Very Large Telescope Images Of Jupiter Prepare Us For Juno Arrival

In preparation for the arrival of Juno, the ESO's released stunning IR images of Jupiter, taken by the VLT. Credit: ESO
In preparation for the arrival of Juno, the ESO's released stunning IR images of Jupiter, taken by the VLT. Credit: ESO

Launching back in 2011, NASA’s Juno mission has spent the past five years traversing the gulf that lies between Earth and Jupiter. When it arrives (in just a few days time!), it will be the second long-term mission to the gas giant in history. And in the process, it will obtain information about its composition, weather patterns, magnetic and gravitational fields, and history of formation.

With just days to go before this historic rendezvous takes place, the European Southern Observatory is taking the opportunity to release some spectacular infrared images of Jupiter. Taken with the Very Large Telescope (VLT), these images are part of a campaign to create high-resolutions maps of the planet, and provide a preview of the work that Juno will be doing in the coming months.

Using the VTL Imager and Spectrometer for mid-Infrared (VISIR) instrument, the ESO team – led by Dr. Leigh Fletcher of the University of Leicester – hopes that their efforts to map the planet will improve our understanding of Jupiter’s atmosphere. Naturally, with the upcoming arrival of Juno, some may wonder if these efforts are necessary.

The Very Large Telescoping Interferometer firing it's adaptive optics laser. Credit: ESO/G. Hüdepohl
Using images obtained by the Very Large Telescope, an ESO team managed to obtain detailed IR images of Jupiter’s atmosphere. Credit: ESO/G. Hüdepohl

After all, ground-based telescopes like the VLT are forced to contend with limitations that space-based probes are not. These include interference from our constantly-shifting atmosphere, not to mention the distances between Earth and the object in question. But in truth, the Juno mission and ground-based campaigns like these are often highly complimentary.

For one, in the past few months, while Juno was nearing in on its destination, Jupiter’s atmosphere has undergone some significant shifts. Mapping these is important to Juno‘s upcoming arrival, at which point it will be attempting to peer beneath Jupiter’s thick clouds to discern what is going on beneath. In short, the more we know about Jupiter’s shifting atmosphere, the easier it will be to interpret the Juno data.

As Dr. Fletcher described the significance of his team’s efforts:

These maps will help set the scene for what Juno will witness in the coming months. Observations at different wavelengths across the infrared spectrum allow us to piece together a three-dimensional picture of how energy and material are transported upwards through the atmosphere.”

Like all ground-based efforts, the ESO campaign – which has involved the use of several telescopes based in Hawaii and Chile, as well as contributions from amateur astronomers around the world – faced some serious challenges (like the aforementioned interference). However, the team used a technique known as “lucky imaging” to take the breathtaking snapshots of Jupiter’s turbulent atmosphere.

This view compares a lucky imaging view of Jupiter from VISIR (left) at infrared wavelengths with a very sharp amateur image in visible light from about the same time (right). Credit: ESO/L.N. Fletcher/Damian Peach
This view compares a lucky imaging view of Jupiter from VISIR (left) at infrared wavelengths with a very sharp amateur image in visible light from about the same time (right). Credit: ESO/L.N. Fletcher/Damian Peach

What this comes down to is taking many sequences of images with very short exposures, thus producing thousands of individual frames. The lucky frames, those where the image are least affected by the atmosphere’s turbulence, are then selected while the rest discarded. These selected frames are aligned and combined to produce final pictures, like the one shown above.

In addition to providing information that would be of use to the Juno mission, the ESO’s campaign has value that extends beyond the space-based mission. As Glenn Orton, the leader of ESO’s ground-based campaign, explained, observations like these are valuable because they help to advance our understanding of planets as a whole, and provide opportunities for astronomers from all over the world to collaborate.

“The combined efforts of an international team of amateur and professional astronomers have provided us with an incredibly rich dataset over the past eight months,” he said. “Together with the new results from Juno, the VISIR dataset in particular will allow researchers to characterize Jupiter’s global thermal structure, cloud cover and distribution of gaseous species.”

The Juno probe will be arriving at Jupiter this coming Monday, July 4th. Once there, it will spend the next two years orbiting the gas giant, sending information back to Earth that will help to advance our understanding of not only Jupiter, but the history of the Solar System as well.

Further Reading: ESO

7 Days Out From Orbital Insertion, NASA’s Juno Images Jupiter and its Largest Moons

This annotated color view of Jupiter and its four largest moons -- Io, Europa, Ganymede and Callisto -- was taken by the JunoCam camera on NASA's Juno spacecraft on June 21, 2016, at a distance of 6.8 million miles (10.9 million kilometers) from Jupiter. Image credit: NASA/JPL-Caltech/MSSS
This annotated color view of Jupiter and its four largest moons -- Io, Europa, Ganymede and Callisto -- was taken by the JunoCam camera on NASA's Juno spacecraft on June 21, 2016, at a distance of 6.8 million miles (10.9 million kilometers) from Jupiter. Image credit: NASA/JPL-Caltech/MSSS
This annotated color view of Jupiter and its four largest moons — Io, Europa, Ganymede and Callisto — was taken by the JunoCam camera on NASA’s Juno spacecraft on June 21, 2016, at a distance of 6.8 million miles (10.9 million kilometers) from Jupiter. Image credit: NASA/JPL-Caltech/MSSS

Now just 7 days out from a critical orbital insertion burn, NASA’s Jupiter-bound Juno orbiter is closing in fast on the massive gas giant. And as its coming into focus the spacecraft has begun snapping a series of beautiful images of the biggest planet and its biggest moons.

In a newly released color image snapped by the probes educational public outreach camera named Junocam, banded Jupiter dominates a spectacular scene that includes the giant planet’s four largest moons — Io, Europa, Ganymede and Callisto.

Junocam’s image of the approaching Jovian system was taken on June 21, 2016, at a distance of 6.8 million miles (10.9 million kilometers) and hints at the multitude of photos and science riches to come from Juno.

“Juno on Jupiter’s Doorstep,” says a NASA description. “And the alternating light and dark bands of the planet’s clouds are just beginning to come into view,” revealing its “distinctive swirling bands of orange, brown and white.”

This color view of Jupiter and its four largest moons -- Io, Europa, Ganymede and Callisto -- was taken by the JunoCam camera on NASA's Juno spacecraft on June 21, 2016, at a distance of 6.8 million miles (10.9 million kilometers) from Jupiter. Image credit: NASA/JPL-Caltech/MSSS
This color view of Jupiter and its four largest moons — Io, Europa, Ganymede and Callisto — was taken by the JunoCam camera on NASA’s Juno spacecraft on June 21, 2016, at a distance of 6.8 million miles (10.9 million kilometers) from Jupiter. Image credit: NASA/JPL-Caltech/MSSS

Rather appropriately for an American space endeavor, the fate of the entire mission hinges on do or die ‘Independence Day’ fireworks.

On the evening of July 4, Juno must fire its main engine for 35 minutes.

The Joy of JOI – or Jupiter Orbit Insertion – will place NASA’s robotic explorer into a polar orbit around the gas giant.

The approach over the north pole is unlike earlier probes that approached from much lower latitudes nearer the equatorial zone, and thus provide a perspective unlike any other.

After a five-year and 2.8 Billion kilometer (1.7 Billion mile) outbound trek to the Jovian system and the largest planet in our solar system and an intervening Earth flyby speed boost, the moment of truth for Juno is now inexorably at hand.

This colorized composite shows more than half of Earth’s disk over the coast of Argentina and the South Atlantic Ocean as the Juno probe slingshotted by on Oct. 9, 2013 for a gravity assisted acceleration to Jupiter. The mosaic was assembled from raw images taken by the Junocam imager. Credit: NASA/JPL/SwRI/MSSS/Ken Kremer/Marco Di Lorenzo
This colorized composite shows more than half of Earth’s disk over the coast of Argentina and the South Atlantic Ocean as the Juno probe slingshotted by on Oct. 9, 2013 for a gravity assisted acceleration to Jupiter. The mosaic was assembled from raw images taken by the Junocam imager. Credit: NASA/JPL/SwRI/MSSS/Ken Kremer/Marco Di Lorenzo

And preparations are in full swing by the science and engineering team to ensure a spectacular Fourth of July fireworks display.

The team has been in contact with Juno 24/7 since June 11 and already uplinked the rocket firing parameters.

Signals traveling at the speed of light take 10 minutes to reach Earth.

The protective cover that shields Juno’s main engine from micrometeorites and interstellar dust was opened on June 20.

“And the software program that will command the spacecraft through the all-important rocket burn was uplinked,” says NASA.

The pressurization of the propulsion system is set for June 28.

“We have over five years of spaceflight experience and only 10 days to Jupiter orbit insertion,” said Rick Nybakken, Juno project manager from NASA’s Jet Propulsion Laboratory in Pasadena, California, said in a statement.

“It is a great feeling to put all the interplanetary space in the rearview mirror and have the biggest planet in the solar system in our windshield.”

On the night of orbital insertion, Juno will fly within 2,900 miles (4,667 kilometers) of the Jovian cloud tops.

All instruments except those critical for the JOI insertion burn on July 4, will be tuned off on June 29. That includes shutting down Junocam.

“If it doesn’t help us get into orbit, it is shut down,” said Scott Bolton, Juno’s principal investigator from the Southwest Research Institute in San Antonio.

“That is how critical this rocket burn is. And while we will not be getting images as we make our final approach to the planet, we have some interesting pictures of what Jupiter and its moons look like from five-plus million miles away.”

During a 20 month long science mission – entailing 37 orbits lasting 11 days each – the probe will plunge to within about 3000 miles of the turbulent cloud tops and collect unprecedented new data that will unveil the hidden inner secrets of Jupiter’s origin and evolution.

“Jupiter is the Rosetta Stone of our solar system,” says Bolton. “It is by far the oldest planet, contains more material than all the other planets, asteroids and comets combined and carries deep inside it the story of not only the solar system but of us. Juno is going there as our emissary — to interpret what Jupiter has to say.”

During the orbits, Juno will probe beneath the obscuring cloud cover of Jupiter and study its auroras to learn more about the planet’s origins, structure, atmosphere and magnetosphere.

Junocam has already taken some striking images during the Earth flyby gravity assist speed boost on Oct. 9, 2013.

For example the dazzling portrait of our Home Planet high over the South American coastline and the Atlantic Ocean.

For a hint of what’s to come, see our colorized Junocam mosaic of land, sea and swirling clouds, created by Ken Kremer and Marco Di Lorenzo.

NASA's Juno probe captured the image data for this composite picture during its Earth flyby on Oct. 9 over Argentina,  South America and the southern Atlantic Ocean. Raw imagery was reconstructed and aligned by Ken Kremer and Marco Di Lorenzo, and false-color blue has been added to the view taken by a near-infrared filter that is typically used to detect methane. Credit: NASA/JPL/SwRI/MSSS/Ken Kremer/Marco Di Lorenzo
NASA’s Juno probe captured the image data for this composite picture during its Earth flyby on Oct. 9 over Argentina, South America and the southern Atlantic Ocean. Raw imagery was reconstructed and aligned by Ken Kremer and Marco Di Lorenzo, and false-color blue has been added to the view taken by a near-infrared filter that is typically used to detect methane. Credit: NASA/JPL/SwRI/MSSS/Ken Kremer/Marco Di Lorenzo

As Juno sped over Argentina, South America and the South Atlantic Ocean it came within 347 miles (560 kilometers) of Earth’s surface.

During the flyby, the science team observed Earth using most of Juno’s nine science instruments since the slingshot also serves as an important dress rehearsal and key test of the spacecraft’s instruments, systems and flight operations teams.

Juno soars skyward to Jupiter on Aug. 5, 2011 from launch pad 41 at Cape Canaveral Air Force Station at 12:25 p.m. EDT. View from the VAB roof. Credit: Ken Kremer/kenkremer.com
Juno soars skyward to Jupiter on Aug. 5, 2011 from launch pad 41 at Cape Canaveral Air Force Station at 12:25 p.m. EDT. View from the VAB roof. Credit: Ken Kremer/kenkremer.com

The $1.1 Billion Juno was launched on Aug. 5, 2011 from Cape Canaveral, Florida atop the most powerful version of the Atlas V rocket augmented by 5 solid rocket boosters and built by United Launch Alliance (ULA). That same Atlas V 551 version just launched MUOS-5 for the US Navy on June 24.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
Ken Kremer

Juno spacecraft and its science instruments. Image credit: NASA/JPL
Juno spacecraft and its science instruments. Image credit: NASA/JPL
Juno graphic
Juno orbital graphic

Understanding Juno’s Orbit: An Interview with NASA’s Scott Bolton

An artist's conception of Juno in orbit around Jupiter. image credit: NASA

The intense radiation around Jupiter has shaped every aspect of the Juno mission, especially Juno’s orbit. Data shows that there is a gap between the radiation belts that encircle Jupiter, and Jupiter’s cloud tops. Juno will have to ‘thread the needle’ and travel through this gap, in order to minimize its exposure to radiation, and to fulfill its science objectives. Adding to the complexity of the Juno mission, is the fact that the design of the spacecraft, the scientific objectives, and the orbital requirements all shaped each other.

I wasn’t sure what question to start this interview with: How did the conditions around Jupiter, most notably its extreme radiation, shape Juno’s orbit? Or, how did the orbit necessary for Juno to survive Jupiter’s extreme radiation shape Juno’s science objectives? Or, finally, how did the science objectives shape Juno’s orbit?

Scott Bolton, NASA Principal Investigator for the Juno mission to Jupiter. Image Credit: NASA

As you can see, the Juno mission seems like a bit of a Gordian knot. All three questions, I’m sure, had to be asked and answered several times, with the answers shaping the other questions. To help untangle this knot, I spoke to Scott Bolton, NASA’s Principal Investigator for the Juno mission. As the person responsible for the entire Juno mission, Scott has a complete understanding of Juno’s science objectives, Juno’s design, and the orbital path Juno will follow around Jupiter.

Continue reading “Understanding Juno’s Orbit: An Interview with NASA’s Scott Bolton”

Space Stories to Watch in 2016

An artist's conception of Juno in orbit around Jupiter. image credit: NASA

2015 was an amazing year in space, as worlds such as Pluto and Ceres snapped into sharp focus. 2015 also underlined the mantra that ‘space is hard,’ as SpaceX rode the roller coaster from launch failure, to a dramatic return to flight in December, complete with a nighttime landing of its stage 1 Falcon 9 rocket back at Cape Canaveral. Continue reading “Space Stories to Watch in 2016”

Protecting Juno’s Heart

Juno computer generated image. NASA/JPL-CalTech
Juno computer generated image. NASA/JPL-CalTech

Each new probe we launch into space follows a finely-tuned, predetermined trajectory that opens up a new avenue of understanding into our solar system and our universe. The results from each probe shapes the objectives of the next. Each probe is built with maximum science in mind, and is designed to answer crucial questions and build our understanding of astronomy, cosmology, astrophysics, and planetary studies.

The Juno probe is no different. When it arrives at Jupiter in July 2016, it will begin working on a checklist of scientific questions about Jupiter.

But there’s a problem.

upiter's structure and composition. (Image Credit: Kelvinsong CC by S.A. 3.0)
Jupiter’s structure and composition. (Image Credit: Kelvinsong CC by S.A. 3.0)

Jupiter is enormous. And at it’s heart is a chunk of ice and rock, or so we think. Surrounding that is an enormous region of liquid metallic hydrogen. This core is 10 to 20 times as massive as Earth’s, and it’s rotating. As it rotates, it generates a powerful magnetic field that draws in particles from the sun, then whips them into a near-light-speed frenzy. This whirlwind of radiation devastates anything that gets too close.

Enter the tiny Juno spacecraft, about the size of a bus. Juno has to get close to Jupiter to do its work—within 5,000km (3,100 miles) above the cloud tops—and though it’s designed to weave its way carefully past Jupiter’s most dangerous radiation fields, its orbits will still expose it to the paper-shredder effect of those fields. There’s no way around it.

Juno Project Scientist Steve Levin, and Dave Stevenson from Caltech explain Juno’s orbiting pattern in this short video:

The most vulnerable part of Juno is the sensitive electronics that are the heart and brains of the spacecraft. Jupiter’s extreme radiation would quickly destroy Juno’s sensitive systems, and the Juno designers had to come up with a way to protect those components while Juno does its work. The solution? The titanium vault.

Technician's install Juno's titanium vault. (Image Credit: NASA/JPL-Caltech/LMSS)
Technician’s install Juno’s titanium vault. (Image Credit: NASA/JPL-Caltech/LMSS)

All kinds of materials and methods have been employed to protect spacecraft electronics, but this is the first time that titanium has been tried. Titanium is renowned for its light weight and its strength. It’s used in all kinds of demanding manufacturing applications here on Earth.

The titanium vault won’t protect Juno’s heart forever. In fact, some of the components are not expected to last the length of the mission. The radiation will slowly degrade the titanium, as high velocity particles punch microscopic holes in it. Bit by bit, radiation will perforate the vault, and the electronics within will be exposed. And as the electronic systems stop functioning, one by one, Juno will slowly become brain-dead, before plunging purposefully into Jupiter.

But Juno won’t die in vain. It will answer important questions about Jupiter’s core, atmospheric composition, planetary evolution, magnetosphere, polar auroras, gravitational field, and more. The spacecraft’s onboard camera, the Junocam, also promises to capture stunning images of Jupiter. But beyond all that, Juno—and its titanium vault—will show us how good we are at protecting spacecraft from extreme radiation.

Juno is still over 160 million km (100 million miles) from Jupiter and is fully functional. Once it arrives, it will insert itself into orbit and begin to do its job. How well it can do its job, and for how long, will depend on how effectively the titanium vault shields Juno’s heart.

NASA Gives ‘GO’ for Mission to Alien Ocean World at Jupiter Moon Europa

Artist's concept of NASA mission streaking over Europa. Credit: NASA/JPL

Artist’s concept of NASA mission streaking over ocean world of Europa. Credit: NASA/JPL
Story updated[/caption]

At long last NASA is heading back to Jupiter’s mysterious moon Europa and doing so in a big way – because scientists believe it harbors an alien ocean of water beneath an icy crust and therefore is “one of the most promising places in the solar system to search for signs of present-day life” beyond Earth.

Top NASA officials have now formally and officially green lighted the Europa ocean world robotic mission and given it the “GO” to move from early conceptual studies into development of the interplanetary spacecraft and mission hardware, to search for the chemical constituents of life.

“Today we’re taking an exciting step from concept to mission, in our quest to find signs of life beyond Earth,” said John Grunsfeld, associate administrator for NASA’s Science Mission Directorate in Washington, in a NASA statement.

The goal is to investigate the habitability of Europa’s subsurface ocean, determine if it possesses the ingredients for life and advance our understanding of “Are we Alone?”

“Observations of Europa have provided us with tantalizing clues over the last two decades, and the time has come to seek answers to one of humanity’s most profound questions,” said Grunsfeld.

Water is a prerequisite for life as we know it.

“We know that on Earth everywhere there is water we find life,” says Robert Pappalardo, Europa mission project scientist.

“Therefore Europa is the most likely place to find life in our solar system today because we think there is a liquid water ocean beneath its surface.”

Video caption: Alien Ocean: NASA’s Mission to Europa. Could a liquid water ocean beneath the surface of Jupiter’s moon Europa have the ingredients to support life? Here’s how NASA’s mission to Europa would find out. Credit: NASA

After a thorough review of the mission concept, managers agreed that it “successfully completed its first major review by the agency and now is entering the development phase known as formulation

“It’s a great day for science,” said Joan Salute, Europa program executive at NASA Headquarters in Washington.

“We are thrilled to pass the first major milestone in the lifecycle of a mission that will ultimately inform us on the habitability of Europa.”

In a major milestone leading up to this mission development approval, NASA managers recently announced the selection of the nine science instruments that will fly on the agency’s long awaited planetary science mission to this intriguing world that many scientists suspect could support life, as I reported here last month.

“We are trying to answer big questions. Are we alone,” said Grunsfeld at the May 26 media briefing.

“The young surface seems to be in contact with an undersea ocean.”

This 12-frame mosaic provides the highest resolution view ever obtained of the side of Jupiter's moon Europa that faces the giant planet. It was obtained on Nov. 25, 1999 by the camera onboard the Galileo spacecraft, a past NASA mission to Jupiter and its moons. Credit: NASA/JPL/University of Arizona
This 12-frame mosaic provides the highest resolution view ever obtained of the side of Jupiter’s moon Europa that faces the giant planet. It was obtained on Nov. 25, 1999 by the camera onboard the Galileo spacecraft, a past NASA mission to Jupiter and its moons. Credit: NASA/JPL/University of Arizona

Planetary scientists have long desired a speedy to return on Europa, ever since the groundbreaking discoveries of NASA’s Galileo Jupiter orbiter in the 1990s showed that the alien world possessed a substantial and deep subsurface ocean beneath an icy shell that appears to interact with and alter the moon’s surface in recent times.

NASA’s Europa mission would blastoff perhaps as soon as 2022, depending on the budget allocation and rocket selection – whose candidates include the heavy lift Space Launch System (SLS) now under development to launch astronauts on deep space expedition to the Moon, Asteroids and Mars.

The solar powered Europa probe will go into orbit around Jupiter for a three year mission in order to minimize exposure to the intense radiation region that could harm the spacecraft.

The Europa mission goal is to investigate whether the tantalizing icy Jovian moon, similar in size to Earth’s moon, could harbor conditions suitable for the evolution and sustainability of life in the suspected ocean.

It will be equipped with high resolution cameras, spectrometers and radar, several generations beyond anything before to map the surface in unprecedented detail and determine the moon’s composition and subsurface character. And it will search for subsurface lakes and seek to sample erupting vapor plumes like those occurring today on Saturn’s tiny moon Enceladus.

There will many opportunities for close flybys of Europa during the three year primary mission to conduct unprecedented studies of the composition and structure of the surface, icy shell and oceanic interior.

“During the three year mission, the orbiter will conduct 45 close flyby’s of Europa,” Curt Niebur, Europa program scientist at NASA Headquarters in Washington, told Universe Today.

“These will occur about every two to three weeks.”

The close flyby’s will vary in altitude from 16 miles to 1,700 miles (25 kilometers to 2,700 kilometers).

Europa rising. The icy moon hangs above Jupiter cloud tops in a @NASANewHorizons image from 2007.  Credit: NASA
Europa rising. The icy moon hangs above Jupiter cloud tops in a @NASANewHorizons image from 2007. Credit: NASA

The mission currently has a budget of about $10 million for 2015 and $30 Million in 2016. Over the next three years the mission concept will be further defined.

The mission will be managed by NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California and is expected to cost in the range of at least $2 Billion or more.

The nine science instruments are described in my earlier story- here. They will be developed and built by Johns Hopkins University Applied Physics Laboratory (APL); JPL; Arizona State University, Tempe; the University of Texas at Austin; Southwest Research Institute, San Antonio and the University of Colorado, Boulder.

This artist's rendering shows a concept for a future NASA mission to Europa in which a spacecraft would make multiple close flybys of the icy Jovian moon, thought to contain a global subsurface ocean.  Credits: NASA/JPL-Caltech
This artist’s rendering shows a concept for a future NASA mission to Europa in which a spacecraft would make multiple close flybys of the icy Jovian moon, thought to contain a global subsurface ocean. Credits: NASA/JPL-Caltech

Right now there is another NASA probe bound for Jupiter, the solar powered Juno orbiter that will investigate the origin of the gas giant. But Juno will not be conducting any observations or flyby’s of Europa.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about SpaceX, Europa, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

Jun 25-27: “SpaceX launch, Orion, Commercial crew, Curiosity explores Mars, MMS, Antares and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

OSIRIS-REx Asteroid Sampler Enters Final Assembly

Artist concept of OSIRIS-REx, the first U.S. mission to return samples from an asteroid to Earth. Credit: NASA/Goddard

OSIRIS-Rex, NASA’s first ever spacecraft designed to collect and retrieve pristine samples of an asteroid for return to Earth has entered its final assembly phase.

Approximately 17 months from now, OSIRIS-REx is slated to launch in the fall of 2016 and visit asteroid Bennu, a carbon-rich asteroid.

Bennu is a near-Earth asteroid and was selected for the sample return mission because it “could hold clues to the origin of the solar system and host organic molecules that may have seeded life on Earth,” says NASA.

The spacecraft is equipped with a suite of five science instruments to remotely study the 492 meter meter wide asteroid.

Eventually it will gather rocks and soil and bring at least a 60-gram (2.1-ounce) sample back to Earth in 2023 for study by researchers here with all the most sophisticated science instruments available.

The precious sample would land arrive at Utah’s Test and Training Range in a sample return canister similar to the one for the Stardust spacecraft.

The OSIRIS-REx – which stands for Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer – spacecraft passed a critical decision milestone on the road to launch and has been officially authorized by NASA to transition into this next mission phase.

The decision meeting to give the go ahead for final assembly was held at NASA Headquarters in Washington on March 30 and was chaired by NASA’s Science Mission Directorate, led by former astronaut John Grunsfeld who was the lead spacewalker on the final shuttle servicing mission to the Hubble Space Telescope in 2009.

“This is an exciting time for the OSIRIS-REx team,” said Dante Lauretta, principal investigator for OSIRIS-Rex at the University of Arizona, Tucson, in a stetement.

“After almost four years of intense design efforts, we are now proceeding with the start of flight system assembly. I am grateful for the hard work and team effort required to get us to this point.”

In a clean room facility near Denver, Lockheed Martin  technicians began assembling a NASA spacecraft that will collect samples of an asteroid for scientific study. Working toward a September 2016 launch, the OSIRIS-REx spacecraft will be the first U.S. mission to return samples from an asteroid back to Earth.  Credit: Lockheed Martin
In a clean room facility near Denver, Lockheed Martin technicians began assembling a NASA spacecraft that will collect samples of an asteroid for scientific study. Working toward a September 2016 launch, the OSIRIS-REx spacecraft will be the first U.S. mission to return samples from an asteroid back to Earth. Credit: Lockheed Martin

The transition to the next phase known as ATLO (assembly, test and launch operations) is critical for the program because it is when the spacecraft physically comes together, says Lockheed Martin, prime contractor for OSIRIS-REx. Lockheed is building OSIRIS-Rex in their Denver assembly facility.

“ATLO is a turning point in the progress of our mission. After almost four years of intense design efforts, we are now starting flight system assembly and integration of the science instruments,” noted Lauretta.

Over the next six months, technicians will install on the spacecraft structure its many subsystems, including avionics, power, telecomm, mechanisms, thermal systems, and guidance, navigation and control, according to NASA.

“Building a spacecraft that will bring back samples from an asteroid is a unique opportunity,” said Rich Kuhns, OSIRIS-REx program manager at Lockheed Martin Space Systems, in a statement.

“We can feel the momentum to launch building. We’re installing the electronics in the next few weeks and shortly after we’ll power-on the spacecraft for the first time.”

OSIRIS-REx is scheduled for launch in September 2016 from Cape Canaveral Air Force Station in Florida aboard a United Launch Alliance Atlas V 411 rocket, which includes a 4-meter diameter payload fairing and one solid rocket motor. Only three Atlas V’s have been launched in this configuration.

“In just over 500 days, we will begin our seven-year journey to Bennu and back. This is an exciting time,” said Lauretta.

The spacecraft will reach Bennu in 2018 and return a sample to Earth in 2023.

Bennu is an unchanged remnant from the collapse of the solar nebula and birth of our solar system some 4.5 billion years ago, little altered over time.

The Atlas V with MMS launches, as seen by this camera placed in the front of the launchpad. Copyright © Alex Polimeni
OSIRIS-REx will launch in 2016 on an Atlas V similar to this one lofting NASA’s MMS satellites on March 12, 2015, as seen by this camera placed in the front of the launchpad. Copyright © Alex Polimeni

Significant progress in spacecraft assembly has already been accomplished at Lockheed’s Denver manufacturing facility.

“The spacecraft structure has been integrated with the propellant tank and propulsion system and is ready to begin system integration in the Lockheed Martin highbay,” said Mike Donnelly, OSIRIS-REx project manager at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, in a statement.

“The payload suite of cameras and sensors is well into its environmental test phase and will be delivered later this summer/fall.”

OSIRIS-REx is the third mission in NASA’s New Frontiers Program, following New Horizons to Pluto and Juno to Jupiter, which also launched on Atlas V rockets.

The most recent Atlas V launched NASA’s MMS quartet of Earth orbiting science probes on March 12, 2015.

OSIRIS-REx logo
OSIRIS-REx logo

NASA’s Goddard Space Flight Center in Greenbelt, Maryland, is responsible for overall mission management.

OSIRIS-REx complements NASA’s Asteroid Initiative – including the Asteroid Redirect Mission (ARM) which is a robotic spacecraft mission aimed at capturing a surface boulder from a different near-Earth asteroid and moving it into a stable lunar orbit for eventual up close sample collection by astronauts launched in NASA’s new Orion spacecraft. Orion will launch atop NASA’s new SLS heavy lift booster concurrently under development.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Artist's concept of the OSIRIS-REx spacecraft collecting a sample from asteroid 1999 RQ36. Credit: NASA
Artist’s concept of the OSIRIS-REx spacecraft collecting a sample from asteroid 1999 RQ36. Credit: NASA
Juno soars skyward to Jupiter on Aug. 5, 2011 from launch pad 41 at Cape Canaveral Air Force Station at 12:25 p.m. EDT. View from the VAB roof. Credit: Ken Kremer/kenkremer.com
OSIRIS-REx is the 3rd mission in NASA’s New Frontiers program. It follows NASA’s Juno orbiter seen here soaring skyward to Jupiter on Aug. 5, 2011 from launch pad 41 at Cape Canaveral Air Force Station at 12:25 p.m. EDT. View from the VAB roof. Credit: Ken Kremer/kenkremer.com

Swirly Southern Picture Of Jupiter Makes Us Want To Visit Right Now

A view the Cassini spacecraft took during its flyby of Jupiter's southern pole in 2000. Credit: NASA/JPL/Space Science Institute

Gimme a rocketship – we want to see what those bands are made of! This is a strange view of Jupiter, a familiar gas giant that humanity has sent several spacecraft to. This particular view, taken in 2000 and highlighted on the European Space Agency website recently, shows the southern hemisphere of the mighty planet.

The underneath glimpse came from the Cassini spacecraft while it was en route to Saturn. Lucky for researchers, at the time the Galileo Jupiter spacecraft was still in operation. But now that machine is long gone, leaving us to pine for a mission to Jupiter until another spacecraft gets there in 2016.

That spacecraft is called Juno and is a NASA spacecraft the agency sent aloft in August 2011. And here’s the cool thing; once it gets there, Juno is supposed to give us some insights into how the Solar System formed by looking at this particular planet.

Juno will repeatedly dive between the planet and its intense belts of charged particle radiation, coming only 5,000 kilometers (about 3,000 miles) from the cloud tops at closest approach. (NASA/JPL-Caltech)
Juno will repeatedly dive between the planet and its intense belts of charged particle radiation, coming only 5,000 kilometers (about 3,000 miles) from the cloud tops at closest approach. (NASA/JPL-Caltech)

“Underneath its dense cloud cover, Jupiter safeguards secrets to the fundamental processes and conditions that governed our Solar System during its formation. As our primary example of a giant planet, Jupiter can also provide critical knowledge for understanding the planetary systems being discovered around other stars,” NASA wrote on the spacecraft’s web page.

The spacecraft is supposed to look at the amount of water in Jupiter’s atmosphere (an ingredient of planet formation), its magnetic and gravitational fields and also its magnetic environment — including auroras.

Much further in the future (if the spacecraft development is approved all the way) will be a European mission called JUICE, for Jupiter Icy Moon Explorer.

Artist's impression of the Jupiter Icy Moons Explorer (JUICE) near Jupiter and one of its moons, Europa. Credit: ESA/AOES
Artist’s impression of the Jupiter Icy Moons Explorer (JUICE) near Jupiter and one of its moons, Europa. Credit: ESA/AOES

The mission will check out the planet and three huge moons, Ganymede, Callisto and Europa, to get a better look at those surfaces. It is strongly believed that these moons could have global oceans that may be suitable for life.

Earlier this month, the European Space Agency approved the implementation phase for JUICE, which means that designers now have approval to come up with plans for the spacecraft. But it’s not going to launch until 2022 and get to Jupiter until 2030, if the schedule holds.

Meanwhile, observations of Jupiter do continue from the ground. One huge finding this year came from the Hubble Space Telescope, which confirmed observations that the Great Red Spot is shrinking for reasons that are yet unknown.

Twin NASA Probes Find “Zebra Stripes” in Earth’s Radiation Belt

Illustration of the twin Van Allen Probes (formerly Radiation Belt Storm Probes) in orbit (JHUAPL/NASA)

Earth’s inner radiation belt displays a curiously zebra-esque striped pattern, according to the latest findings from NASA’s twin Van Allen Probes. What’s more, the cause of the striping seems to be the rotation of the Earth itself — something that was previously thought to be impossible.

“…it is truly humbling, as a theoretician, to see how quickly new data can change our understanding of physical properties.”

– Aleksandr Ukhorskiy, Johns Hopkins University Applied Physics Laboratory

Our planet is surrounded by two large doughnut-shaped regions of radiation called the Van Allen belts, after astrophysicist James Van Allen who discovered their presence in 1958. (Van Allen died at the age of 91 in 2006.) The inner Van Allen belt, extending from about 800 to 13,000 km (500 to 8,000 miles) above the Earth, contains high-energy electrons and protons and poses a risk to both spacecraft and humans, should either happen to spend any substantial amount of time inside it.

Read more: Surprising Third Radiation Belt Found Around Earth

The Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) is a time-of-flight versus energy spectrometer (JHUAPL)
The Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) is a time-of-flight versus energy spectrometer (JHUAPL)

Launched aboard an Atlas V rocket from Cape Canaveral AFS on the morning of Aug. 30, 2012, the Van Allen Probes (originally the Radiation Belt Storm Probes) are on a two-year mission to investigate the belts and find out how they behave and evolve over time.

One of the instruments aboard the twin probes, the Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE), has detected a persistent striped pattern in the particles within the inner belt. While it was once thought that any structures within the belts were the result of solar activity, thanks to RBSPICE it’s now been determined that Earth’s rotation and tilted magnetic axis are the cause.

“It is because of the unprecedented high energy and temporal resolution of our energetic particle experiment, RBSPICE, that we now understand that the inner belt electrons are, in fact, always organized in zebra patterns,” said Aleksandr Ukhorskiy of the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Md., co-investigator on RBSPICE and lead author of the paper. “Furthermore, our modeling clearly identifies Earth’s rotation as the mechanism creating these patterns. It is truly humbling, as a theoretician, to see how quickly new data can change our understanding of physical properties.”

The model of the formation of the striped patterns is likened to the pulling of taffy.

RBSPICE data of stripes within the inner Van Allen belt (Click for animation) Credit: A. Ukhorskiy/JHUAPL
RBSPICE data of stripes within the inner Van Allen belt (Click for animation) Credit: A. Ukhorskiy/JHUAPL

“If the inner belt electron populations are viewed as a viscous fluid,” Ukhorskiy said, “these global oscillations slowly stretch and fold that fluid, much like taffy is stretched and folded in a candy store machine.”

“This finding tells us something new and important about how the universe operates,” said Barry Mauk, a project scientist at APL and co-author of the paper. “The new results reveal a new large-scale physical mechanism that can be important for planetary radiation belts throughout the solar system. An instrument similar to RBSPICE is now on its way to Jupiter on NASA’s Juno mission, and we will be looking for the existence of zebra stripe-like patterns in Jupiter’s radiation belts.”

Jupiter’s Van Allen belts are similar to Earth’s except much larger; Jupiter’s magnetic field is ten times stronger than Earth’s and the radiation in its belts is a million times more powerful (source). Juno will arrive at Jupiter in July 2016 and spend about a year in orbit, investigating its atmosphere, interior, and magnetosphere.

Thanks to the Van Allen Probes. Juno now has one more feature to look for in Jupiter’s radiation belts.

“It is amazing how Earth’s space environment, including the radiation belts, continue to surprise us even after we have studied them for over 50 years. Our understanding of the complex structures of the belts, and the processes behind the belts’ behaviors, continues to grow, all of which contribute to the eventual goal of providing accurate space weather modeling.”

– Louis Lanzerotti, physics professor at the New Jersey Institute of Technology and principal investigator for RBSPICE

The team’s findings have been published in the March 20 issue of the journal Nature.

The Van Allen Probes are the second mission in NASA’s Living With a Star program, managed by NASA’s Goddard Space Flight Center in Greenbelt, MD. The program explores aspects of the connected sun-Earth system that directly affect life and society.

Source: Van Allen Probes news release

A History of Curious Artifacts Sent Into Space

A penny for Mars... Credit: NASA/JPL-Caltech.

Since the dawn of the Space Age in 1957, thousands of artifacts and memorabilia have been flown into space. Some have been hoisted on brief suborbital flights, while others have been flung out of the solar system, never to return. And of course, it’s become a fashionable — and highly commercialized — trend as of late to briefly loft products, stuffed animals, etc via balloon towards the tenuous boundary of space. Fly a souvenir or artifact into orbit, and it goes from mundane to priceless. But a few may also serve as a final testament to the our ephemeral existence as a species long after our passing.

Here’s a look at some of the most memorable objects sent into space:

The Florida State Quarter dispatched with New Horizons. Image Credit: NASA/Bill Rodgers, JHU/APL.
The Florida State Quarter dispatched with New Horizons. Image Credit: NASA/Bill Rodgers, JHU/APL.

New Horizons Memorabilia

Launched on January 19th, 2006, New Horizons is headed towards a historic encounter with Pluto and its moons next year. From there, New Horizons will survey any Kuiper Belt objects of opportunity along its path and then head out of the solar system, becoming the fifth spacecraft to do so. In addition to a suite of scientific instruments, New Horizons also carries the ashes of Pluto discoverer Clyde Tombaugh, a Florida & Maryland state quarter, a piece of Scaled Composites SpaceShipOne, and an American flag. These will doubtless confuse any extraterrestrial salvagers!

The Humanoids Where Here: the plaque affixed the the Pioneer 10 & 11 spacecraft. Credit: NASA/JPL.
The Humanoids Where Here: the plaque affixed the the Pioneer 10 & 11 spacecraft. Credit: NASA/JPL.

The Pioneer Plaques

The first spacecraft sent on escape trajectories out of our solar system, the Pioneer 10 and 11 spacecraft each carry a plaque which serves as a sort of postcard “greeting” to any future interceptors. The plaque depicts a diagram of the solar system, a map of our location in the galaxy using the positions of known pulsars, and a nude man & woman, which actually generated lots of controversy.  Scientist James Van Allen tells of deliberately placing a fingerprint on the Pioneer 10 plaque in his biography The First Eight Billion Miles.

Earth's Greatest Hits: the Golden Record attached to the Voyager 1 and 2 spacecraft. Credit: NASA/JPL.
Earth’s Greatest Hits: the Golden Record attached to the Voyager 1 and 2 spacecraft. Credit: NASA/JPL.

The Voyager 1 and 2 Golden Records

Conceived and designed in part by Carl Sagan, these records contain images and sounds of the Earth that’ll most likely outlive humanity. The records carry greetings in 55 languages, music ranging from Mozart to Chuck Berry, 116 images and more, along with instructions and a stylus for playback.  The record is also enclosed in an aluminum cover electroplated with Uranium-238, which an alien civilization could use to date its manufacture via half-life decay.

A closeup of the "Mars Penny." Credit: NASA/JPL-Caltech.
A closeup of the “Mars Penny.” Credit: NASA/JPL-Caltech.

The Mars Curiosity Penny

Strange but true: The Mars rover Curiosity carries a 1909 U.S. Penny for a backup camera calibration target.  The penny itself is embedded just below the primary color calibration targets used by Curiosity’s MArs Hand Lens Imager (MAHLI). Rare enough on Earth, the 1909 Lincoln “Mars penny” will be priceless to future collectors!

Jupiter-bound figurines from left: Jupiter, Juno, & Galileo. Credit: NASA.
Jupiter-bound figurines from left: Jupiter, Juno, & Galileo. Credit: NASA.

Juno’s LEGO Figurines

Mini-figurines of Galileo and the Roman deities Jupiter and Juno were launched in 2011 aboard NASA’s Juno spacecraft en route to Jupiter . LEGO has flown products aboard the U.S. Space Shuttles and to the International Space Station previously, but Juno’s cargo represents the “most distant LEGO launch” ever. The figurines will burn up in Jupiter’s atmosphere along with the spacecraft at the end of the mission in October 2017.

An Apollo 15 postal cover flown to the Moon. Credit: NASA.
An Apollo 15 postal cover flown to the Moon. Credit: NASA.

Apollo 15 Postal Covers Fiasco

Apollo 15 astronauts got in some hot water over a publicity scheme. The idea that stamp collector and dealer Hermann Sieger approached the astronauts with was simple: 400 commemorative postage stamp covers would be postmarked at point of departure from the Kennedy Space Center and again at the return point of arrival aboard the USS Okinawa after their circuitous journey via the Moon. NASA was less than happy with the whole affair, and Command Module Pilot Al Worden recounts the aftermath in his book, Falling to Earth.

A Marsbound DVD... Courtesy of Lockheed Martin/LSP.
A Marsbound DVD… Courtesy of Lockheed Martin/LSP.

Haiku for MAVEN

Last year’s MAVEN mission to Mars also carried haiku submitted by space fans.  Over 12,530 valid entries were submitted and over 1,100 haiku received the necessary minimum of two votes to be included on a DVD disk affixed to the spacecraft. MAVEN reaches orbit around Mars in October 2014.

The copy of the Soviet pennant aboard Luna 2on display at the Kansas Cosmoshpere. Credit: Patrick Pelletier under a Wikimedia Creative Commons Attribution-Share Alike 3.0 Unported license.
The copy of the Soviet pennant aboard Luna 2 on display at the Kansas Cosmoshpere. Credit: Patrick Pelletier under a Wikimedia Creative Commons Attribution-Share Alike 3.0 Unported license.

Luna 2: A Russian Pennant on Moon

On September 12th, 1959, the Soviet Union’s Luna 2 spacecraft became the first man-made object to impact the Moon. Luna 2 carried two spherical “pennants” composed of pentagon-shaped elements engraved with the USSR Coat of Arms and Cyrillic letters translating into “CCCP/USSR September 1959.” An identical pennant is now on display in the Kansas Cosmosphere.

EchoStar XVI in its clean room. Credit: Space Systems Loral.
EchoStar XVI in its clean room. Credit: Space Systems Loral.

A GeoSat Time Capsule Aboard EchoStar XVI

A disk entitled Last Pictures similar to the Voyager records was placed on a satellite headed to geosynchronous orbit in 2012. Launched aboard EchoStar XVI, Last Pictures is an ultra-archival disk containing 100 snapshots of modern life along with interviews with several 21st century artists and scientists.  Geosynchronous satellites aren’t subject to atmospheric drag,  and may be the last testament to the existence of humanity on Earth millions of years hence.

An artist's conception of NASA's Lunar Prospector mission leaving Earth orbit. Credit: NASA.
An artist’s conception of NASA’s Lunar Prospector mission leaving Earth orbit. Credit: NASA.

Lunar Prospector Carries An Astro-Geologist’s Ashes to the Moon

Though he never made the selection to become an astronaut, scientist Eugene Shoemaker did make a posthumous trip to the Moon.  The Lunar Prospector spacecraft departed Earth with Shoemaker’s ashes on January 7th, 1998 in a capsule wrapped in brass foil. Lunar Prospector impacted the south pole of the Moon on July 31st, 1999.

The SpaceX Dragon capsule on approach to the ISS during the COTS 2 mission. Credit: NASA.
The SpaceX Dragon capsule on approach to the ISS during the COTS 2 mission. Credit: NASA.

SpaceX Takes Star Trek Actor to Space

The ashes actor James Doohan (AKA Scotty) were launched aboard a 2012 SpaceX flight to the International Space Station. The COTS Demo Flight, or COTS 2, was the first commercial spacecraft to berth at the ISS. SpaceX had flown a small amount of Doohan’s ashes on the 2008 unsuccessful test launch of the Falcon 1 rocket.

The "Top Secret Payload" of  Credit: Chris Thompson/SpaceX.
The “Top Secret Payload” of the Dragon capsule revealed. Credit: Chris Thompson/SpaceX.

Cheese Wheel Makes a Suborbital Journey

All eyes were also on SpaceX during their December 8th 2010 maiden flight of the Dragon space capsule. And the hinted mystery cargo? None other than a wheel of cheese, a nod by SpaceX CEO Elon Musk to a classic Monty Python sketch.

The Apollo 12 “Moon Museum”

Did it really go into space? One of the legends surrounding the Apollo program is the existence of what’s been dubbed the “Moon Museum.”  This was a postage stamp-sized “gallery” of art which included a sketch by Andy Warhol and other 1960s artists that was supposedly attached to descent stage of Apollo 12 and left on the Moon.  It will be up to future lunar visitors to confirm or deny its existence!

…And lastly, I give you the “Space Hubcap”

Was the first man-made object propelled into space actually a 1 ton armor plate? On August 27th, 1957 — just two months prior to Sputnik 1 — the Pascal-B underground nuclear test was conducted in southern Nevada.  During the explosion, a steel plate cap was blasted off of a test shaft. The plate could be seen in the initial high-speed video frames, and it was estimated to have reached a speed six times the sufficient escape velocity to depart Earth. To this day, no one knows if this strange artifact of early Space Age folklore still roams the void of space, or simply vaporized due to atmospheric compression at “launch”.