A Magnified Supernova

Galaxy Cluster Abell 1689

[/caption]

Supernovae are among astronomers most important tools for exploring the history of the universe. Their frequency allows us to examine how active star formation was, how heavy elements have developed, and the distance to galaxies across vast distances. Yet even these titanic explosions are only so bright, and there’s an effective limit on how far we can detect them with the current generation of telescopes. However, this limit can be extended with a little help from gravity.

One of the consequences of Einstein’s theory of general relativity is that massive objects can distort space, allowing them to act as a lens. While first postulated in 1924, and proposed for galaxies by Fritz Zwicky in 1937, the effect wasn’t observed until 1979 when a distant quasar, an energetic core of a distant galaxy, was split in two by the gravitational disturbances of an intervening cluster of galaxies.

While lensing can distort images, it also provides the possibility that it may magnify a distant object, increasing the amount of light we receive. This would allow astronomers to probe even more distant regions with supernovae as their tool. But in doing so, astronomers must look for these events in a different manner than most supernova searches. These searches are generally limited to the visible portion of the spectrum, the portion we see with our eyes, but due to the expansion of the universe, the light from these objects is stretched into the near-infrared portion of the spectrum where few surveys to search for supernovae exist.

But one team, led by Rahman Amanullah at Stockholm University in Sweden, has conducted a survey using the Very Large Telescope array in Chile, to search for supernovae lensed by the massive galaxy cluster Abell 1689. This cluster is well known as a source of gravitationally lensed objects, making visible some galaxies that formed shortly after the Big Bang.

In 2009, the team discovered one supernova that was magnified by this cluster that originated 5-6 billion lightyears away. In a new paper, the team reveals details about an even more distant supernova, nearly 10 billion lightyears distant. This event was magnified by a factor of 4 from the effects of the foreground cluster. From the distribution of energy in different portions of the spectrum, the team concludes that the supernova was an implosion of a massive star leading to a core-collapse type of supernova. The distance of this event puts it among the most distant supernovae yet observed. Others at this distance have required extensive time using the Hubble telescope or other large telescopes.

New Image Triples Your Galaxy Fun

The Leo Triplet. Credit: ESO/INAF-VST/OmegaCAM. Acknowledgement: OmegaCen/Astro-WISE/Kapteyn Institute

[/caption]

Here’s a brand new, magnificent look at the Leo Triplet — a group of interacting galaxies about 35 million light-years from Earth. This wide field of view comes courtesy of the VLT Survey Telescope (VST) at the Paranal Observatory. It has a field of view twice as broad as the full Moon — which is unusual for a big telescope – and the FOV is wide enough to frame all three members of the group in a single picture. But there’s also a great new view of galaxies in the background, as the VST also brings to light large numbers of fainter and more distant galaxies, some through the wonders of microlensing.

Microlensing is a gravitational lensing phenomenon where the presence of a dim but massive object can be inferred from the effect of its gravity on light coming from a more distant star. If, due to a chance alignment, the dim object passes sufficiently close to our line of sight to the more distant star, its gravitational field bends the light coming from the background star. This can lead to a measurable increase in the background star’s brightness. As microlensing events rely on rare chance alignments, they are usually found by large surveys that can observe great numbers of potential background stars.

One of the science goals of the VST is to search for much fainter objects in the Milky Way, such as brown dwarf stars, planets, neutron stars and black holes, and microlensing is helpful in finding these elusive objects.

All three of the big, main galaxies seen here are spirals like our own Milky Way galaxy, even though this may not be immediately obvious in this image because their discs are tilted at different angles to our line of sight. NGC 3628, left, is seen edge-on, while the Messier objects M 65 (upper right) and M 66 (lower right), on the other hand, are inclined enough to make their spiral arms visible.

Get more information and see a larger version of this image at the ESO website.

A Four Cluster Pile-Up

Abell 2744, a.k.a. "Pandora's Cluster"

[/caption]

Abell 2744, shown above in a composite of images from the Hubble Space Telescope, the ESO’s Very Large Telescope and NASA’s Chandra X-ray  Observatory, is one of the most complex and dramatic collisions ever seen between galaxy clusters.

X-ray image of Abell 2744

Dubbed “Pandora’s Cluster”, this is a region 5.9 million light-years across located 3.5 billion light-years away. Many different kinds of structures are found here, shown in the image as different colors. Data from Chandra are colored red, showing gas with temperatures in the millions of degrees. Dark matter is shown in blue based on data from Hubble, the European Southern Observatory’s VLT array and Japan’s Subaru telescope. Finally the optical images showing the individual galaxies have been added.

Even though there are many bright galaxies visible in the image, most of the mass in Pandora’s Cluster comes from the vast areas of dark matter and extremely hot gas. Researchers made the normally invisible dark matter “visible” by identifying its gravitational effects on light from distant galaxies. By carefully measuring the distortions in the light a map of the dark matter’s mass could be created.

Galaxy clusters are the largest known gravitationally-bound structures in the Universe, and Abell 2744 is where at least four clusters have collided together. The vast collision seems to have separated the gas from the dark matter and the galaxies themselves, creating strange effects which have never been seen together before. By studying the history of events like this astronomers hope to learn more about how dark matter behaves and how the different structures that make up the Universe interact with each other.

Check out this HD video tour of Pandora’s Cluster from the team at Chandra:

Read more on the Chandra web site or in the NASA news release.

Image credit: X-ray: NASA/CXC/ITA/INAF/J.Merten et al, Lensing: NASA/STScI; NAOJ/Subaru; ESO/VLT, Optical: NASA/STScI/R.Dupke.

___________________

Jason Major is a graphic designer, photo enthusiast and space blogger. Visit his website Lights in the Dark and follow him on Twitter @JPMajor or on Facebook for the most up-to-date astronomy awesomeness!

 

Astronomy Without A Telescope – Knots In Space

A double Einstein ring. Either two distant galaxies are coincidentally lined up directly behind a closer massive galactic cluster - or it's a donut-shaped portal to an alternate universe. Tough choice, huh?

[/caption]

So finally you possess that most valuable of commodities, a traversable wormhole – and somehow or other you grab one end of it and accelerate it to a very rapid velocity.

This might only take you a couple of weeks since you accelerate to the same velocity as your end of the wormhole. But for a friend who has sat waiting at the first entrance to the wormhole, time dilation means that ten years might have passed while you have mucked about at close-to-light-speed-velocities with the other end of the wormhole.

So when you decide to travel back through the wormhole to see your friend, you naturally maintain your own frame of reference and hence your own proper time, as is indicated by observing the watch on your wrist. So when you emerge at the other end of the wormhole, you can surprise your ageing partner with a newspaper you grabbed from 2011 – since he now lives in 2021.

You encourage your friend to come back with you through the wormhole – and traveling ten years back in time to 2011, he spends an enjoyable few days following his ten year younger self around, sending cryptic text messages that encourages his younger self to invent transparent aluminum. However, your friend is disappointed to find that when you both travel back through the wormhole to 2021, his bank account remains depressing low, because the wormhole is connected to what has become an alternate universe – where the time travel event that you just experienced, never happened.

You also realize that your wormhole time machine has other limits. You can further accelerate your end of the wormhole to 100 or even 1000 years of time dilation, but it still remains the case that you can only travel back in time as far as 2011, when you first decided to accelerate your end of the wormhole.

But anyway, wouldn’t it be great if any of this was actually possible? If you looked out into the universe to try and observe a traversable wormhole – you might start by looking for an Einstein ring. A light source from another universe (or a light source from a different time in an analogue of this universe) should be ‘lensed’ by the warped space-time of the wormhole – if the wormhole and the light source are in your direct line of sight. If all of that is plausible, then the light source should appear as a bright ring of light.

The theoretical light signatures of a donut-shaped 'ringhole' type wormhole and a Klein bottle 'time machine'. The ringhole signature is a double Einstein ring - and the Klein bottle signature is two concentric truncated spirals. A Klein bottle time machine is a wormhole of warped space-time where the exit has the identical spatial position as the entrance - so going through it means you should only travel in time. Credit: González-Díaz and Alonso-Serrano.

In fact there’s lots of these Einstein rings out there , but a more mundane cause for their existence is generally attributed to gravitational lensing by a massive object (like a galactic cluster) situated between you and a bright light source – all of which are still in our universe.

A recent theoretical letter has proposed that a ringhole rather than a wormhole structure might arise from an unlikely set of circumstances (i.e. this is pure theory – best just to go with it). So rather than a straight tube you could have a toroidal ‘donut’ connection with an alternate universe – which should then create a double Einstein ring – being two concentric circles of light.

This is a much rarer phenomenon and the authors suggest that the one well known instance (SDSSJ0946+1006) needs to be explained by the fortuitous alignment of three massive galactic clusters – which is starting to stretch belief a little… maybe?

Whether or not you find that a convincing argument, the authors then propose that if a Klein bottle wormhole existed – it would create such an unlikely visual phenomenon (two concentric truncated spirals of light) that surely then we might concede that such exotic structures exist?

And OK, if we ever do observe two concentric truncated spirals in the sky that could be pause for thought. Watch this space.

Further reading: González-Díaz and Alonso-Serrano Observing other universes through ringholes and Klein-bottle holes.

Astronomy Without A Telescope – Through A Lens Darkly

Gravitational lensing in action - faint hints of an "Einstein ring' forming about an area of space which has been 'lensed' by the warping of space-time. If the galactic cluster has been orientated in aplane the lay faceon directly towards earth - the ring would be much more apparent. Credit: HST, NASA.

[/caption]

Massive galactic clusters – which are roughly orientated in a plane that is roughly face-on to Earth – can generate strong gravitational lensing. However, several surveys of such clusters have reached the conclusion that these clusters have a tendency towards lensing too much – at least more than is predicted based on their expected mass.

Known (to some researchers working in the area) as the ‘over-concentration problem’, it does seem to be a prima facie case of missing mass. But rather than just playing the dark matter card, researchers are pursuing more detailed observations – if only to eliminate other possible causes.

The Sunyaev-Zel’dovich (SZ) effect is a novel way of scanning the sky for massive objects like galactic clusters – which distort the Cosmic Microwave Background (CMB) via inverse Compton scattering – where photons (in this case, CMB photons) interact with very energized electrons which impart energy to the photons during a collision, shifting the protons to a shorter wavelength frequency.

The SZ effect is largely independent of red-shift – since you start with the most consistently red-shifted light in the universe and are looking for a one-off event that will have the same effect on that light whether it happens close by or far away. So, with equipment sensitive to CMB wavelengths, you can scan the whole sky – detecting both close objects, which might be directly observable in optical, as well as very distant objects which may have been red-shifted into the radio spectrum.

The SZ effect causes CMB distortions in the order of one thousandth of a Kelvin and the effect does require really massive structures – a single galaxy is not sufficient to generate the SZ effect on its own. But, when it works – the SZ effect offers a method to measure the mass of a galactic cluster – and does it in a way that is quite different to gravitational lensing.

The SZ effect is thought to be mediated by electrons in the inter-cluster medium. This means that the SZ effect is solely the result of baryonic matter, since it is a consequence of the inverse Compton effect. However, gravitational lensing is the result of the warping of space-time – which is partly due to the presence of baryonic matter, but also of dark (i.e. non-baryonic) matter.

Gralla et al used the Sunyaev-Zel’dovich Array, an array of eight 3.5 meter radio telescopes in California, to survey 10 strongly lensing galactic clusters. They found a consistent tendency for the Einstein radius of each gravitational lens to be around twice the value expected for the mass, determined from the SZ effect, of each cluster.

A distant, actually double, Einstein ring captured by the Hubble Space Telescope. Many more Einstein rings are visible from distant galactic clusters - although they are generally only 'visible' in radio wavelengths.

The Einstein radius is a measure of the size of the Einstein ring that would be formed if a cluster was exactly orientated in a plane that was exactly face-on to Earth – and where you, the lens and the distant light source being magnified, are all in a straight line of sight. Strongly lensing galaxies are generally only in close approximation to this geometry, but their Einstein ring and radius (and hence their mass) can be inferred easily enough.

Gralla et al note that this is work in progress, for now just confirming the over-concentration problem found in other surveys. They suggest one possibility is that the amount of inter-cluster medium may be less than expected – meaning that the SZ effect is underestimating the real mass of the cluster.

If, alternatively, it is a dark matter effect, there would be more dark matter in these clusters than the current ‘standard model’ for cosmology (Lambda-Cold Dark Matter) predicts. The researchers seem intent on undertaking further observations before they go there.

Further reading: Gralla et al. Sunyaev Zel’dovich Effect Observations of Strong Lensing Galaxy Clusters: Probing the Over-Concentration Problem.

And just for interest, Einstein’s letter on lensing and rings: Einstein, A (1936) Lens-like Action of a Star by the Deviation of Light in the Gravitational Field. Science 84 (2188): 506–507.

Hubble Provides Most Detailed Dark Matter Map Yet

Cosmic Noise
This NASA Hubble Space Telescope image shows the distribution of dark matter in the center of the giant galaxy cluster Abell 1689, containing about 1,000 galaxies and trillions of stars. Credit: NASA, ESA, D. Coe (NASA Jet Propulsion Laboratory/California Institute of Technology, and Space Telescope Science Institute), N. Benitez (Institute of Astrophysics of Andalusia, Spain), T. Broadhurst (University of the Basque Country, Spain), and H. Ford (Johns Hopkins University)

[/caption]

Using Hubble’s Advanced Camera for Surveys, astronomers have been able to chart invisible dark matter in a distant galaxy, which enabled them to create one of the sharpest and most detailed maps of dark matter in the universe. Looking for invisible and indeterminate matter is a difficult job, but one that astronomers have been trying to do for over a decade. This new map also might provide clues on that other mysterious stuff in the universe — dark energy – and what role it played in the universe’s early formative years.

A team led by Dan Coe at JPL used Hubble to look at Abell 1689, located 2.2 billion light-years away. The cluster’s gravity, which mostly comes from dark matter, acts like a cosmic magnifying glass, bending and amplifying the light from distant galaxies behind it. This effect, called gravitational lensing, produces multiple, warped, and greatly magnified images of those galaxies, making the galaxies look distorted and fuzzy. By studying the distorted images, astronomers estimated the amount of dark matter within the cluster. If the cluster’s gravity only came from the visible galaxies, the lensing distortions would be much weaker.

What they found suggests that galaxy clusters may have formed earlier than expected, before the push of dark energy inhibited their growth.

Dark energy pushes galaxies apart from one another by stretching the space between them, thereby suppressing the formation of giant structures called galaxy clusters. One way astronomers can probe this primeval tug-of-war is through mapping the distribution of dark matter in clusters.

“The lensed images are like a big puzzle,” Coe said. “Here we have figured out, for the first time, a way to arrange the mass of Abell 1689 such that it lenses all of these background galaxies to their observed positions.” Coe used this information to produce a higher-resolution map of the cluster’s dark matter distribution than was possible before.

Based on their higher-resolution mass map, Coe and his collaborators confirm previous results showing that the core of Abell 1689 is much denser in dark matter than expected for a cluster of its size, based on computer simulations of structure growth. Abell 1689 joins a handful of other well-studied clusters found to have similarly dense cores. The finding is surprising, because the push of dark energy early in the universe’s history would have stunted the growth of all galaxy clusters.

“Galaxy clusters, therefore, would had to have started forming billions of years earlier in order to build up to the numbers we see today,” Coe said. “At earlier times, the universe was smaller and more densely packed with dark matter. Abell 1689 appears to have been well fed at birth by the dense matter surrounding it in the early universe. The cluster has carried this bulk with it through its adult life to appear as we observe it today.”

Astronomers are planning to study more clusters to confirm the possible influence of dark energy. A major Hubble program that will analyze dark matter in gigantic galaxy clusters is the Cluster Lensing and Supernova survey with Hubble (CLASH). In this survey, the telescope will study 25 clusters for a total of one month over the next three years. The CLASH clusters were selected because of their strong X-ray emission, indicating they contain large quantities of hot gas. This abundance means the clusters are extremely massive. By observing these clusters, astronomers will map the dark matter distributions and look for more conclusive evidence of early cluster formation, and possibly early dark energy.

For more information see the HubbleSite.

Gravitational Lensing Caught By Amateur Telescope

Just a few short years ago, even the thought of capturing an astronomy anomaly with what’s considered an “amateur telescope” was absolutely unthinkable. Who were we to even try to do what great minds postulated and even greater equipment resolved? I’ll tell you who… Bernhard Hubl. Come on inside to meet him and see what he can do!

One of the first great minds to consider the effects of gravitational lensing was Orest Chwolson in 1924. By 1936, Einstein had upped the ante on its existence with his theories. A year later in 1937, the brilliant Fritz Zwicky set the idea in motion that galaxy clusters could act as gravitational lenses. It was not until 1979 that this effect was confirmed by observation of the so-called “Twin QSO” SBS 0957+561… and now today we can prove that it can be observed with a 12″ telescope under the right conditions and a lot of determination.

Bernhard Hubl of Nussbach, Austria is just the kind of astrophotographer to try to capture what might be deemed impossible. “Abell 2218 is a galaxy cluster about 2.1 billion light-years away in the constellation Draco. Acting as a powerful gravitational lens, it magnifies and distorts galaxies lying behind the cluster core into long arcs, as predicted by the General Theory of Relativity.”

Say’s Berhard, “I wanted to know, if I could detect signs of these arcs with a 12″ Newtonian at f=1120mm. After over 12 hours of exposure time under excellent conditions, I know that this is a hard job, but I am glad that I could identify the three brighter arcs.”

And so are we!

Many thanks to Bernhard Hubl for his outstanding sense of curiosity and excellent astrophotography… and to the NorthernGalactic community for the heads up!

First Quasar Gravitational Lens Discovered (w/video)

The quasi-stellar object SDSS J0013+1523 has been shown to warp the light of a background galaxy around it, producing a magnified double-image from our perspective on Earth. Image Credit: Courbin, Meylan, Djorgovski, et al., EPFL/Caltech/WMKO

[/caption]

Gravitation lensing – a phenomenon that falls out of Einstein’s theory of general relativity – has been observed numerous times, making for some fantastic images of rings, arcs and crosses composed of massive galaxies light years away. As the light from a background object is bent by gravity around a foreground object, multiple, magnified images of the background object are produced from our vantage point.

For the first time, a quasar (quasi-stellar object) has been shown to gravitationally lens a galaxy behind it. About a hundred instances of gravitational lenses that consist of a foreground galaxy and a background quasar have been found, but this is the very first time where the opposite is the case; that is, a quasar bending the light from a background galaxy around it to create a multiple image of that galaxy.

Quasars are thought to be the result of a supermassive black hole at the center of a galaxy attempting to swallow up all of the matter that surrounds it. As the matter bunches up when it gets closer to the black hole, it heats up due to friction and begins to emit light across the electromagnetic spectrum. The light from a quasar can outshine an entire galaxy of stars, making it difficult to separate the light from a background galaxy from the overwhelming glare of the quasar itself.

To make this initial detection (there are surely many to follow), astronomers from the EPFL’s Laboratory of Astrophysics in cooperation with Caltech used data from the Sloan Digital Sky Survey (SDSS). They analyzed 22,298 quasars from the SDSS Data Release 7 catalog, and looked for images that had a strongly redshifted emission spectra. According to the paper announcing the results, “In these spectra, we look for emission lines redshifted beyond the redshift of the [quasar].”

In other words, a quasar that is lensing a galaxy in the background will exhibit a higher redshift than one that is not lensing a background galaxy, since the light from the galaxy and the quasar are combined in the SDSS data. So, quasars that had an expected redshift were thrown out, and a statistical analysis of quasars with emission lines that might mimic a gravitational lens eliminated many more of the objects. This left about 14 objects of the 22,298 analyzed as potential candidates. Of these 14, the team selected one to perform follow-up observations on, named SDSS J0013+1523.

SDSS J0013+1523 lies about 1.6 billion light years away, and is lensing a galaxy that is about 7.5 billion light years away from Earth. Using the Keck II telescope, they were able to confirm that SDSS J0013+1523 was indeed lensing the light from a galaxy located behind it. Hubble images of the discovery are in the works.

Here’s a video produced by the EPFL describing the results.

What is significant about this discovery – besides the novel aspect of a quasar acting as a lens – is that it will allow researchers to better refine their understanding of quasars. When light is bent around an object, it bends because of gravity, and gravity is a result of mass. So, something that is very massive will act as a stronger lens than something that is tiny, and the mass of the object doing all of the lensing work – in this case, the foreground quasar – can be determined.

Their results were published in a letter to Astronomy & Astrophysics on July 16th. The original paper is available for your perusal here.

Source: Eurekalert here and here, Arxiv paper here

Stunning Science Using Nature’s Telescope

3Star-birth in SMM J2135-0102 (Credit: M. Swinbank et al./Nature, ESO, APEX; NASA, ESA, SMA)

[/caption]
Einstein started it all, back in 1915.

Eddington picked up the ball and ran with it, in 1919.

And in the last decade or so astronomers have used a MACHO to OLGE CASTLES … yes, I’m talking about gravitational lensing.

Now LABOCA and SABOCA are getting into the act, using Einstein’s theory of general relativity to cast a beady eye upon star birth most fecund, in a galaxy far, far away (and long, long ago).

APEX at Chajnantor (Andreas Lundgren)

How galaxies evolved is one of the most perplexing, challenging, and fascinating topics in astrophysics today. And among the central questions – as yet unanswered – are how quickly stars formed in galaxies far, far away (and so long, long ago), and how such star formation differed from that which we can study, up close and personal, in our own galaxy (and our neighbors). There are lots of clues to suggest that star formation happened very much faster long ago, but because far-away galaxies are both dim and small, and because Nature drapes veils of opaque dust over star birth, there’s not much hard data to put the numerous hypotheses to the test.

Until last year that is.

“One of the brightest sub-mm galaxies discovered so far,” say a multi-national, multi-institution team of astronomers, was “first identified with the LABOCA instrument on APEX in May 2009” (you’d think they’d give it a name like, I don’t know, “LABOCA’s Stunner” or “APEX 1”, but no, dubbed “the Cosmic Eyelash”; formally it’s called SMMJ2135-0102). “This galaxy lies at [a redshift of] 2.32 and its brightness of 106 mJy at 870 μm is due to the gravitational magnification caused by a massive intervening galaxy cluster,” and “high resolution follow-up with the sub-mm array resolves the star-forming regions on scales of just 100 parsecs. These results allow study of galaxy formation and evolution at a level of detail never before possible and provide a glimpse of the exciting possibilities for future studies of galaxies at these early times, particularly with ALMA.” Nature’s telescope giving astronomers ALMA-like abilities, for free.

OK, so what did Mark Swinbank and his colleagues find? “The star-forming regions within SMMJ2135-0102 are ~100 parsecs across, which is 100 times larger than dense giant molecular cloud (GMC) cores, but their luminosities are approximately 100 times higher than expected for typical star-forming regions. Indeed, the luminosity densities of the star-forming regions within SMMJ2135-0102 are comparable to dense GMC cores, but with luminosities ten million times larger. Thus, it is likely that each of the star-forming regions in SMMJ2135-0102 comprises ~ten million dense GMC cores.” That’s pretty mind-blowing; imagine the Orion Nebula (M42, approximately 400 parsecs distant) as one of these star-forming regions!

James Dunlop of the University of Edinburgh suggests that such galaxies as SMMJ2135-0102 formed stars so abundantly because the galaxies still had plenty of gas – the raw material for making stars – and the gravity of the galaxies had had enough time to pull the gas together into cold, compact regions. Before about 10 billion years ago, gravity hadn’t yet drawn enough clumps of gas together, while at later times most galaxies had already run out of gas, he suggests.

But I’m saving the best for last: “the energetics of the star-forming regions within SMMJ2135-0102 are unlike anything found in the present day Universe,” Swinbank et al. write (now there’s an understatement if ever I’ve heard one!), “yet the relations between size and luminosity are similar to local, dense GMC cores, suggesting that the underlying physics of the star-forming processes is similar. Overall, these results suggest that the recipes developed to understand star-forming processes in the Milky Way and local galaxies can be used to model the star formation processes in these high-redshift galaxies.” It’s always good to get confirmation that our understanding of the physics at work so long ago is consistent and sound.

Einstein would have been delighted, and Eddington too.

Sources: “Intense star formation within resolved compact regions in a galaxy at z = 2.3” (Nature), “The Properties of Star-forming Regions within a Galaxy at Redshift 2” (ESO Messenger No. 139), Science News, SciTech, ESO. My thanks to debreuck (ESO’s Carlos De Breuck?) for setting the record straight re the name.

Hubble Confirms Cosmic Acceleration with Weak Lensing

This image shows a smoothed reconstruction of the total (mostly dark) matter distribution in the COSMOS field, created from data taken by the NASA/ESA Hubble Space Telescope and ground-based telescopes.Credit: NASA, ESA, P. Simon (University of Bonn) and T. Schrabback (Leiden Observatory)

[/caption]

Need more evidence that the expansion of the Universe is accelerating? Just look to the Hubble Space Telescope. An international team of astronomers has indeed confirmed that the expansion of the universe is accelerating. The team, led by Tim Schrabback of the Leiden Observatory, conducted an intensive study of over 446,000 galaxies within the COSMOS (Cosmological Evolution Survey) field, the result of the largest survey ever conducted with Hubble. In making the COSMOS survey, Hubble photographed 575 slightly overlapping views of the same part of the Universe using the Advanced Camera for Surveys (ACS) onboard the orbiting telescope. It took nearly 1,000 hours of observations.

In addition to the Hubble data, researchers used redshift data from ground-based telescopes to assign distances to 194,000 of the galaxies surveyed (out to a redshift of 5). “The sheer number of galaxies included in this type of analysis is unprecedented, but more important is the wealth of information we could obtain about the invisible structures in the Universe from this exceptional dataset,” said co-author Patrick Simon from Edinburgh University.

In particular, the astronomers could “weigh” the large-scale matter distribution in space over large distances. To do this, they made use of the fact that this information is encoded in the distorted shapes of distant galaxies, a phenomenon referred to as weak gravitational lensing. Using complex algorithms, the team led by Schrabback has improved the standard method and obtained galaxy shape measurements to an unprecedented precision. The results of the study will be published in an upcoming issue of Astronomy and Astrophysics.

The meticulousness and scale of this study enables an independent confirmation that the expansion of the Universe is accelerated by an additional, mysterious component named dark energy. A handful of other such independent confirmations exist. Scientists need to know how the formation of clumps of matter evolved in the history of the Universe to determine how the gravitational force, which holds matter together, and dark energy, which pulls it apart by accelerating the expansion of the Universe, have affected them. “Dark energy affects our measurements for two reasons. First, when it is present, galaxy clusters grow more slowly, and secondly, it changes the way the Universe expands, leading to more distant — and more efficiently lensed — galaxies. Our analysis is sensitive to both effects,” says co-author Benjamin Joachimi from the University of Bonn. “Our study also provides an additional confirmation for Einstein’s theory of general relativity, which predicts how the lensing signal depends on redshift,” adds co-investigator Martin Kilbinger from the Institut d’Astrophysique de Paris and the Excellence Cluster Universe.

The large number of galaxies included in this study, along with information on their redshifts is leading to a clearer map of how, exactly, part of the Universe is laid out; it helps us see its galactic inhabitants and how they are distributed. “With more accurate information about the distances to the galaxies, we can measure the distribution of the matter between them and us more accurately,” notes co-investigator Jan Hartlap from the University of Bonn. “Before, most of the studies were done in 2D, like taking a chest X-ray. Our study is more like a 3D reconstruction of the skeleton from a CT scan. On top of that, we are able to watch the skeleton of dark matter mature from the Universe’s youth to the present,” comments William High from Harvard University, another co-author.

The astronomers specifically chose the COSMOS survey because it is thought to be a representative sample of the Universe. With thorough studies such as the one led by Schrabback, astronomers will one day be able to apply their technique to wider areas of the sky, forming a clearer picture of what is truly out there.

Source: EurekAlert

Paper: Schrabback et al., ‘Evidence for the accelerated expansion of the Universe from weak lensing tomography with COSMOS’, Astronomy and Astrophysics, March 2010,