

Using its 2.5 m (100-inch) telescope, SOFIA was looking for debris that might present a hazard to New Horizons spacecraft as it makes its flyby less than 17 months from now. Last, but certainly not least, the team also relied on data provided by NASA’s Hubble Space Telescope and the ESA’s Gaia satellite to calculate and pinpoint where MU69 would cast its shadow on Earth’s surface.

Thanks to their assistance, the New Horizons team knew exactly where the occultation shadow would be and set up their “fence line” of small, mobile telescopes accordingly. Marc Buie – the New Horizons co-investigator – was responsible for leading the observation campaign. As he explained, the data it yielded will be of great help in the planning the flyby, but also indicated that their could be some surprises in the future:

“These exciting and puzzling results have already been key for our mission planning,” he said, “but also add to the mysteries surrounding this target leading into the New Horizons encounter with MU69, now less than 17 months away.”

The flyby with MU69 is scheduled to take place on Jan. 1st, 2019, and will be the most distant flyby in the history of space exploration. In addition to being 1.6 billion km (1 billion mi) from Pluto, the New Horizons spacecraft will be 6.5 billion km (4 billion mi) from Earth! What’s more, the first-ever study of a KBO is expected to yield some fantastic scientific data, and tell us much about the formation and evolution of our Solar System.

 

Further Reading: NASA

New Horizons Team Already Finding Surprises on Next Flyby Target

Observers Kai Getrost and Alex Parker wait to collect 2014 MU69 stellar occultation data in Argentina on June 3, 2017. Several New Horizons team members and collaborators will return to the country on July 17 for this summer's third and final MU69 occultation observation opportunity. (Image credit: Kai Getrost, via NASA)

While the New Horizons spacecraft was heading to Pluto, scientists from the mission used Hubble and other telescopes to try and find out more about the environment their spacecraft would be flying through. No one wanted New Horizons to run into unexpected dust or debris.

And now, as New Horizons prepares to fly past its next target, the Kuiper Belt Object known as 2014 MU69, mission scientists are using every tool at their disposal to examine this object and the surrounding region. The flyby will take place on January 1, 2019.

They’ve already uncovered some surprises.

On June 3, 2017, 2014 MU69 passed in front of a star – in an event called an occultation – providing a two-second glimpse of the object’s shadow.

A diagram of an occultation event, via the International Occultation Timing Association.

More than 50 mission team members and collaborators traveled to South Africa and Argentina to catch the occultation, setting up telescopes to capture the event. They are now looking through more than 100,000 images of the occultation star that can be used to assess the environment around this Kuiper Belt object (KBO). In addition, the Hubble Space Telescope and Gaia, a space observatory of the European Space Agency (ESA) also observed the event.

The team said that while MU69 itself eluded direct detection, the June 3 data provided valuable and unexpected insights that have already helped New Horizons.

“These results are telling us something really interesting,” said New Horizons Principal Investigator Alan Stern, of the Southwest Research Institute. “The fact that we accomplished the occultation observations from every planned observing site but didn’t detect the object itself likely means that either MU69 is highly reflective and smaller than some expected, or it may be a binary or even a swarm of smaller bodies left from the time when the planets in our solar system formed.”

Mission scientist Simon Porter said on Twitter, “The upshot is that MU69 is probably not as big and dark as it could have been, and (more importantly) doesn’t seem to have rings or a dust cloud,” adding later that the “lack of dust was reassuring.”

Again, no one wants to New Horizons to run into any surprising dust or debris.

The team will be observing two more occultation events on July 10 and July 17, and Porter said they should get even better constraints from these next two events.

Projected path of the 2014 MU69 occultation shadow, on July 10 (left) and July 17, 2017. Credit: Larry Wasserman/Lowell Observatory, via NASA.

On July 10, NASA’s airborne Stratospheric Observatory for Infrared Astronomy (SOFIA) will use its 100-inch (2.5-meter) telescope to probe the space around MU69 for debris that might present a hazard to New Horizons as it flies by in 18 months.

On July 17, the Hubble Space Telescope also will check for debris around MU69, while team members set up another ground-based “fence line” of small mobile telescopes along the predicted ground track of the occultation shadow in southern Argentina to try to better constrain, or even determine, the size of MU69.

Initial estimates of MU69’s diameter, based primarily on data taken by the Hubble Space Telescope since the KBO’s discovery in 2014, fall in the 12-25-mile (20-40-kilometer) range. However, the latest data from the June occultation seem to imply it’s at or even below the smallest estimated sizes.

“2014 MU69 is a great choice because it is just the kind of ancient KBO, formed where it orbits now, that the Decadal Survey desired us to fly by,” Stern said back in August 2015 when the target was announced. “Moreover, this KBO costs less fuel to reach [than other candidate targets], leaving more fuel for the flyby, for ancillary science, and greater fuel reserves to protect against the unforeseen.”

You can see the star brightness, predicted shadow path and other tech specs for the July 10 and July 17 occultation events at the embedded links.

Source: New Horizons

An Astronomical Detective Tale and the Moon of 2007 OR10

2007 OR10 Moon
These two images reveal a moon orbiting the dwarf planet 2007 OR10. NASA/Hubble/ESA/STScI
2007 OR10 Moon
These two images reveal a moon orbiting the dwarf planet
2007 OR10. NASA/Hubble/ESA/STScI

It isn’t every day we get a new moon added to the list of solar system satellites. The combined observational power of three observatories — Kepler, Herschel and Hubble — led an astronomical detective tale to its climatic conclusion: distant Kuiper Belt Object 2007 OR10 has a tiny moon.

The dwarf planet itself is an enigma wrapped in a mystery: with a long orbit taking it out to a distant aphelion 101 astronomical units (AU) from the Sun, back into the environs of Neptune and Pluto for a perihelion 33 AU from the Sun once every 549 years, 2007 OR10 was discovered by Caltech astronomers Megan Schwamb and Mike Brown in 2007. Nicknamed “Snow White” by Mike Brown for its presumed high albedo, 2007 OR10 was 85 AU distant in the constellation Aquarius at the time of discovery and outbound towards aphelion in 2135. 2007 OR10 is about 1,500 kilometers in diameter, the third largest body known beyond Neptune in our solar system next to Pluto and Eris (nee Xena).

2007 OR10 moon
See the moon (circled?) at +21st magnitude, it’s a tough catch! NASA/Hubble/STScI

Enter the Kepler Space Telescope, which imaged 2007 OR10 crossing the constellation Aquarius as part of its extended K2 exoplanet survey along the ecliptic plane. Though Kepler looks for transiting exoplanets — worlds around other stars that betray their presence by tiny dips in the brightness of their host as they pass along our line of sight — it also picks up lots of other things that flicker, including variable stars and distant Kuiper Belt Objects. But the slow 45 hour rotational period of 2007 OR10 noted by Kepler immediately grabbed astronomers interest: could an unseen moon be lurking nearby, dragging on the KBO like a car brake?

“Typical rotation periods for Kuiper Belt Objects are under 24 hours,” says Csaba Kiss (Konkoly Observatory) in a recent press release. “We looked in the Hubble archive because the slower rotation period could have been caused by the gravitational tug of a moon.”

And sure enough, digging back through archival data from the Hubble Space Telescope taken during a survey of KBOs, astronomers turned up two images of the faint moon from 2009 and 2010. Infrared observations of 2007 OR10 and its moon by the European Space Agency’s Herschel Space Telescope cinched the discovery, and noted an albedo of 19% (similar to wet sand) for 2007 OR10, much darker than expected. The moon is about 200 miles (320 kilometers) in diameter, in a roughly 9,300 mile (15,000 kilometer) orbit.

The discovery was announced at an AAS meeting just last year, and even now, we’re still puzzling out what little we know about these distant worlds. Just what 2007 OR10 and its moon looks like is any guess. New Horizons gave us our first look at Pluto and Charon two short summers ago in 2015, and will give us a fleeting glimpse of 2014 MU69 on New Year’s Day 2019. All of these objects beg for proper names, especially pre-2019 New Horizons flyby.

This also comes on the heels of two new moons for Jupiter, recently announced last month S/2017 J1 and J2.

What would the skies from the tiny moon look like? Well, ancient 2007 OR10 must loom large in its sky, though Sol would only shine as a bright -15th magnitude star, (a little brighter than a Full Moon) its illumination dimmed down to 1/7,000th the brightness enjoyed here on sunny Earth, which would be lost in its glare.

2007 Or10 in the sky
The current position of 2007 OR10 in the night sky. Stellarium

And looking at the strange elliptical orbits of these outer worldlets, we can only surmise that something else must be out there. Will the discovery of Planet 9 be made before the close of the decade?

One thing’s for sure: this isn’t your parent’s tidy solar system with “Excellent Mothers” serving “Nine Pizzas.”

A New Dwarf Planet Joins The Solar System Family

Based on data obtained by the Dark Energy Survey (DES), a team of scientists have obtained evidence of another TNO beyond Pluto. Credit: ESO/L. Calçada/Nick Risinger

The Kuiper Belt has been an endless source of discoveries over the course of the past decade. Starting with the dwarf planet Eris, which was first observed by a Palomar Observatory survey led by Mike Brown in 2003, many interesting Kuiper Belt Objects (KBOs) have been discovered, some of which are comparable in size to Pluto.

And according to a new report from the IAU Minor Planet Center, yet another body has been discovered beyond the orbit of Pluto. Officially designated as 2014 UZ224, this body is located about 14 billion km (90 AUs, or 8.5 billion miles) from the Sun. This dwarf planet is not only the latest member of the our Solar family, it is also the second-farthest body from our Sun with a stable orbit.

The discovery was made by David Gerdes, a professor of astrophysics at the University of Michigan, and various colleagues associated with at the Dark Energy Survey (DES) – a project which relies on the Cerro Tololo Inter-American Observatory in Chile. In the past, Gerdes’ research has focused on the detection of dark energy and the expansion of the Universe.

The DECam instrument, . Credit: noao.edu
The DECam instrument, shown before it was inserted into the Blanco telescope at the Cerro Tololo Observatory. Credit: noao.edu

Towards this end, DES has spent the past five years surveying roughly one-eighth of the sky using the Dark Energy Camera (DECam), a 570-Megapixel camera mounted on the Victor M. Blanco telescope at Cerro Tololo. This instrument was commissioned by the US. Dept of Energy to conduct surveys of distant galaxies, and Dr. Gerdes had a hand in creating.

Not surprisingly, this same technology has also allowed for discoveries to be made at the edge of the Solar System. Two years ago, this is precisely what Gerdes challenged a group of undergraduate students to do (as part of a summer project). These students examined images taken by DES between 2013-2016 for indications of moving objects. Since that time, the analysis team has grown to include senior scientists, postdocs, graduate and undergraduate students.

Whereas distant stars and galaxies would appear stationary in these images, distant TNOs showed up in different places over time – hence why are called “transients”. As Dr. Gerdes explains in his 2014 UZ224 Fact Sheet, which is available through his University of Michigan homepage:

“To identify transients, we used a technique known as “difference imaging”. When we take a new image, we subtract from it an image of the same area of the sky taken on a different night. Objects that don’t change disappear in this subtraction, and we’re left with only the transients… This process yields millions of transients, but only about 0.1% of them turn out to be distant minor planets. To find them, we must “connect the dots” and determine which transients are actually the same thing in different positions on different nights. There are many dots and MANY more possible ways to connect them.”

Images of 2014 UZ224, shown on three slides obtained by the DECam. Credit: David Gerdes/DES/University of Michigan
Images of 2014 UZ224, shown on three slides obtained by the DECam. Credit: David Gerdes/DES/University of Michigan

This was a difficult process. In addition to needing thousands of computers at Fermilab to process the hundreds of terabytes of data, the team had to write special programs to do it. Gerdes and his colleagues also relied on help from Professors Masao Sako and Gary Bernstein of the University of Pennsylvania, who contributed the key breakthroughs that allowed them to perform difference imaging over the entire survey area.

In the end, dozens of new Trans-Neptunian Objects (TNOs) were discovered, one of which was 2014 UZ224. According to their observations, its diameter could be anywhere from 350 to 1200 km, and it takes 1,136 years to complete a single orbit of our Sun. For the sake of perspective, Pluto is 2370 km in diameter, and has an orbital period of 248 years.

Stephanie Hamilton, a graduate student at the University of Michigan, was personally involved with the project. Her role was to determine the size of 2014 UZ224, which was difficult from initial observations alone. As she told Universe Today via email:

“The object’s brightness in visible light alone depends both on its size and how reflective it is, so you can’t uniquely determine one of those properties without assuming a value for the other. Fortunately there’s a solution to that problem – the heat the object emits is also proportional to its size, so obtaining a thermal measurement in addition to the optical measurements means we would then be able to calculate the object’s size and albedo (reflectance) without having to assume one or the other.

“We were able to obtain an image of our object at a thermal wavelength using the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile. I am working on combining all of our data together to determine the size and albedo, and we expect to submit a paper on our results around mid-November or so.”

Artistic rendering shows the distant view from theoretical Planet Nine back towards the sun. The planet is thought to be gaseous, similar to Uranus and Neptune. Hypothetical lightning lights up the night side. Credit: Caltech/R. Hurt (IPAC)
Artistic rendering shows the distant view from theoretical Planet Nine back towards the sun. The planet is thought to be gaseous, similar to Uranus and Neptune. Hypothetical lightning lights up the night side. Credit: Caltech/R. Hurt (IPAC)

But as with all things related to “dwarf planets”, there has been some disagreement over this discovery. Given the dimensions of the object, there are some who question whether or not the label applies. But as Gerdes indicates on the Fact Sheet, this body fits most of the prerequisites:

“According to the official IAU guidelines, a dwarf planet must satisfy four criteria. It must a) orbit the sun (check!), b) not be a satellite (check!) c) not have cleared the neighborhood around its orbit (check!) and d) have enough mass to be round. It’s this last item that’s uncertain, and the only way for sure is to get a picture that’s detailed enough to actually see its shape. Nevertheless, an object over 400 km in diameter is likely to be round.”

Gerdes and his team expect to be busy, authoring the paper that will detail their findings, using the ALMA array to get more assessments of 2014 UZ224 size, and sifting through the data to look for more objects in the Kuiper Belt. This includes the fabled Planet 9, which astronomers have been seeking out for years.

Given its distance from the Sun, 2014 UZ224’s orbit would not be influenced by the presence of Planet 9, and is therefore of no help. However, Gerdes is optimistic that the evidence of this massive body is there in the data. Given time, and a lot of data-processing, they just might find it! In the meantime, this newly discovered object is likely to be the focal point of a lot of fascinating research.

“It’s an interesting object in its own right – distant objects like this are ‘cosmic leftovers’ from the primordial disk that gave birth to the solar system,” writes Gerdes. “By studying them and learning more about their distribution, orbital characteristics, sizes, and surface properties, we can learn more about the processes that gave birth to the solar system and ultimately to us.”

Further Reading: 2014 UZ224 Fact Sheet (University of Michigan)

Hubble Images Three Debris Disks Around G-type Stars

An image of the circum-stellar disk around HD 207129. The three circled objects are background objects and part of the disk. Image: Hubble Space Telescope, Glenn Schneider et al 2016.
An image of the circum-stellar disk around HD 207129. The three circled objects are background objects and are not part of the disk. Image: Hubble Space Telescope, Glenn Schneider et al 2016.

A team using the Hubble Space Telescope has imaged circumstellar disk structures (CDSs) around three stars similar to our Sun. The stars are all G-type solar analogs, and the disks themselves share similarities with our Solar System’s own Kuiper Belt. Studying these CDSs will help us better understand their ring-like structure, and the formation of solar systems.

The team behind the study was led by Glenn Schneider of the Seward Observatory at the University of Arizona. They used the Hubble’s Space Telescope Imaging Spectrograph to capture the images. The stars in the study are HD 207917, HD 207129, and HD 202628.

Theoretical models of circumstellar disk dynamics suggest the presence of CDSs. Direct observation confirms their presence, though not many of these disks are within observational range. These new deep images of three solar analog CDSs are important. Studying the structure of these rings should lead to a better understanding of the formation of solar systems themselves.

A is the observed image of HD 207917. B is the best-fit debris ring model of the same star. Image: Hubble, G. Schneider et. al. 2016.
A is the observed image of HD 207917. B is the best-fit debris ring model of the same star. Image: Hubble, G. Schneider et. al. 2016.

Debris disks like these are separate from protoplanetary disks. Protoplanetary disks are a mixture of both gas and dust which exist around younger stars. They are the source material out of which planetesimals form. Those planetesimals then become planets.

Protoplanetary disks are much shorter-lived than CDSs. Whatever material is left over after planet formation is typically expelled from the host solar system by the star’s radiation pressure.

In circumstellar debris disks like the ones imaged in this study, the solar system is older, and the planets have already formed. CDSs like these have lasted this long by replenishing themselves. Collisions between larger bodies in the solar system create more debris. The resulting debris is continually ground down to smaller sizes by repeated collisions.

This process requires gravitational perturbation, either from planets in the system, or by binary stars. In fact, the presence of a CDSs is a strong hint that the solar system contains terrestrial planets.

A circumstellar disk of debris around a mature stellar system could indicate the presence of Earth-like planets. Credit: NASA/JPL
A circumstellar disk of debris around a mature stellar system could indicate the presence of Earth-like planets. Credit: NASA/JPL

The three disks in this study were viewed at intermediate inclinations. They scatter starlight, and are more easily observed than edge-on disks. Each of the three circumstellar disk structures possess “ring-like components that are more massive analogs of our solar system’s Edgeworth–Kuiper Belt,” according to the study.

The study authors expect that the images of these three disk structures will be studied in more detail, both by themselves and by others in future research. They also say that the James Webb Space Telescope will be a powerful tool for examining CDSs.

Read more: It’s Complicated: Hubble Survey Finds Unexpected Diversity in Dusty Discs Around Nearby Stars

New Horizons Spies Pluto’s Neighbor Quaoar

Artist view of New Horizons passing Pluto and three of its moons.. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

Now more than a year after its historic flyby of Pluto, the New Horizons spacecraft continues to speed through the Kuiper Belt. It’s currently on a beeline towards its next target of exploration, a KBO called 2014 MU69. But during its travels, New Horizons spotted another KBO, one of Pluto’s pals, Quaoar.

This animated sequence shows composite images of the Kuiper Belt object Quaoar, taken by New Horizons’ Long Range Reconnaissance Imager (LORRI). Click on the image to animate. Credit: NASA/JHUAPL/SwRI.
This animated sequence shows composite images of the Kuiper Belt object Quaoar, taken by New Horizons’ Long Range Reconnaissance Imager (LORRI). Click on the image to animate. Credit: NASA/JHUAPL/SwRI.

When these images were taken (in July 2016), Quaoar was approximately 4 billion miles (6.4 billion kilometers) from the Sun and 1.3 billion miles (2.1 billion kilometers) from New Horizons.

The animated sequence, above, (click the image if it isn’t animating in your browser) shows composite images taken by New Horizons’ Long Range Reconnaissance Imager (LORRI) at four different times over July 13-14: “A” on July 13 at 02:00 Universal Time; “B” on July 13 at 04:08 UT; “C” on July 14 at 00:06 UT; and “D” on July 14 at 02:18 UT. The New Horizons team explained that each composite includes 24 individual LORRI images, providing a total exposure time of 239 seconds and making the faint object easier to see.

Quaoar ( pronounced like “Kwa-war”) is about 690 miles or 1,100 kilometers in diameter, about half the size of Pluto. It was discovered on June 4, 2002 by astronomers Mike Brown and Chad Trujillo from Caltech, and at the time of its discovery, it was the largest object found in the Solar System since the discovery of Pluto. Quaoar’s discovery was one of the things that spurred the discussion of whether Pluto should continue to be classified as a planet or not.

But Quaoar is an interesting object in its own right and the New Horizons team said the oblique views of it that New Horizons can see – where LORRI sees only a portion of Quaoar’s illuminated surface — is very different from the nearly fully illuminated view of it that is visible from Earth. Comparing Quaoar from the two very different perspectives gives mission scientists a valuable opportunity to study the light-scattering properties of Quaoar’s surface.

If you’re thinking, “Why don’t we send a mission to Quaoar, or Sedna or Eris?” you aren’t alone. New Horizons team member Alex Parker has obviously been thinking about it. Parker tweeted that for a New Horizons-like mission it would take about 13 and a half years to reach Quaoar if it could be launched in December 2016. “Otherwise, we have to wait another 11 years for the next Jupiter assist window,” he said.

Um, NASA, can we put this on the schedule for 2027?

In the meantime, the images and data that New Horizons gathered during the Pluto flyby in July 2015 are still trickling back to Earth. The image below is a stunning view of Pluto’s methane snowcaps, visible at the terminator, showing the region north of Pluto’s dark equatorial band informally named Cthulhu Regio, and southwest of the vast nitrogen ice plains informally named Sputnik Planitia. This image was taken about 45 minutes before New Horizons’ closest approach to Pluto on July 14, 2015.

This area is south of Pluto's dark equatorial band informally named Cthulhu Regio, and southwest of the vast nitrogen ice plains informally named Sputnik Planitia. North is at the top; in the western portion of the image, a chain of bright mountains extends north into Cthulhu Regio. New Horizons compositional data indicate the bright snowcap material covering these mountains isn't water, but atmospheric methane that has condensed as frost onto these surfaces at high elevation. Between some mountains are sharply cut valleys – indicated by the white arrows. These valleys are each a few miles across and tens of miles long. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute.
This area is south of Pluto’s dark equatorial band informally named Cthulhu Regio, and southwest of the vast nitrogen ice plains informally named Sputnik Planitia. North is at the top; in the western portion of the image, a chain of bright mountains extends north into Cthulhu Regio. New Horizons compositional data indicate the bright snowcap material covering these mountains isn’t water, but atmospheric methane that has condensed as frost onto these surfaces at high elevation. Between some mountains are sharply cut valleys – indicated by the white arrows. These valleys are each a few miles across and tens of miles long. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute.

See all of the latest photos sent back from our robot in the outer reaches of our Solar System at the New Horizons website.

NASA Approves New Horizons Extended KBO Mission, Keeps Dawn at Ceres

New Horizons trajectory and the orbits of Pluto and 2014 MU69.
New Horizons trajectory and the orbits of Pluto and 2014 MU69.
New Horizons trajectory and the orbits of Pluto and 2014 MU69.

In an ‘Independence Day’ gift to a slew of US planetary research scientists, NASA has granted approval to nine ongoing missions to continue for another two years this holiday weekend.

The biggest news is that NASA green lighted a mission extension for the New Horizons probe to fly deeper into the Kuiper Belt and decided to keep the Dawn probe at Ceres forever, rather than dispatching it to a record breaking third main belt asteroid.

And the exciting extension news comes just as the agency’s Juno probe is about to ignite a do or die July 4 fireworks display to achieve orbit at Jupiter – detailed here.

“Mission approved!” the researchers gleefully reported on the probes Facebook and Twitter social media pages.

“Our extended mission into the #KuiperBelt has been approved. Thanks to everyone for following along & hopefully the best is yet to come.

Dwarf planet Ceres is shown in this false-color renderings, which highlight differences in surface materials.  The image is centered on Ceres brightest spots at Occator crater. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
Dwarf planet Ceres is shown in this false-color renderings, which highlight differences in surface materials. The image is centered on Ceres brightest spots at Occator crater. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

The New Horizons spacecraft will now continue on course in the Kuiper Belt towards an small object known as 2014 MU69, to carry out the most distant close encounter with a celestial object in human history.

“Here’s to continued success!”

The spacecraft will rendezvous with the ancient rock on New Year’s Day 2019.

Researchers say that 2014 MU69 is considered as one of the early building blocks of the solar system and as such will be invaluable to scientists studying the origin of our solar system how it evolved.

It was almost exactly one year ago on July 14, 2015 that New Horizons conducted Earth’s first ever up close flyby and science reconnaissance of Pluto – the most distant planet in our solar system and the last of the nine planets to be explored.

Pluto Explored at Last. The New Horizons mission team celebrates successful flyby of Pluto in the moments after closest approach at 7:49 a.m. EDT on July 14, 2015.   New Horizons Principal Investigator Alan Stern of Southwest Research Institute (SwRI), Boulder, CO., left, Johns Hopkins University Applied Physics Laboratory (APL) Director Ralph Semmel, center, and New Horizons Co-Investigator Will Grundy Lowell Observatory hold an enlarged print of an U.S. stamp with their suggested update after Pluto became the final planet in our solar system to be explored by an American space probe (crossing out the words ‘not yet’) - at the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Maryland.  Credit: Ken Kremer/kenkremer.com
Pluto Explored at Last. The New Horizons mission team celebrates successful flyby of Pluto in the moments after closest approach at 7:49 a.m. EDT on July 14, 2015. New Horizons Principal Investigator Alan Stern of Southwest Research Institute (SwRI), Boulder, CO., left, Johns Hopkins University Applied Physics Laboratory (APL) Director Ralph Semmel, center, and New Horizons Co-Investigator Will Grundy Lowell Observatory hold an enlarged print of an U.S. stamp with their suggested update after Pluto became the final planet in our solar system to be explored by an American space probe (crossing out the words ‘not yet’) – at the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Maryland. Credit: Ken Kremer/kenkremer.com

The immense volume of data gathered continues to stream back to Earth every day.

“The New Horizons mission to Pluto exceeded our expectations and even today the data from the spacecraft continue to surprise,” said NASA’s Director of Planetary Science Jim Green at NASA HQ in Washington, D.C.

“We’re excited to continue onward into the dark depths of the outer solar system to a science target that wasn’t even discovered when the spacecraft launched.”

This new global mosaic view of Pluto was created from the latest high-resolution images to be downlinked from NASA’s New Horizons spacecraft and released on Sept. 11, 2015. The images were taken as New Horizons flew past Pluto on July 14, 2015, from a distance of 50,000 miles (80,000 kilometers). This new mosaic was stitched from over two dozen raw images captured by the LORRI imager and colorized. Annotated with informal place names. Credits: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/Marco Di Lorenzo/Ken Kremer/kenkremer.com
This new global mosaic view of Pluto was created from the latest high-resolution images to be downlinked from NASA’s New Horizons spacecraft and released on Sept. 11, 2015. The images were taken as New Horizons flew past Pluto on July 14, 2015, from a distance of 50,000 miles (80,000 kilometers). This new mosaic was stitched from over two dozen raw images captured by the LORRI imager and colorized. Annotated with informal place names. Credits: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/Marco Di Lorenzo/Ken Kremer/kenkremer.com

While waiting for news on whether NASA would approve an extended mission, the New Horizons engineering and science team already ignited the main engine four times to carry out four course changes in October and November 2015, in order to preserve the option of the flyby past 2014 MU69 on Jan 1, 2019.

Green noted that mission extensions into fiscal years 2017 and 2018 are not final until Congress actually passes sufficient appropriation to fund NASA’s Planetary Science Division.

“Final decisions on mission extensions are contingent on the outcome of the annual budget process.”

Tough choices were made even tougher because the Obama Administration has cut funding for the Planetary Sciences Division – some of which was restored by a bipartisan majority in Congress for what many consider NASA’s ‘crown jewels.’

NASA’s Dawn asteroid orbiter just completed its primary mission at dwarf planet Ceres on June 30, just in time for the global celebration known as Asteroid Day.

“The mission exceeded all expectations originally set for its exploration of protoplanet Vesta and dwarf planet Ceres,” said NASA officials.

The Dawn science team had recently submitted a proposal to break out of orbit around the middle of this month in order to this conduct a flyby of the main belt asteroid Adeona.

Green declined to approve the Dawn proposal, citing additional valuable science to be gathered at Ceres.

The long-term monitoring of Ceres, particularly as it gets closer to perihelion – the part of its orbit with the shortest distance to the sun — has the potential to provide more significant science discoveries than a flyby of Adeona,” he said.

The funding required for a multi-year mission to Adeona would be difficult in these cost constrained times.

However the spacecraft is in excellent shape and the trio of science instruments are in excellent health.

Dawn arrived at Ceres on March 6, 2015 and has been conducting unprecedented investigation ever since.

Dawn is Earth’s first probe in human history to explore any dwarf planet, the first to explore Ceres up close and the first to orbit two celestial bodies.

The asteroid Vesta was Dawn’s first orbital target where it conducted extensive observations of the bizarre world for over a year in 2011 and 2012.

The mission is expected to last until at least later into 2016, and possibly longer, depending upon fuel reserves.

Due to expert engineering and handling by the Dawn mission team, the probe unexpectedly has hydrazine maneuvering fuel leftover.

Dawn will remain at its current altitude at the Low Altitude Mapping Orbit (LAMO) for the rest of its mission, and indefinitely afterward, even when no further communications are possible.

Green based his decision on the mission extensions on the biannual peer review scientific assessment by the Senior Review Panel.

Dawn was launched in September 2007.

The other mission extensions – contingent on available resources – are: the Mars Reconnaissance Orbiter (MRO), Mars Atmosphere and Volatile EvolutioN (MAVEN), the Opportunity and Curiosity Mars rovers, the Mars Odyssey orbiter, the Lunar Reconnaissance Orbiter (LRO), and NASA’s support for the European Space Agency’s Mars Express mission.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

New Horizons Sends Back First Science On Distant Kuiper Belt Object

This artist's impression shows the New Horizons spacecraft encountering a Pluto-like object in the distant Kuiper Belt. (Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/Steve Gribben)
This artist's impression shows the New Horizons spacecraft encountering a Pluto-like object in the distant Kuiper Belt. (Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/Steve Gribben)

Even the most curmudgeonly anti-space troll has to admit that the New Horizons mission to Pluto has been an overwhelming success.

It’s not like New Horizons discovered life or anything, but it did bring an otherwise cold, distant lump to life for humanity. Vivid images and detailed scientific data revealed Pluto as a dynamic, changing world, with an active surface and an atmosphere. And we haven’t even received all of the data from New Horizons’ mission to Pluto yet.

Fresh off its historic visit to Pluto, New Horizons is headed for the Kuiper Belt, and just sent back its first science on one of the denizens of the distant belt of objects. The target in this case is 1994 JR1, a 145 km (90 mi.) wide Kuiper Belt Object (KBO). that orbits the Sun at a distance greater than 5 billion km. (3 billion mi.) New Horizons has now observed 1994 JR1 twice, and the team behind the mission has garnered new insights into this KBO based on these observations.

The spacecraft’s Long Range Reconnaissance Imager (LORRI) captured images of 1994 JR1 on April 7th-8th from a distance of 111 million km. (69 million mi.). That’s far closer than the images New Horizons captured in November 2015 from a distance of 280 million km (170 million miles).

This image, taken with the LORRI instrument aboard New Horizons, shows 2 of the 20 images captured in April. The moving dots are 1994 JR1, shown against a backdrop of stationary stars. The circular object in the top left of the image is a reflective artifact of the camera itself, showing LORRI's three support arms. Image: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
This image, taken with the LORRI instrument aboard New Horizons, shows 2 of the 20 images captured in April. The moving dots are 1994 JR1, shown against a backdrop of stationary stars. The circular object in the top left of the image is a reflective artifact of the camera itself, showing LORRI’s three support arms. Image: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

New Horizons science team member Simon Porter, of the Southwest Research Institute (SwRI) in Boulder Colorado, commented on the importance of these images. “Combining the November 2015 and April 2016 observations allows us to pinpoint the location of JR1 to within 1,000 kilometers (about 600 miles), far better than any small KBO,” Porter said.

Porter added that this accurate measurement of the KBO’s orbit allows New Horizons science team members to quash the idea that JR1 is a quasi-satellite of Pluto.

The team was also able to determine, by measuring the light reflected from the surface, that JR1’s rotational period is only 5.4 hours. That’s fast for a KBO. John Spencer, another New Horizons science team member from SwRI, said “This is all part of the excitement of exploring new places and seeing things never seen before.”

Variations in the brightness of light reflected from the  surface of 1994 JR1 allowed science team members to pinpoint the object's  rotation period at 5.4 hours.    Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
Variations in the brightness of light reflected from the surface of 1994 JR1 allowed science team members to pinpoint the object’s rotation period at 5.4 hours.
Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

KBOs are ancient remnants of the early days of the Solar System. Whereas the inner regions of the Solar System were largely swept clean as the planets formed, the Kuiper Belt remained mostly as it is, untouched by the gravity of the planets.

There are trillions of objects in this cold, distant part of the Solar System. The Kuiper Belt itself spans a distance that is 30 to 50 times greater than the distance from the Earth to the Sun. It’s similar to the asteroid belt between Mars and Jupiter, but Kuiper Belt objects are icy, whereas asteroid belt objects are rocky, for the most part.

The New Horizons team has requested a mission extension, and if that extension is approved, the target is already chosen. In August 2015, NASA selected the KBO 2014 MU69, which resides in an orbit almost a billion miles beyond Pluto. There were two potential destinations for the spacecraft after it departed Pluto, and 2014 MU69 was recommended by the New Horizons team, and chosen by NASA.

If New Horizons' mission is extended, this is the path it will take to its next destination, 2014 MU69. (Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/Alex Parker)
If New Horizons’ mission is extended, this is the path it will take to its next destination, 2014 MU69. (Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/Alex Parker)

Choosing New Horizons’ next target early was important for fuel use. Fuel conservation allows the spacecraft to perform the maneuvers necessary to reach 2014 MU69. If all goes well, New Horizons should reach its next target by January 2019.

According to Alan Stern, New Horizons Principal Investigator, there are good reasons to visit 2014 MU69. “2014 MU69 is a great choice because it is just the kind of ancient KBO, formed where it orbits now, that the Decadal Survey desired us to fly by,” he said. “Moreover, this KBO costs less fuel to reach [than other candidate targets], leaving more fuel for the flyby, for ancillary science, and greater fuel reserves to protect against the unforeseen.”

The Decadal Survey in 2003 strongly recommended that flybys of Pluto and small KBOs should be conducted. The KBO is an unexplored region, and these flybys will allow us to sample the diversity of objects in the belt.

If New Horizons makes it to its next target, 2014 MU69, and delivers the types of results it has so far in its journey, it will be an unprecedented success. The kind of success that will make it harder and harder to be a curmudgeonly anti-space troll.

Wait. Who am I kidding.

Haters gonna hate.

Mysterious Pull On Cassini Probe May Help Find Planet Nine

Artist's impression of Planet Nine, blocking out the Milky Way. The Sun is in the distance, with the orbit of Neptune shown as a ring. Credit: ESO/Tomruen/nagualdesign
Artist's impression of Planet Nine, blocking out the Milky Way. The Sun is in the distance, with the orbit of Neptune shown as a ring. Credit: ESO/Tomruen/nagualdesign

Finding a ninth planet in our Solar System this late in the game would be fascinating. It would also be somewhat of a surprise, considering our observational capabilities. But new evidence, in the form of small perturbations in the orbit of the Cassini probe, points to the existence of an as-yet undetected planet in our solar system.

Back in January, Konstantin Batygin and Mike Brown, two planetary scientists from the California Institute of Technology, presented evidence supporting the existence of a ninth planet. Their paper showed that some Kuiper Belt Objects (KBOs) display unexpected behaviour. It appears that 6 KBOs are affected by their relationship to a large object, but the KBOs in question are too distant from the known gas giants for them to be responsible. They think that a large, distant planet, in the distant reaches of our Solar System, could be responsible for the unexpected orbital clustering of these KBOs.

The calculated orbit of Planet Nine. Credit: Nature/K. Batygin and M. E. Brown Astronom. J. 151, 22 (2016
The calculated orbit of Planet Nine. Credit: Nature/K. Batygin and M. E. Brown Astronom. J. 151, 22 (2016)

Now, the Ninth Planet idea is gaining steam, and another team of researchers have presented evidence that small perturbations in the orbit of the Cassini spacecraft are caused by the new planet. Agnès Fienga at the Côte d’Azur Observatory in France, and her colleagues, have been working on a detailed model of the Solar System for over a decade. They plugged the hypothetical orbit and size of Planet Nine into their model, to see if it fit.

Planet Nine is calculated to be about 4 times as large as Earth, and 10 times as massive. It’s orbit takes between 10,000 and 20,000 years. A planet that large can only be hiding in so many places, and those places are a long way from Earth. Fienga found a potential home for Planet Nine, some 600 astronomical units (AU) from here. That much mass at that location could account for the perturbations in Cassini’s orbit.

There’s more good news when it comes to Planet Nine. By happy accident, it’s predicted location in the sky is towards the constellation Cetus, in the southern hemisphere. This means that it is in the view of the Dark Energy Survey, a southern hemisphere project that is studying the acceleration of the universe. The Dark Energy Survey is not designed to search for planetary objects, but it has successfully found at least one icy object.

There are other ways that the existence of Planet Nine could be confirmed. If it’s as large as thought, then it will radiate enough internal heat to be detected by instruments designed to study the Cosmic Microwave Background (CMB). There is also an enormous amount of data from multiple experiments and observations done over the years that might contain an inadvertent clue. But looking through it is an enormous task.

As for Brown and Batygin, who initially proposed the existence of Planet Nine based on the behaviour of KBOs, they are already proposing a more specific hunt for the elusive planet. They have asked for a substantial amount of observing time at the Subaru Telescope on Mauna Kea in Hawaii, in order to examine closely the location that Fienga’s solar system model predicts Planet Nine to be at.

For a more detailed look at Batygin’s and Brown’s work analyzing KBOs, read Matt Williams’ article here.

New Horizons Snaps Amazing 3-D View of Pluto’s Mysterious ‘Bladed’ Terrain

The amazing stereo view of a broad area informally named Tartarus Dorsa combines two images from the Ralph/Multispectral Visible Imaging Camera (MVIC) taken about 14 minutes apart on July 14, 2015. The first was taken when New Horizons was 16,000 miles (25,000 kilometers) away from Pluto, the second when the spacecraft was 10,000 miles (about 17,000 kilometers) away. Credits: NASA/JHUAPL/SwRI
The amazing stereo view of a broad area informally named Tartarus Dorsa combines two images from the Ralph/Multispectral Visible Imaging Camera (MVIC) taken about 14 minutes apart on July 14, 2015. The first was taken when New Horizons was 16,000 miles (25,000 kilometers) away from Pluto, the second when the spacecraft was 10,000 miles (about 17,000 kilometers) away.   Credits: NASA/JHUAPL/SwRI
The amazing stereo view of a broad area informally named Tartarus Dorsa combines two images from the Ralph/Multispectral Visible Imaging Camera (MVIC) taken about 14 minutes apart on July 14, 2015. The first was taken when New Horizons was 16,000 miles (25,000 kilometers) away from Pluto, the second when the spacecraft was 10,000 miles (about 17,000 kilometers) away. Credits: NASA/JHUAPL/SwRI

It’s time to whip out your 3-D glasses to enjoy and scrutinize the remarkable detail of spectacular terrain revealed in a new high resolution stereo image of Pluto – King of the Kuiper Belt! – taken by NASA’s New Horizons spacecraft.

The amazing new stereo Plutonian image focuses on an area dominated by a mysterious feature that geologists call ‘bladed’ terrain – seen above – and its unlike anything seen elsewhere in our solar system.

Its located in a broad region of rough highlands informally known as Tartarus Dorsa – situated to the east of the Pluto’s huge heart shaped feature called Tombaugh Regio. The best resolution is approximately 1,000 feet (310 meters).

The stereo view combines a pair of images captured by New Horizons Ralph/Multispectral Visible Imaging Camera (MVIC) science instruments. They were taken about 14 minutes apart on during history making first ever flyby of the Pluto planetary system on July 14, 2015.

The first was taken when New Horizons was 16,000 miles (25,000 kilometers) away from Pluto, the second when the spacecraft was 10,000 miles (about 17,000 kilometers) away.

The blades align from north to south, typically reach up to about 550 yards (500 meters) high and are spaced about 2-4 miles (3-5 kilometers). Thus they are among the planets steepest features. They are “perched on a much broader set of rounded ridges that are separated by flat valley floors,” according to descriptions from the New Horizons science team.

This color image of Pluto taken by NASA’s New Horizons spacecraft shows rounded and bizarrely textured mountains, informally named the Tartarus Dorsa, rise up along Pluto’s terminator and show intricate but puzzling patterns of blue-gray ridges and reddish material in between. This view, roughly 330 miles (530 kilometers) across, combines blue, red and infrared images taken by the Ralph/Multispectral Visual Imaging Camera (MVIC) on July 14, 2015, and resolves details and colors on scales as small as 0.8 miles (1.3 kilometers).   Credits: NASA/JHUAPL/SWRI
This color image of Pluto taken by NASA’s New Horizons spacecraft shows rounded and bizarrely textured mountains, informally named the Tartarus Dorsa, rise up along Pluto’s terminator and show intricate but puzzling patterns of blue-gray ridges and reddish material in between. This view, roughly 330 miles (530 kilometers) across, combines blue, red and infrared images taken by the Ralph/Multispectral Visual Imaging Camera (MVIC) on July 14, 2015, and resolves details and colors on scales as small as 0.8 miles (1.3 kilometers). Credits: NASA/JHUAPL/SWRI

Mission scientists have also noted that the bladed terrain has the texture of “snakeskin” owing to their “scaly raised relief.”

In the companion global image from NASA (below), the bladed terrain is outlined in red and shown to extend quite far to the east of Tombaugh Regio.

The composite image was taken on July 13, 2015, the day before the closest approach flyby, when the probe was farther away thus shows lower resolution. It combines a pair of images from two of the science instruments – a Ralph/Multispectral Visible Imaging Camera (MVIC) color scan and an image from the Long Range Reconnaissance Imager (LORRI).

This global view of Pluto combines a Ralph/Multispectral Visible Imaging Camera (MVIC) color scan and an image from the Long Range Reconnaissance Imager (LORRI), both obtained on July 13, 2015 – the day before New Horizons’ closest approach. The red outline marks the large area of mysterious, bladed terrain extending from the eastern section of the large feature informally named Tombaugh Regio.  Credits: NASA/JHUAPL/SwRI
This global view of Pluto combines a Ralph/Multispectral Visible Imaging Camera (MVIC) color scan and an image from the Long Range Reconnaissance Imager (LORRI), both obtained on July 13, 2015 – the day before New Horizons’ closest approach. The red outline marks the large area of mysterious, bladed terrain extending from the eastern section of the large feature informally named Tombaugh Regio.
Credits: NASA/JHUAPL/SwRI

The MVIC scan was taken from a range of 1 million miles (1.6 million kilometers), at a resolution of 20 miles (32 kilometers) per pixel. The corresponding LORRI image was obtained from roughly the same range, but has a higher spatial resolution of 5 miles (8 kilometers) per pixel, say officials.

Scientists have developed several possible theories about the origins of the bladed terrain, including erosion from evaporating ices or deposition of methane ices.

Measurements from the Linear Etalon Imaging Spectral Array (LEISA) instrument reveal that that this region “is composed of methane (CH4) ice with a smattering of water,” reports New Horizons researcher Orkan Umurhan.

He speculates that “the material making up the bladed terrain is a methane clathrate. A clathrate is a structure in which a primary molecular species (say water, or H2O) forms a crystalline ‘cage’ to contain a guest molecule (methane or CH4, for example).”

But the question of whether that methane ice is strong enough to maintain the steep walled snakeskin features, will take much more research to determine a conclusive answer.

Umurhan suggests that more research could help determine if the “methane clathrates in the icy moons of the outer solar system and also in the Kuiper Belt were formed way back before the solar system formed – i.e., within the protosolar nebula – potentially making them probably some of the oldest materials in our solar system.”

Pluto continues to amaze and surprise us as the data streams back to eagerly waiting scientists on Earth over many more months to come – followed by years and decades of painstaking analysis.

This new global mosaic view of Pluto was created from the latest high-resolution images to be downlinked from NASA’s New Horizons spacecraft and released on Sept. 11, 2015. The images were taken as New Horizons flew past Pluto on July 14, 2015, from a distance of 50,000 miles (80,000 kilometers). This new mosaic was stitched from over two dozen raw images captured by the LORRI imager and colorized. Annotated with informal place names. Credits: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/Marco Di Lorenzo/Ken Kremer/kenkremer.com
This new global mosaic view of Pluto was created from the latest high-resolution images to be downlinked from NASA’s New Horizons spacecraft and released on Sept. 11, 2015. The images were taken as New Horizons flew past Pluto on July 14, 2015, from a distance of 50,000 miles (80,000 kilometers). This new mosaic was stitched from over two dozen raw images captured by the LORRI imager and colorized. Annotated with informal place names. Credits: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/Marco Di Lorenzo/Ken Kremer/kenkremer.com

During New Horizons flyby on July 14, 2015, it discovered that Pluto is the biggest object in the outer solar system and thus the ‘King of the Kuiper Belt.”

The Kuiper Belt comprises the third and outermost region of worlds in our solar system.

Pluto is the last planet in our solar system to be visited in the initial reconnaissance of planets by spacecraft from Earth since the dawn of the Space Age.

New Horizons remains on target to fly by a second Kuiper Belt Object (KBO) on Jan. 1, 2019 – tentatively named PT1, for Potential Target 1. It is much smaller than Pluto and was recently selected based on images taken by NASA’s Hubble Space Telescope.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about NASA Mars rovers, Orion, SLS, ISS, Orbital ATK, ULA, SpaceX, Boeing, Space Taxis, NASA missions and more at Ken’s upcoming outreach events:

Apr 9/10: “NASA and the Road to Mars Human Spaceflight programs” and “Curiosity explores Mars” at NEAF (NorthEast Astronomy and Space Forum), 9 AM to 5 PM, Suffern, NY, Rockland Community College and Rockland Astronomy Club – http://rocklandastronomy.com/neaf.html

Apr 12: Hosting Dr. Jim Green, NASA, Director Planetary Science, for a Planetary sciences talk about “Ceres, Pluto and Planet X” at Princeton University; 7:30 PM, Amateur Astronomers Assoc of Princeton, Peyton Hall, Princeton, NJ – http://www.princetonastronomy.org/

Apr 17: “NASA and the Road to Mars Human Spaceflight programs”- 1:30 PM at Washington Crossing State Park, Nature Center, Titusville, NJ – http://www.state.nj.us/dep/parksandforests/parks/washcros.html