Early Galaxy Found from the Cosmic ‘Dark Ages’

In the big image at left, the many galaxies of a massive cluster called MACS J1149+2223 dominate the scene. Gravitational lensing by the giant cluster brightened the light from the newfound galaxy, known as MACS 1149-JD, some 15 times. At upper right, a partial zoom-in shows MACS 1149-JD in more detail, and a deeper zoom appears to the lower right. Image credit: NASA/ESA/STScI/JHU

Take a close look at the pixelated red spot on the lower right portion of the image above, as it might be the oldest thing humanity has ever seen. This is a galaxy from the very early days of the Universe, and the light from the primordial galaxy traveled approximately 13.2 billion light-years before reaching the Spitzer and Hubble space telescopes. The telescopes — and the astronomers using them — had a little help from a gravitational lens effect to be able to see such a faint and distant object, which was shining way back when our Universe was just 500 million years old.

“This galaxy is the most distant object we have ever observed with high confidence,” said Wei Zheng, a principal research scientist in the department of physics and astronomy at Johns Hopkins University in Baltimore who is lead author of a new paper appearing in Nature. “Future work involving this galaxy, as well as others like it that we hope to find, will allow us to study the universe’s earliest objects and how the dark ages ended.”

This ancient and distant galaxy comes from an important time in the Universe’s history — one which astronomers know little about – the early part of the epoch of reionization, when the Universe began to move from the so-called cosmic dark ages. During this period, the Universe went from a dark, starless expanse to a recognizable cosmos full of galaxies. The discovery of the faint, small galaxy opens a window onto the deepest, most remote epochs of cosmic history.

“In essence, during the epoch of reionization, the lights came on in the universe,” said paper co-author Leonidas Moustakas, from JPL.

Because both the Hubble and Spitzer telescopes were used in this observation, this newfound galaxy, named MACS 1149-JD, was imaged in five different wavebands. As part of the Cluster Lensing And Supernova Survey with Hubble Program, the Hubble Space Telescope registered the newly described, far-flung galaxy in four visible and infrared wavelength bands. Spitzer measured it in a fifth, longer-wavelength infrared band, placing the discovery on firmer ground.

Objects at these extreme distances are mostly beyond the detection sensitivity of today’s largest telescopes. To catch sight of these early, distant galaxies, astronomers rely on gravitational lensing, where the gravity of foreground objects warps and magnifies the light from background objects. A massive galaxy cluster situated between our galaxy and MACS 1149-JD magnified the newfound galaxy’s light, brightening the remote object some 15 times and bringing it into view.

Astronomers use redshift to describe cosmic distances, and the ancient but newly-found galaxy has a redshift, of 9.6. The term redshift refers to how much an object’s light has shifted into longer wavelengths as a result of the expansion of the universe.

Based on the Hubble and Spitzer observations, astronomers think the distant galaxy was less than 200 million years old when it was viewed. It also is small and compact, containing only about 1 percent of the Milky Way’s mass. According to leading cosmological theories, the first galaxies indeed should have started out tiny. They then progressively merged, eventually accumulating into the sizable galaxies of the more modern universe.

The epoch of reionization refers to the period in the history of the Universe during which the predominantly neutral intergalactic medium was ionized by the emergence of the first luminous sources, and these first galaxies likely played the dominant role in lighting up the Universe. By studying reionization, astronomers can learn about the process of structure formation in the Universe, and find the evolutionary links between the smooth matter distribution at early times revealed by cosmic microwave background studies, and the highly structured Universe of galaxies and clusters of galaxies at redshifts of 6 and below.

This epoch began about 400,000 years after the Big Bang when neutral hydrogen gas formed from cooling particles. The first luminous stars and their host galaxies emerged a few hundred million years later. The energy released by these earliest galaxies is thought to have caused the neutral hydrogen strewn throughout the Universe to ionize, or lose an electron, a state that the gas has remained in since that time.

The paper is available here (pdf document).

Source: JPL

Effects of Einstein’s Elusive Gravitational Waves Observed

Chandra data (above, graph) on J0806 show that its X-rays vary with a period of 321.5 seconds, or slightly more than five minutes. This implies that the X-ray source is a binary star system where two white dwarf stars are orbiting each other (above, illustration) only 50,000 miles apart, making it one of the smallest known binary orbits in the Galaxy. According to Einstein's General Theory of Relativity, such a system should produce gravitational waves - ripples in space-time - that carry energy away from the system and cause the stars to move closer together. X-ray and optical observations indicate that the orbital period of this system is decreasing by 1.2 milliseconds every year, which means that the stars are moving closer at a rate of 2 feet per year.
Potential stellar collision. Credit: Chandra

Two white dwarfs similar to those in the system SDSS J065133.338+284423.37 spiral together in this illustration from NASA. Credit: D. Berry/NASA GSFC

Locked in a spiraling orbital embrace, the super-dense remains of two dead stars are giving astronomers the evidence needed to confirm one of Einstein’s predictions about the Universe.

A binary system located about 3,000 light-years away, SDSS J065133.338+284423.37 (J0651 for short) contains two white dwarfs orbiting each other rapidly — once every 12.75 minutes. The system was discovered in April 2011, and since then astronomers have had their eyes — and four separate telescopes in locations around the world — on it to see if gravitational effects first predicted by Einstein could be seen.

According to Einstein, space-time is a structure in itself, in which all cosmic objects — planets, stars, galaxies — reside. Every object with mass puts a “dent” in this structure in all dimensions; the more massive an object, the “deeper” the dent. Light energy travels in a straight line, but when it encounters these dents it can dip in and veer off-course, an effect we see from Earth as gravitational lensing.

Einstein also predicted that exceptionally massive, rapidly rotating objects — such as a white dwarf binary pair — would create outwardly-expanding ripples in space-time that would ultimately “steal” kinetic energy from the objects themselves. These gravitational waves would be very subtle, yet in theory, observable.

Read: Astronomy Without a Telescope: Gravitational Waves

What researchers led by a team at The University of Texas at Austin have found is optical evidence of gravitational waves slowing down the stars in J0651. Originally observed in 2011 eclipsing each other (as seen from Earth) once every six minutes, the stars now eclipse six seconds sooner. This equates to a predicted orbital period reduction of about 0.25 milliseconds each year.*

“These compact stars are orbiting each other so closely that we have been able to observe the usually negligible influence of gravitational waves using a relatively simple camera on a 75-year-old telescope in just 13 months,” said study lead author J.J. Hermes, a graduate student at The University of Texas at Austin.

Based on these measurements, by April 2013 the stars will be eclipsing each other 20 seconds sooner than first observed. Eventually they will merge together entirely.

Although this isn’t “direct” observation of gravitational waves, it is evidence inferred by their predicted effects… akin to watching a floating lantern in a dark pond at night moving up and down and deducing that there are waves present.

“It’s exciting to confirm predictions Einstein made nearly a century ago by watching two stars bobbing in the wake caused by their sheer mass,” said Hermes.

As of early last year NASA and ESA had a proposed mission called LISA (Laser Interferometer Space Antenna) that would have put a series of 3 detectors into space 5 million km apart, connected by lasers. This arrangement of precision-positioned spacecraft could have detected any passing gravitational waves in the local space-time neighborhood, making direct observation possible. Sadly this mission was canceled due to FY2012 budget cuts for NASA, but ESA is moving ahead with developments for its own gravitational wave mission, called eLISA/NGO — the first “pathfinder” portion of which is slated to launch in 2014.

The study was submitted to Astrophysical Journal Letters on August 24. Read more on the McDonald Observatory news release here.

Inset image: simulation of binary black holes causing gravitational waves – C. Reisswig, L. Rezzolla (AEI); Scientific visualization – M. Koppitz (AEI & Zuse Institute Berlin)

*The difference in the eclipse time is noted as six seconds even though the orbital period decay of the two stars is only .25 milliseconds/year because of a pile-up effect of all the eclipses observed since April 2011. The measurements made by the research team takes into consideration the phase change in the J0651 system, which experiences a piling effect — similar to an out-of-sync watch — that increases relative to time^2 and is therefore a larger and easier number to detect and work with. Once that was measured, the actual orbital period decay could be figured out.

Mysterious Arc of Light Spotted with Spitzer Telescope

From a JPL press release:

Seeing is believing, except when you don’t believe what you see. Astronomers using NASA’s Hubble Space Telescope have found a puzzling arc of light behind an extremely massive cluster of galaxies residing 10 billion light-years away. The galactic grouping, discovered by NASA’s Spitzer Space Telescope, was observed as it existed when the universe was roughly a quarter of its current age of 13.7 billion years.

The giant arc is the stretched shape of a more distant galaxy whose light is distorted by the monster cluster’s powerful gravity, an effect called gravitational lensing. The trouble is, the arc shouldn’t exist.

“When I first saw it, I kept staring at it, thinking it would go away,” said study leader Anthony Gonzalez of the University of Florida in Gainesville, whose team includes researchers from NASA’s Jet Propulsion Laboratory, Pasadena, Calif. “According to a statistical analysis, arcs should be extremely rare at that distance. At that early epoch, the expectation is that there are not enough galaxies behind the cluster bright enough to be seen, even if they were ‘lensed,’ or distorted by the cluster. The other problem is that galaxy clusters become less massive the further back in time you go. So it’s more difficult to find a cluster with enough mass to be a good lens for gravitationally bending the light from a distant galaxy.”

Galaxy clusters are collections of hundreds to thousands of galaxies bound together by gravity. They are the most massive structures in our universe. Astronomers frequently study galaxy clusters to look for faraway, magnified galaxies behind them that would otherwise be too dim to see with telescopes. Many such gravitationally lensed galaxies have been found behind galaxy clusters closer to Earth.

The surprise in this Hubble observation is spotting a galaxy lensed by an extremely distant cluster. Dubbed IDCS J1426.5+3508, the cluster is the most massive found at that epoch, weighing as much as 500 trillion suns. It is 5 to 10 times larger than other clusters found at such an early time in the history of the universe. The team spotted the cluster in a search using NASA’s Spitzer Space Telescope in combination with archival optical images taken as part of the National Optical Astronomy Observatory’s Deep Wide Field Survey at the Kitt Peak National Observatory, Tucson, Ariz. The combined images allowed them to see the cluster as a grouping of very red galaxies, indicating they are far away.

This unique system constitutes the most distant cluster known to “host” a giant gravitationally lensed arc. Finding this ancient gravitational arc may yield insight into how, during the first moments after the Big Bang, conditions were set up for the growth of hefty clusters in the early universe.

The arc was spotted in optical images of the cluster taken in 2010 by Hubble’s Advanced Camera for Surveys. The infrared capabilities of Hubble’s Wide Field Camera 3 helped provide a precise distance, confirming it to be one of the farthest clusters yet discovered.

Once the astronomers determined the cluster’s distance, they used Hubble, the Combined Array for Research in Millimeter-wave Astronomy (CARMA) radio telescope, and NASA’s Chandra X-ray Observatory to independently show that the galactic grouping is extremely massive.

“The chance of finding such a gigantic cluster so early in the universe was less than one percent in the small area we surveyed,” said team member Mark Brodwin of the University of Missouri-Kansas City. “It shares an evolutionary path with some of the most massive clusters we see today, including the Coma cluster and the recently discovered El Gordo cluster.”

An analysis of the arc revealed that the lensed object is a star-forming galaxy that existed 10 billion to 13 billion years ago. The team hopes to use Hubble again to obtain a more accurate distance to the lensed galaxy.

The team’s results are described in three papers, which will appear online today and will be published in the July 10, 2012 issue of The Astrophysical Journal. Gonzalez is the first author on one of the papers; Brodwin, on another; and Adam Stanford of the University of California at Davis, on the third. Daniel Stern and Peter Eisenhardt of JPL are co-authors on all three papers.

Lead image caption: These images, taken by NASA’s Hubble Space Telescope, show an arc of blue light behind an extremely massive cluster of galaxies residing 10 billion light-years away. Image credit: NASA/ESA/University of Florida, Gainsville/University of Missouri-Kansas City/UC Davis

Hubble Captures Giant Lensed Galaxy Arc

Thanks to the presence of a natural "zoom lens" in space, this is a close-up look at the brightest distant "magnified" galaxy in the universe known to date. Credit: NASA, ESA, J. Rigby (NASA Goddard Space Flight Center), K. Sharon (Kavli Institute for Cosmological Physics, University of Chicago), and M. Gladders and E. Wuyts (University of Chicago)

[/caption]

Less than a year ago, the Hubble Space Telescope’s Wide Field Camera 3 captured an amazing image – a giant lensed galaxy arc. Gravitational lensing produces a natural “zoom” to observations and this is a look at one of the brightest distant galaxies so far known. Located some 10 billion light years away, the galaxy has been magnified as a nearly 90-degree arc of light against the galaxy cluster RCS2 032727-132623 – which is only half the distance. In this unusual case, the background galaxy is over three times brighter than typically lensed galaxies… and a unique look back in time as to what a powerful star-forming galaxy looked like when the Universe was only about one third its present age.

A team of astronomers led by Jane Rigby of NASA’s Goddard Space Flight Center in Greenbelt, Maryland are the parties responsible for this incredible look back into time. It is one of the most detailed looks at an incredibly distant object to date and their results have been accepted for publication in The Astrophysical Journal, in a paper led by Keren Sharon of the Kavli Institute for Cosmological Physics at the University of Chicago. Professor Michael Gladders and graduate student Eva Wuyts of the University of Chicago were also key team members.

“The presence of the lens helps show how galaxies evolved from 10 billion years ago to today. While nearby galaxies are fully mature and are at the tail end of their star-formation histories, distant galaxies tell us about the universe’s formative years. The light from those early events is just now arriving at Earth.” says the team. “Very distant galaxies are not only faint but also appear small on the sky. Astronomers would like to see how star formation progressed deep within these galaxies. Such details would be beyond the reach of Hubble’s vision were it not for the magnification made possible by gravity in the intervening lens region.”

This graphic shows a reconstruction (at lower left) of the brightest galaxy whose image has been distorted by the gravity of a distant galaxy cluster. The small rectangle in the center shows the location of the background galaxy on the sky if the intervening galaxy cluster were not there. The rounded outlines show distinct, distorted images of the background galaxy resulting from lensing by the mass in the cluster. The image at lower left is a reconstruction of what the lensed galaxy would look like in the absence of the cluster, based on a model of the cluster's mass distribution derived from studying the distorted galaxy images. Illustration Credit: NASA, ESA, and Z. Levay (STScI) Science Credit: NASA, ESA, J. Rigby (NASA Goddard Space Flight Center), K. Sharon (Kavli Institute for Cosmological Physics, University of Chicago), and M. Gladders and E. Wuyts (University of Chicago)

But the Hubble isn’t the only eye on the sky examining this phenomenon. A little over 10 years ago a team of astronomers using the Very Large Telescope in Chile also measured and examined the arc and reported the distant galaxy seems to be more than three times brighter than those previously discovered. However, there’s more to the picture than meets the eye. Original images show the magnified galaxy as hugely distorted and it shows itself more than once in the foreground lensing cluster. The challenge was to create a image that was “true to life” and thanks to Hubble’s resolution capabilities, the team was able to remove the distortions from the equation. In this image they found several incredibly bright star-forming regions and through the use of spectroscopy, they hope to better understand them.

Original Story Source: Hubble News Release.

Distant Invisible Galaxy Could be Made Up Entirely of Dark Matter

The gravitational lens B1938+666 as seen in the infrared when observed with the 10-meter Keck II telescope. Credit: D. Lagattuta / W. M. Keck Observatory

[/caption]

Astronomers can’t see it but they know it’s out there from the distortions caused by its gravity. That statement describes dark matter, the elusive substance which scientists have estimated makes up about 25% of our universe and doesn’t emit or absorb light. But it also describes a distant, tiny galaxy located about 10 billion light years from Earth. This galaxy can’t be seen in telescopes, but astronomers were able to detect its presence through the small distortions made in light that passes by it. This dark galaxy is the most distant and lowest-mass object ever detected, and astronomers say it could help them find similar objects and confirm or reject current cosmological theories about the structure of the Universe.

“Now we have one dark satellite [galaxy],” said Simona Vegetti, a postdoctoral researcher at the Massachusetts Institute of Technology, who led the discovery. “But suppose that we don’t find enough of them — then we will have to change the properties of dark matter. Or, we might find as many satellites as we see in the simulations, and that will tell us that dark matter has the properties we think it has.”

This dwarf galaxy is a satellite of a distant elliptical galaxy, called JVAS B1938 + 666. The team was looking for faint or dark satellites of distant galaxies using gravitational lensing, and made their observations with the Keck II telescope on Mauna Kea in Hawaii, along with the telescope’s adaptive optics to limit the distortions from our own atmosphere.

They found two galaxies aligned with each other, as viewed from Earth, and the nearer object’s gravitational field deflected the light from the more distant object (JVAS B1938 + 666) as the light passed through the dark galaxy’s gravitational field, creating a distorted image called an “Einstein Ring.”

Using data from this effect, the mass of the dark galaxy was found to be 200 million times the mass of the Sun, which is similar to the masses of the satellite galaxies found around our own Milky Way. The size, shape and brightness of the Einstein ring depends on the distribution of mass throughout the foreground lensing galaxy.

Current models suggest that the Milky Way should have about 10,000 satellite galaxies, but only 30 have been observed. “It could be that many of the satellite galaxies are made of dark matter, making them elusive to detect, or there may be a problem with the way we think galaxies form,” Vegetti said.

The dwarf galaxy is a satellite, meaning that it clings to the edges of a larger galaxy. Because it is small and most of the mass of galaxies is not made up of stars but of dark matter, distant objects such as this galaxy may be very faint or even completely dark.

“For several reasons, it didn’t manage to form many or any stars, and therefore it stayed dark,” said Vegetti.

Vegetti and her team plan to use the same method to look for more satellite galaxies in other regions of the Universe, which they hope will help them discover more information on how dark matter behaves.

Their research was published in this week’s edition of Nature.

The team’s paper can be found here.

Sources: Keck Observatory, UC Davis, MIT

First-Ever Image of a Black Hole to be Captured by Earth-Sized Scope

Spitzer telescope view of the galactic center. (NASA/JPL-Caltech/S. Stolovy)

[/caption]

“Sgr A* is the right object, VLBI is the right technique, and this decade is the right time.”

So states the mission page of the Event Horizon Telescope, an international endeavor that will combine the capabilities of over 50 radio telescopes across the globe to create a single Earth-sized telescope to image the enormous black hole at the center of our galaxy. For the first time, astronomers will “see” one of the most enigmatic objects in the Universe.

And tomorrow, January 18, researchers from around the world will convene in Tucson, AZ to discuss how to make this long-standing astronomical dream a reality.

During a conference organized by Dimitrios Psaltis, associate professor of astrophysics at the University of Arizona’s Steward Observatory, and Dan Marrone, an assistant professor of astronomy at the Steward Observatory, astrophysicists, scientists and researchers will gather to coordinate the ultimate goal of the Event Horizon Telescope; that is, an image of Sgr A*’s accretion disk and the “shadow” of its event horizon.

“Nobody has ever taken a picture of a black hole. We are going to do just that.”

– Dimitrios Psaltis, associate professor of astrophysics at the University of Arizona’s Steward Observatory

Sgr A* (pronounced as “Sagittarius A-star”) is a supermassive black hole residing at the center of the Milky Way. It is estimated to contain the equivalent mass of 4 million Suns, packed into an area smaller than the diameter of Mercury’s orbit.

Because of its proximity and estimated mass, Sgr A* presents the largest apparent event horizon size of any black hole candidate in the Universe. Still, its size in the sky is about the same as viewing “a grapefruit on the Moon.”

So what are astronomers expecting to actually “see”?

(Read more: What does a black hole look like?)

A black hole's "shadow", or event horizon. (NASA illustration)

Because black holes by definition are black – that is, invisible in all wavelengths of radiation due to the incredibly powerful gravitational effect on space-time around them – an image of the black hole itself will be impossible. But Sgr A*’s accretion disk should be visible to radio telescopes due to its billion-degree temperatures and powerful radio (as well as submillimeter, near infrared and X-ray) emissions… especially in the area leading up to and just at its event horizon. By imaging the glow of this super-hot disk astronomers hope to define Sgr A*’s Schwarzschild radius – its gravitational “point of no return”.

This is also commonly referred to as its shadow.

The position and existence of Sgr A* has been predicted by physics and inferred by the motions of stars around the galactic nucleus. And just last month a giant gas cloud was identified by researchers with the European Southern Observatory, traveling directly toward Sgr A*’s accretion disk. But, if the EHT project is successful, it will be the first time a black hole will be directly imaged in any shape or form.

“So far, we have indirect evidence that there is a black hole at the center of the Milky Way,” said Dimitrios Psaltis. “But once we see its shadow, there will be no doubt.”

(Read more: Take a trip into our galaxy’s core)

Submillimeter Telescope on Mt. Graham, AZ. (Used with permission from University of Arizona, T. W. Folkers, photographer.)

The ambitious Event Horizon Telescope project will use not just one telescope but rather a combination of over 50 radio telescopes around the world, including the Submillimeter Telescope on Mt. Graham in Arizona, telescopes on Mauna Kea in Hawaii and the Combined Array for Research in Millimeter-wave Astronomy in California, as well as several radio telescopes in Europe, a 10-meter dish at the South Pole and, if all goes well, the 50-radio-antenna capabilities of the new Atacama Large Millimeter Array in Chile. This coordinated group effort will, in effect, turn our entire planet into one enormous dish for collecting radio emissions.

By using long-term observations with Very Long Baseline Interferometry (VLBI) at short (230-450 GHz) wavelengths, the EHT team predicts that the goal of imaging a black hole will be achieved within the next decade.

“What is great about the one in the center of the Milky Way is that is big enough and close enough,” said assistant professor Dan Marrone. “There are bigger ones in other galaxies, and there are closer ones, but they’re smaller. Ours is just the right combination of size and distance.”

Read more about the Tucson conference on the University of Arizona’s news site here, and visit the Event Horizon Telescope project site here.

 

Microlensing Study Says Every Star in the Milky Way has Planets

This artists’s cartoon view gives an impression of how common planets are around the stars in the Milky Way. The planets, their orbits and their host stars are all vastly magnified compared to their real separations. A six-year search that surveyed millions of stars using the microlensing technique concluded that planets around stars are the rule rather than the exception. The average number of planets per star is greater than one. Credit: ESO/M. Kornmesser

[/caption]

How common are planets in the Milky Way? A new study using gravitational microlensing suggests that every star in our night sky has at least one planet circling it. “We used to think that the Earth might be unique in our galaxy,” said Daniel Kubas, a co-lead author of a paper that appears this week in the journal Nature. “But now it seems that there are literally billions of planets with masses similar to Earth orbiting stars in the Milky Way.”

Over the past 16 years, astronomers have detected more than 3,035 exoplanets – 2,326 candidates and 709 confirmed planets orbiting other stars. Most of these extrasolar planets have been discovered using the radial velocity method (detecting the effect of the gravitational pull of the planet on its host star) or the transit method (catching the planet as it passes in front of its star, slightly dimming it.) Those two methods usually tend to find large planets that are relatively close to their parent star.

But another method, gravitational microlensing — where the light from the background star is amplified by the gravity of the foreground star, which then acts as a magnifying glass — is able to find planets over a wide range of mass that are further away from their stars.

Gravitational microlensing method requires that you have two stars that lie on a straight line in relation to us here on Earth. Then the light from the background star is amplified by the gravity of the foreground star, which thus acts as a magnifying glass.

An international team of astronomers used the technique of gravitational microlensing in six-year search that surveyed millions of stars. “We conclude that stars are orbited by planets as a rule, rather than the exception,” the team wrote in their paper.

“We have searched for evidence for exoplanets in six years of microlensing observations,” said lead author Arnaud Cassan from the Institut de Astrophysique in Paris. “Remarkably, these data show that planets are more common than stars in our galaxy. We also found that lighter planets, such as super-Earths or cool Neptunes, must be more common than heavier ones.”

The Milky Way above the dome of the Danish 1.54-metre telescope at ESO's La Silla Observatory in Chile. The central part of the Milky Way is visible behind the dome of the ESO 3.6-metre telescope in the distance. On the right the Magellanic Clouds can be seen. This telescope was a major contributor to the PLANET project to search for exoplanets using microlensing. The picture was taken using a normal digital camera with a total exposure time of 15 minutes. Credit: ESO/Z. Bardon

The astronomers surveyed millions of stars looking for microlensing events, and 3,247 such events in 2002-2007 were spotted in data from the European Southern Observatory’s PLANET and OGLE searches. The precise alignment needed for microlensing is very unlikely, and statistical results were inferred from detections and non-detections on a representative subset of 440 light curves.

Three exoplanets were actually detected: a super-Earth and planets with masses comparable to Neptune and Jupiter. The team said that by microlensing standards, this is an impressive haul, and that in detecting three planets, they were either incredibly lucky despite huge odds against them, or planets are so abundant in the Milky Way that it was almost inevitable.

The astronomers then combined information about the three positive exoplanet detections with seven additional detections from earlier work, as well as the huge numbers of non-detections in the six years’ worth of data (non-detections are just as important for the statistical analysis and are much more numerous, the team said.) The conclusion was that one in six of the stars studied hosts a planet of similar mass to Jupiter, half have Neptune-mass planets and two thirds have super-Earths.

This works out to about 100 billion exoplanets in our galaxy.

The survey was sensitive to planets between 75 million kilometers and 1.5 billion kilometers from their stars (in the Solar System this range would include all the planets from Venus to Saturn) and with masses ranging from five times the Earth up to ten times Jupiter.

This also shows that microlensing is a viable way to find exoplanets. Astronomers hope to use other methods in the future to find even more planets.

“I have a list of 17 different ways to find exoplanets and only five have been used so far,” said Virginia Trimble from the University of California, Irvine and the Las Cumbres Observatory, providing commentary at the American Astronomical Scoeity meeting this week, “I expect we’ll be finding many more planets in the future.”

Sources: Nature, ESO, AAS briefing

Astronomers Witness a Web of Dark Matter

Dark matter in the Universe is distributed as a network of gigantic dense (white) and empty (dark) regions, where the largest white regions are about the size of several Earth moons on the sky. Credit: Van Waerbeke, Heymans, and CFHTLens collaboration.

[/caption]

We can’t see it, we can’t feel it, we can’t even interact with it… but dark matter may very well be one of the most fundamental physical components of our Universe. The sheer quantity of the stuff – whatever it is – is what physicists have suspected helps gives galaxies their mass, structure, and motion, and provides the “glue” that connects clusters of galaxies together in vast networks of cosmic webs.

Now, for the first time, this dark matter web has been directly observed.

An international team of astronomers, led by Dr. Catherine Heymans of the University of Edinburgh, Scotland, and Associate Professor Ludovic Van Waerbeke of the University of British Columbia, Vancouver, Canada, used data from the Canada-France-Hawaii Telescope Legacy Survey to map images of about 10 million galaxies and study how their light was bent by gravitational lensing caused by intervening dark matter.

Inside the dome of the Canada-France-Hawaii Telescope. (CFHT)

The images were gathered over a period of five years using CFHT’s 1×1-degree-field, 340-megapixel MegaCam. The galaxies observed in the survey are up to 6 billion light-years away… meaning their observed light was emitted when the Universe was only a little over half its present age.

The amount of distortion of the galaxies’ light provided the team with a visual map of a dark matter “web” spanning a billion light-years across.

“It is fascinating to be able to ‘see’ the dark matter using space-time distortion,” said Van Waerbeke. “It gives us privileged access to this mysterious mass in the Universe which cannot be observed otherwise. Knowing how dark matter is distributed is the very first step towards understanding its nature and how it fits within our current knowledge of physics.”

This is one giant leap toward unraveling the mystery of this massive-yet-invisible substance that pervades the Universe.

The densest regions of the dark matter cosmic web host massive clusters of galaxies. Credit: Van Waerbeke, Heymans, and CFHTLens collaboration.

“We hope that by mapping more dark matter than has been studied before, we are a step closer to understanding this material and its relationship with the galaxies in our Universe,” Dr. Heymans said.

The results were presented today at the American Astronomical Society meeting in Austin, Texas. Read the release here.

Quadruply Lensed Dwarf Galaxy 12.8 Billion Light Years Away

Galaxy Cluster MACS J0329.6-0211 lenses several background galaxies including a distant dwarf galaxy. CREDIT: A. Zitrin, et al.
Galaxy Cluster MACS J0329.6-0211 lenses several background galaxies including a distant dwarf galaxy. CREDIT: A. Zitrin, et al.

[/caption]

Gravitational lensing is a powerful tool for astronomers that allows them to explore distant galaxies in far more detail than would otherwise be allowed. Without this technique, galaxies at the edge of the visible universe are little more than tiny blobs of light, but when magnified dozens of times by foreground clusters, astronomers are able to explore the internal structural properties more directly.

Recently, astronomers at the University of Heidelberg discovered a gravitational lensed galaxy that ranked among the most distant ever seen. Although there’s a few that beat this one out in distance, this one is remarkable for being a rare quadruple lens.

The images for this remarkable discovery were taken using the Hubble Space Telescope in August and October of this year, using a total of 16 different colored filters as well as additional data from the Spitzer infrared telescope. The foreground cluster, MACS J0329.6-0211, is some 4.6 billion light years distant. In the above image, the background galaxy has been split into four images, labelled by the red ovals and marked as 1.1 – 1.4. They are enlarged in the upper right.

Assuming that the mass of the foreground cluster is concentrated around the galaxies that were visible, the team attempted to reverse the effects the cluster would have on the distant galaxy, which would reverse the distortions. The restored image, also corrected for redshift, is shown in the lower box in the upper right corner.

After correcting for these distortions, the team estimated that the total mass of the distant galaxy is only a few billion times the mass of the Sun. In comparison, the Large Magellanic Cloud, a dwarf satellite to our own galaxy, is roughly ten billion solar masses. The overall size of the galaxy was determined to be small as well. These conclusions fit well with expectations of galaxies in the early universe which predict that the large galaxies in today’s universe were built from the combination of many smaller galaxies like this one in the distant past.

The galaxy also conforms to expectations regarding the amount of heavy elements which is significantly lower than stars like the Sun. This lack of heavy elements means that there should be little in the way of dust grains. Such dust tends to be a strong block of shorter wavelengths of light such as ultraviolet and blue. Its absence helps give the galaxy its blue tint.

Star formation is also high in the galaxy. The rate at which they predict new stars are being born is somewhat higher than in other galaxies discovered around the same distance, but the presence of brighter clumps in the restored image suggest the galaxy may be undergoing some interactions, driving the formation of new stars.

Hubble Telescope Directly Observes Quasar Accretion Disc Surrounding Black Hole

A team of scientists has used the NASA/ESA Hubble Space Telescope to observe a quasar accretion disc — a brightly glowing disc of matter that is slowly being sucked into its galaxy’s central black hole. Their study makes use of a novel technique that uses gravitational lensing to give an immense boost to the power of the telescope. The incredible precision of the method has allowed astronomers to directly measure the disc’s size and plot the temperature across different parts of the disc. Image credit: NASA, ESA, J.A. Munoz (University of Valencia)

[/caption]

Thanks to the magic of the NASA/ESA Hubble Space Telescope, a team of international astronomers have made an incredible observation – a quasar accretion disc surrounding a black hole. By employing a technique known as gravitation lensing, the researchers have been able to get an accurate size measurement and spectral data. While you might not think this exciting at first, know that this type of observation is akin to spotting individual grains of sand on the Moon!

Of course, we know we can’t see a black hole – but we’ve learned a lot about them with time. One of their properties is a bright, visible phenomenon called a quasar. These glowing discs of matter are engaged in orbit around the black hole, much like a coil on an electric stove. As energy is applied, the “coil” heats up and unleashes bright radiation.

“A quasar accretion disc has a typical size of a few light-days, or around 100 billion kilometres across, but they lie billions of light-years away. This means their apparent size when viewed from Earth is so small that we will probably never have a telescope powerful enough to see their structure directly,” explains Jose Munoz, the lead scientist in this study.

Because of the diminutive size of the quasar, most of our understanding of how they work has been based on theory… but great minds have found a way to directly observe their effects. By employing the gravity of stars in an intervening galaxy like a scanning microscope, astronomers have been able to observe the quasar’s light as the stars move. While most of these types of features would be too small to see, the gravitation lensing effect ramps up the strength of the quasar’s light and allows study of the spectra as it cruises across the accretion disc.

This diagram shows how Hubble is able to observe a quasar, a glowing disc of matter around a distant black hole, even though the black hole would ordinarily be too far away to see clearly. Credit: NASA and ESA

By observing a group of gravitationally lensed quasars, the team was able to paint a vivid color portrait of the activity. They were able to pick out small changes between single images and spectral shifts over a period of time. What causes these kaleidoscopic variances? For the most part, it’s the different properties in the gases and dust of the lensing galaxies. Because they travel at different angles to the quasar’s light, scientists were even able to distinguish extinction laws at work.

But there was something special about one of the quasars. Says the Hubble Team, “There were clear signs that stars in the intervening galaxy were passing through the path of the light from the quasar. Just as the gravitational effect due to the whole intervening galaxy can bend and amplify the quasar’s light, so can that of the stars within the intervening galaxy subtly bend and amplify the light from different parts of the accretion disc as they pass through the path of the quasar’s light.”

By documenting these color changes, the team could build a profile of the accretion disc. Unlike our Earthly electric stove coil which glows red as it heats up, the accretion disc of a black hole turns blue as it gets closer to the event horizon. By measuring the blue hue, the team was able to measure the disc diameter and the various tints gave them an indicator of distances from its center. In this case, they found that the disc is between four and eleven light-days across (approximately 100 to 300 billion kilometres). Of course, these are only rough estimates, but considering just how far away we’re looking at such a small object gives these types of observations great potential for future studies… and even improvements on accuracy.

“This result is very relevant because it implies we are now able to obtain observational data on the structure of these systems, rather than relying on theory alone,” says Munoz. “Quasars’ physical properties are not yet well understood. This new ability to obtain observational measurements is therefore opening a new window to help understand the nature of these objects.”

Original Story Source: ESA/Hubble News Release. For Further Reading: A Study of Gravitational Lens Chromaticity With the Hubble Space Telescope.