Aerojet: Small Space Firm Has Big Space History

[/caption]
When it comes to space flight pedigrees, few companies have one that can compare to Aerojet’s. The California-based company has a resume on space operations that is as lengthy as it is impressive. Universe Today sat down with Julie Van Kleeck – the firm’s vice-president of space and launch systems business unit.

Van Kleeck spoke extensively about the company’s rich history, its legacy of accomplishments – as well as what it has planned for space missions of the future.

Universe Today: Hi Julie, thanks for taking the time to chat with us today.

Van Kleeck: “My pleasure!”

Universe Today: How long has Aerojet been in business and what exactly is it that your company produces?

Van Kleeck: “We’ve been in the space business – since there was a space program – so since at least the 50s. We’ve dealt with both launch systems as well as space maneuvering systems, those components that enable spacecraft to move while in space.”

Aerojet propulsion systems have helped many of NASA's deep-space probes explore the solar system. Image Credit: NASA.gov

Universe Today: What about in terms of human space flight, when did Aerojet get involved with that?

Van Kleeck: “We first started working on the manned side of the house back during the Gemini Program, from there we progressed to Apollo, then shuttle and we hope to be involved with SLS (Space Launch System) as well.”

Universe Today: I understand that your company also has an extensive history when it comes to unmanned missions as well, care to tell us a bit about that?

Van Kleeck: “We have been on every discovery mission that has ever been launched, we have touched every part of space that you can touch.”

It is Aerojet's solid rocket motors that provide that extra-added “punch” to the versions of the Atlas V launch vehicle that utilize them. Photo Credit: Alan Walters/awaltersphoto.com

Universe Today: Some aerospace companies only produce one product or service, why is Aerojet’s list of offerings so diversified?

Van Kleeck: “We’re quite different than our competitors in that we provide a very wide-range of products to our customers. We’ve provided the liquid engines that went on Titan and now we provide the solids that go on the Atlas V launch vehicle as well as the small chemical and electrical propulsion systems that are utilized on some satellites.”

An Aerojet AJ26 rocket engine is prepared for testing in this image. These engines, as well as a license to produce them, were purchased from Russia and were originally designated the NK-33. Picture Credit: Aerojet

Universe Today: Does this mean that Aerojet places more importance on one space flight system over others?

Van Kleeck: “We view each of the products that we produce as equally important. Having said that, the fact that Aerojet offers a diversity of products and understands each of them well – sets us apart from our competitors. Firms that only produce one type of product tend to work to sell just that one product, whereas Aerojet’s extensive catalog of services allows us to be more objective when offering those services to our customers.”

During a tour of the Vertical Integration Facility, Aerojet's Solid Rocket Motors or SRms -were on full display attached to the Atlas V rocket that is set to send the Mars Science Laboratory rover "Curiosity" to Mars. Photo Credit: Alan Walters/awaltersphoto.com

Universe Today: When you look back, what is one of the most interesting projects that Aerojet has been involved with?

Van Kleeck: “I think as I look back over the past decade, New Horizons comes to mind, it was the first Atlas to launch with five solids on it. I look at that mission in particular as a major accomplish for not just us – but the country as well.”

In this image an AJ26 liquid rocket engine is tested. These engines are utilized as part of Orbital Science's Taurus II program. Photo Credit: Aerojet

Universe Today: What does the future hold for Aerojet?

Van Kleeck: ”We’re working on the Orion crew capsule right now with both liquid propulsion for it as well as solid propulsion for the abort test motor. We’re very much looking forward to seeing Orion fly in the coming years. We are currently putting into place the basic infrastructure to support human space exploration. We are working with both commercial crewed as well as Robert Bigelow to provide propulsion systems that work with their individual system – because no one system fits everyone. We are pleased to be offer systems for a wide variety of space exploration efforts.”

Universe Today: Julie, thanks for taking the time to chat with us today!

Van Kleeck: “No problem at all – it was my pleasure!”

Aerojet’s products will be on full display Nov. 25 as, if everything goes as planned the Mars Science Laboratory (MSL) rover Curiosity is set to launch on that day. Four of the company’s solid rocket motors or SRMs will help power the Curiosity rover on its way to the red planet.

For a taste of what Aerojet’s SRMs provide – please view the NASA video below.

Behind the Scenes: Curiosity’s Rocket Prepared at Vertical Integration Facility

[/caption]
CAPE CANAVERAL, Fla — One of the more dramatic buildings operated by United Launch Alliance (ULA) at Kennedy Space Center in Florida is the Vertical Integration Facility or VIF as it is more commonly known. It is in this facility that expendable launch vehicles are brought, lying on their sides – and then hoisted into the vertical position for launch. The current resident in the VIF is the Atlas V 541 (AV-028) that is slated to launch the Mars Science Laboratory (MSL).

At the top of the 292 –foot-tall structure is a 60 ton crane that initially is used to lift the Atlas’ first stage into the vertical position. The payload, ensconced in the protective fairing, is assembled elsewhere. Once it arrives at the VIF, it is hoisted high into the air using the same crane and then mated with the top of the launch vehicle. Given the delicate nature of this operation technicians take their time in lifting the precious cargo and maneuvering it over the rocket.

The U.S. flag and the interstage adapter are seen in the image to the left. The photo to the right helps to illustrate the scale needed to assemble the Atlas V. Photo Credits: Jason Rhian

“You get the most amazing view from the top of the VIF,” said Mike Woolley of United Launch Alliance. “From this level you can clearly see not just Launch Complex 41, but a great deal of Florida’s Space Coast.”

Once the fairing and its payload have been safely affixed to the top of the rocket, the doors are opened up and the Atlas V is then rolled out to the adjacent Space Launch Complex-41 (SLC-41).

At the Vertical Integration Facility's fifh level, the segment of the rocket where the payload (in this case the MSL rover) is attached is the only element of the rocket that is visible. Photo Credit: Alan Walters/awaltersphoto.com

“Once the Atlas V is fully assembled, the completed vehicle is rolled, in the vertical, out to the launch pad.” Woolley said.

Currently on the fifth level the upper part of the Centaur, the all-important rocket that will send the rover on its way to Mars, covered in a protective layer of white plastic, is visible.

One of the easiest ways to display the size of the Atlas - is to actually break up the images. To the left is the top portion, to the right the middle (note the Aerojet Solid Rocket Motors the the right). Photo Credit: Alan Walters/awaltersphoto.com

Descending down the length of the Atlas V, level by level one gains an appreciation for the sheer scale of the Atlas rocket, its solid rocket motors and the attention to detail needed to launch payloads out of Earth’s gravity well.

On Level One the top of the Atlas’ Solid Rocket Motors (SRMs) produced by Aerojet are visible. At the ground floor, one has the ability to look up (somewhat, platforms and rigging block your view) the length of the rocket. On the ground level, one can plainly see that the twin RD-180 engines are Russian-made – the Cyrillic lettering still grace the engines’ nozzles.

Just inside the VIF one can look up the side of the Atlas V, even though elements of the launch vehicle are obstructed - the sight is still impressive. Photo Credit: Jason Rhian

MSL is the next planetary mission on NASA’s docket, more commonly known as “Curiosity” is a nuclear-powered rover about the size of a compact automobile.

Curiosity is currently slated for a Nov. 25 launch date at 10:21 a.m. EDT from Cape Canaveral Air Force Station’s Space Launch Complex 41 (SLC-41). Members of the media (myself included) got to see the Atlas for this launch being lifted into the air in preparation for the November launch when we were being escorted back to the NASA/LSC press site after the GRAIL launch was scrubbed (GRAIL would go on to be launched two days later).

In Focus: Aerospace Photojournalist Mike Killian

[/caption]CAPE CANAVERAL, Fla – The photographers that cover the events that take place in and around Florida’s Space Coast come from diverse backgrounds. However, when it comes to the passion that attracts so many to Cape Canaveral Air Force Station and Kennedy Space Center – their origins are very similar.

Many amateur photographers like Mike Killian have always been interested in spaceflight, in capturing the spectacle of launch. Like Killian, these photographers start out not knowing how to get onto Kennedy Space Center to shoot the launches and other events that take place there. They work out arrangements with NASA friends to get close and then, finally, they get affiliated with an accredited news organization (in Killian’s case the ARES Institute).

“I have loved the space program since I was a child,” Killian said. “Most folks that come out here and do this I doubt very highly that they do it thinking they will get rich. They do it because what they are showing the world is so important, so awe-inspiring…and so beautiful.”

Killian caught the reflection of space shuttle Atlantis as it was towed back to its OPF after completing the final mission of the space shuttle era - STS-135. Photo Courtesy of Mike Killian

Killian has only covered the space program as a photographer for a relatively short time, about three years. During that time however – he has covered some pivotal points in space flight history. The last flights of the space shuttle era, the launch of spacecraft to Earth orbit, the Moon and soon Mars. Killian, also like his compatriots, sacrifices long hours and endures low pay to capture images of these events. But when he gets that perfect shot of solid rocket boosters separating from an Atlas V on its way to orbit, or the final landing of the space shuttle – it is all worth it.

“Photography is pretty much like anything else,” said Killian during a recent interview. “It’s all about timing – being at the right place – at the right time.”

Whether static or in dramtic motion, Killian has captured the space shuttle program's final days. Photo Courtesy of Mike Killian

One recurring theme that occurs in aerospace photography is – progression. Photographers will come out to KSC/CCAFS with their digital cameras, then they will buy a more powerful camera and then they move on to remote cameras. When one hears remote they think the cameras are far away – the truth is that these cameras are extremely close. “Remote” means that they are remotely activated – generally by either a sound or light sensor.

Killian employs 2 Canon Rebel XSi cameras due to the camera’s affordability and versatility.

The 27-year-old, unlike many of his colleagues, does have a favorite image – and it isn’t even one that he took on Kennedy Space Center proper.

Killian's favorite shot shows Launch Complex 39A in the distance, a Shuttle Training Aircraft or STA checking weather conditions - and a very active thunderstorm. Photo Courtesy of Mike Killian

“My favorite shot thus far is of a lightning storm over KSC for the night launch of Discovery on STS-128. That storm scrubbed the launch attempt, but the images I captured that night were unreal,” said Killian. “This particular photo has so much going on – Discovery basking in xenon lights atop launch pad 39A fully fueled with her crew onboard, lightning racing through the clouds directly above KSC, & the shuttle training aircraft flying over the storm (upper left of photo) on weather recon trying to determine if there would be any chance the storm could let up in time to support a launch that night. It’s very unique, not your typical launch photo.”

For Killian photographing the space program allows him to both combine his love of photography with the driving interest that he has for space flight. Killian has no plans to stop photographing the space program anytime soon. For him this is not about the money, it’s about the history of thunder and the wonder of light and like so many of his fellow photojournalists he feels privileged to be able to do what he does.

Killian has covered many different events at Kennedy Space Center. His camera has captured events as stirring as the final launch of the shuttle era - and as poignant as the final rollout of space shuttle Discovery (seen here). Images Courtesy of Mike Killian

Ed Weiler – NASA Science Leader and Hubble Chief Scientist Retires

[/caption]

Ed Weiler, NASA’s Science leader in charge of the robotic missions that continually produce scientific breakthroughs that amaze all humanity and longtime Chief Scientist on the Hubble Space Telescope that has completely revolutionized our understanding of humanities place in the Universe, retired today (Sept. 30) from NASA after a distinguished career spanning almost 33 years.

Weiler is departing NASA during what has been dubbed the “Year of Space Science”- the best year ever for NASA Space Science research. The two most recent successes are the launch of JUNO to Jupiter and the twin GRAIL probes to the Moon. Blastoff of the Curiosity Mars Science Laboratory rover is slated for late November 2011.

Weiler’s official title is associate administrator of NASA’s Science Mission Directorate (SMD) at agency Headquarters in Washington, DC. In that capacity he was responsible for overseeing NASA’s science and research programs in Earth science, heliophysics, planetary science and astrophysics.

Weiler was appointed to lead SMD in 2008. He holds this position now for the second time after serving in between as Director of NASA Goddard Spaceflight Center in Greenbelt, Maryland from 2004 to 2008. His earlier stint as associate administrator lasted from 1998 to 2004 for what was then called the Space Science Enterprise.

Dr. Ed Weiler, NASA Associate Administrator for the Science Mission Directorate. Credit: NASA/Bill Ingalls

Probably the job he loved best was as Chief Scientist of the Hubble Space Telescope from 1979 to 1998, until he was promoted to the top rung of NASA management.

I was very lucky to meet and chat with Ed Weiler while I was covering the final space shuttle flight – STS-125 – to repair and upgrade Hubble. STS 125 blasted off in May 2009 and accomplished every single objective to catapult Hubble to the apex of its capabilities.

At the recent launch of the twin GRAIL lunar mapping probes, I spoke with Weiler about a wide range of NASA missions. Watch for my upcoming interview with Ed.

Weiler is very hopeful that Hubble will continue to operate for several more years at least.

NASA issued this statement from NASA Administrator Charles Bolden, “Ed leaves an enduring legacy of pride and success that forever will remain a part of NASA’s science history. His leadership helped inspire the public with each new scientific discovery, and enabled NASA to move forward with new capabilities to continue to explore our solar system and beyond.”

The successes under Weiler’s leadership include NASA’s great observatory missions, unprecedented advances in Earth science and extensive exploration of Mars and other planets in our solar system. These advances have rewritten science textbooks and earned enormous support for NASA’s science programs from the general public.

The Mars rovers Spirit and Opportunity are just one example of the science missions approved and funded during Weiler’s tenure.

Weiler’s leadership has been instrumental in securing continued support and funding for NASA Space Science from Congress and the White House. He has received numerous prestigious awards including the NASA Distinguished Service Medal and several Presidential Rank Awards for Meritorious Executive and Distinguished Executive.

Ed Weiler remembers Spirit at JPL symposium. Credit: AP

First Image Captured by NASAs Jupiter bound Juno; Earth – Moon Portrait

[/caption]

NASA’s solar powered Jupiter bound Juno orbiter has captured her first image – a beautiful portrait of the Earth & Moon – since the probe blasted off from the home planet.

Juno lifted off 25 days ago at 12: 25 p.m. on August 5 from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The spacecraft snapped the portrait with the onboard JunoCam camera on August 26 after journeying some 6 million miles (9.66 million km) from Earth and while traveling at a velocity of 77,600 miles per hour (124,900 kilometers per hour) relative to the sun.

“The image of the Earth Moon system is a rather unique perspective that we can get only by stepping outside of our home planet,” said Scott Bolton, Juno principal investigator, in an exclusive interview with Universe Today. Bolton is from the Southwest Research Institute in San Antonio.

“On our way to Jupiter, we’ve looked back at home and managed to take this amazing image.”

“Earth looking much like any other planet or star from a distance is glorious as this somewhat average looking “star” is home to all of humanity. Our companion, the moon, so beautiful and important to us, stands out even less.”

“We appear almost average and inconspicuous, yet all of our history originates here. It makes one wonder just how many other planets or solar systems might contain life like ours,” Bolton told me.

Juno casts a shadow back toward Earth and Space Shuttle Launch Pad 39A and the shuttle crawler way (at left) seconds after liftoff from adjacent Launch Pad 41 at Cape Canaveral, Florida. View from the VAB Roof. Credit: Ken Kremer

The Juno team commanded the probe to take the image as part of the checkout phase of the vehicles instruments and subsystems.

“The JunoCam instrument turn on and check out were planned activities. The instrument is working great and in fact, all the instruments that we’ve turned on thus far have been working great,” Bolton added.

So far the spacecraft is in excellent health and the team has completed the checkout of the Waves instrument and its two Flux Gate Magnetometer sensors and deployment of its V-shaped electric dipole antenna.

“We have a couple more instruments still to do,” Bolton noted.

The team reports that Juno also performed its first precession, or reorientation maneuver, using its thrusters and that the first trajectory control maneuver (TCM-1) was cancelled as unnecessary because of the extremely accurate targeting provided by the Atlas V rocket.

The portrait shot is actually not Juno’s last photo of her home.

The 8000 pound (3,600 kilogram) probe will fly by Earth once more on October 9, 2013 for a gravity assisted speed boost of 16,330 MPH (7.3 km/sec) to accelerate Juno past the asteroid belt on its long journey to the Jovian system.

Juno soars skyward to Jupiter on Aug. 5 from launch pad 41 at Cape Canaveral Air Force Station at 12:25 p.m. EDT. View from the VAB roof. Credit: Ken Kremer

JunoCam will collect new photos and the other science instruments will make measurements as Juno cartwheels past Earth during the slingshot to Jupiter.

Juno is on a 5 year and 1.7 Billion mile (2.8 Billion km) trek to the largest planet in our solar system. When she arrives at Jupiter on July 4, 2016, Juno will become the first polar orbiting spacecraft at the gas giant.

During a one year science mission – entailing 33 orbits lasting 11 days each – the probe will plunge to within about 3000 miles (5000 km) of the turbulent cloud tops and collect unprecedented new data that will unveil the hidden inner secrets of Jupiter’s genesis and evolution.

The goal is to find out more about the planets origins, interior structure and atmosphere, observe the aurora, map the intense magnetic field and investigate the existence of a solid planetary core.

“This is a remarkable sight people get to see all too rarely,” said Bolton in a NASA statement about the Earth-Moon photo. “This view of our planet shows how Earth looks from the outside, illustrating a special perspective of our role and place in the universe. We see a humbling yet beautiful view of ourselves.”

NASA’s Jet Propulsion Laboratory manages the Juno mission. The spacecraft was designed and built by Lockheed Martin Space Systems, Denver.

Juno and Booster Streak Across the Stars
NASA's Juno spacecraft and its spent Centaur upper rocket stage are captured in this telescope view as they move across the field of stars. The five-minute, timed exposure was acquired on Aug. 5 11:18pm Eastern time (Aug. 6 at 3:18 UTC) when Juno was at a distance of about 195,000 miles (314,000 kilometers) from Earth. The images were taken remotely by amateur astronomer Scott Ferguson using Global Rent-a-Scope's GRAS-016 Takahashi Widefield Refractor, which is located in Nerpio, Spain. Credit: Scott Ferguson
Juno Spacecraft Cruise Trajectory to Jupiter
This graphic shows Juno's trajectory, or flight path, from Earth to Jupiter. The spacecraft travels around the Sun, to a point beyond the orbit of Mars where it fires its main engine a couple of times. These deep space maneuvers set up the Earth flyby maneuver that occurs approximately two years after launch. The Earth flyby gives Juno the boost in velocity it needs to coast all the way to Jupiter. Juno arrives at Jupiter in July 2016. Credit: NASA/JPL-Caltech
View of Juno’s position on Aug. 24, 2011 nearly 6 million miles distant from Earth visualized by NASA’s Eyes on the Solar System website.

Read my continuing features about Juno
Juno Blasts off on Science Trek to Discover Jupiter’s Genesis
Juno Jupiter Orbiter poised at Launch Pad for Aug. 5 Blastoff
JUNO Orbiter Mated to Mightiest Atlas rocket for Aug. 5 Blastoff to Jupiter
Solar Powered Jupiter bound JUNO lands at Kennedy Space Center

In Their Own Words: Experts Talk Juno

Several scientists and experts discussed the Juno mission to Jupiter with Universe Today. Photo Credit: Alan Walters/awaltersphoto.com

CAPE CANAVERAL Fla. – Many experts took time out of their hectic schedules to talk with Universe Today in the day leading up to the launch of the Juno spacecraft. Some even took the time to talk to us just minutes before the probe was scheduled to be launched on its mission. Check out what they had to say below:

Juno Project Scientist Steve Levin was at Kennedy Space Center to watch the Juno probe begin its five-year journey to Jupiter. He took a few minutes of his time to talk about what his expectations are for this mission.

Levin has been with JPL since 1990, one of the previous projects he worked on is the Planck mission which launched in 2009.

Levin believes that Juno could fundamentally change the way we view Jupiter. He was one of many VIPs that descended on Kennedy Space Center to watch as Juno thundered to orbit atop at Atlas V rocket.

Sami Asmar is part of the science team that is working on the Juno project. He was at the rollout of the Atlas rocket to the pad. Here is what he had to say about the mission (note the Atlas rocket moving out behind him).

Bill Nye the Science Guy was a very busy man while at Kennedy Space Center. He still took the time to chat with Universe Today about his views on this mission. Unfortunately, with little time to spare, we had to conduct the interview within minutes of the first launch attempt. A good chunk of Nye’s interview – was drowned out by the lead up to the countdown!

The usual launch of an Atlas consists of the launch team coming in, pushing a button and going home – the launch vehicle is that reliable. This day, things occurred quite differently. A technical issue coupled with a wayward boat that had drifted too close to the launch pad saw the launch time slip from 11:34 a.m. EDT to 12:25 p.m. When the rocket did take off however it was a spectacular sight to behold, faster than other iterations of the Atlas, it roared off the pad, sending Juno on its way to Jupiter.

Juno Spacecraft Honors Those Who Started It All

[/caption]
The Juno spacecraft, now safely on its way to the planet Jupiter, is carrying along with it several artifacts in honor of its voyage. Onboard the probe are three, tiny figurines of key players in the mythological and historical background of the gas giant. LEGO figurines of the Roman god Jupiter, his wife Juno and Italian astronomer Galileo Galilei have had their 1.5-inch likenesses added to the voyage.

In Roman mythology Jupiter had cast a veil of clouds over himself to hide his activities. Undeterred, his wife, Juno, peered through the clouds to see Jupiter’s true nature. Hence, her representation onboard the Juno spacecraft – is holding a spyglass. The last member of this odd ‘crew’ is Galileo, the man who made a number of important discoveries regarding the Jovian system.

From left-to-right: The Roman god Jupiter, his wife Juno (with spyglass to check up on Jupiter's activities) and the famous Italian astronomer Galileo Galilei. Photo Credit: NASA

The inclusion of these three figures is part of a joint effort between NASA and the LEGO group to spark interest in Science, Technology, Engineering and Math or STEM in children. NASA went one step further in acknowledging the accomplishments of the man that made so many discoveries about this massive world. It has included a plaque in honor or Galileo.

During his life, Galileo contributed greatly to mankind’s understanding of the solar system. He discovered in 1610 what have since been dubbed the “Galilean moons” – Io, Europa, Ganymede and Callisto.

This plaque is affixed to the Juno probe bound for Jupiter. It shows an illustration of Galileo as well as an inscription he made regarding the gas giant. Photo Credit: NASA

The plaque was donated by the Italian Space Agency and it measures 2.8 by 2 inches (71 by 51 millimeters). The plaque is manufactured from flight grade aluminum and weighs six grams or about 0.2 ounces. The plaque includes an illustration of the famous astronomer along with an inscription – in his own hand – a passage he made in 1610 concerning his observations of Jupiter. The inscription reads:

“On the 11th it was in this formation — and the star closest to Jupiter was half the size than the other and very close to the other so that during the previous nights all of the three observed stars looked of the same dimension and among them equally afar; so that it is evident that around Jupiter there are three moving stars invisible till this time to everyone.”

Juno thunders to orbit, with three very odd crew members on board. Photo Credit: Jason Rhian

Juno successfully lifted off from Cape Canaveral Air Force Station’s Space Launch Complex 41 at 12:25 p.m. EDT on Friday, August 5. It will take the probe about five years to reach Jupiter. Once there it will enter in a polar orbit around the world where it will use its suite of instruments to peer beneath the veil of Jupiter’s clouds to study the planet’s gravity, magnetosphere and whether-or-not the planet has a rocky core.

NASA’s Jet Propulsion Laboratory (JPL) manages the Juno mission for the principal investigator, Scott Bolton, from the Southwest Research Institute in San Antonio. The Juno mission is part of the New Frontiers Program managed at NASA’s Marshall Space Flight Center in Huntsville, Ala. Lockheed Martin Space Systems, Denver, built the Juno spacecraft.

It will take the Juno spacecraft five years to reach Jupiter. Each one of its massive solar arrays is about the size of a tractor-trailer. Image Credit: NASA