If a Planet Has a Lot of Methane in its Atmosphere, Life is the Most Likely Cause

This artist’s impression shows the planet K2-18b, it’s host star and an accompanying planet in this system. K2-18b is now the only super-Earth exoplanet known to host both water and temperatures that could support life. UCL researchers used archive data from 2016 and 2017 captured by the NASA/ESA Hubble Space Telescope and developed open-source algorithms to analyse the starlight filtered through K2-18b’s atmosphere. The results revealed the molecular signature of water vapour, also indicating the presence of hydrogen and helium in the planet’s atmosphere.

The ultra-powerful James Webb Space Telescope will launch soon. Once it’s deployed, and in position at the Earth-Sun Lagrange Point 2, it’ll begin work. One of its jobs is to examine the atmospheres of exoplanets and look for biosignatures. It should be simple, right? Just scan the atmosphere until you find oxygen, then close your laptop and head to the pub: Fanfare, confetti, Nobel prize.

Of course, Universe Today readers know it’s more complicated than that. Much more complicated.

In fact, the presence of oxygen is not necessarily reliable. It’s methane that can send a stronger signal indicating the presence of life.

Continue reading “If a Planet Has a Lot of Methane in its Atmosphere, Life is the Most Likely Cause”

You Can See the Spot Where Lava Broke Through the Wall of a Martian Crater and Began Filling it Up

In this image, we can see a small notch in a crater rim with a well-formed channel. Lava appears to have flowed through this notch and filled in this approximately 10-kilometer diameter crater. Image Credit: NASA/JPL/UArizona

At a fundamental level, Mars is a volcanic planet. Its surface is home to the Solar System’s largest extinct volcano, Olympus Mons, and another trio of well-known volcanoes at Tharsis Montes. And those are just the highlights: there are many other volcanoes on the surface. Though that volcanic activity ceased long ago, the planet’s surface tells the tale of a world disrupted and shaped by powerful volcanic eruptions.

Continue reading “You Can See the Spot Where Lava Broke Through the Wall of a Martian Crater and Began Filling it Up”

This is Mawrth Vallis on Mars, and it’s Positively Bursting with Evidence of Past Water Action on Mars

This image shows a small portion of Mawrth Vallis, one of the many outflow channels feeding north into the Chryse Basin. This ancient valley once hosted flowing water. The erosive power of the flowing water rapidly cut down into the underlying layers of rock to expose a host of diverse geologic landforms visible today. Image Credit: NASA/JPL/UArizona

Here on Earth, geologists seek out deep channels into Earth’s rock, carved over the ages by flowing water. The exposed rock walls are like a visual timeline of a region’s geological history. On Mars, the surface water is long gone. But it flowed long enough to expose layers of rock just like here on Earth.

One of those water-exposed areas on Mars is Mawrth Vallis, an outflow channel that feeds into the Chryse Basin.

Continue reading “This is Mawrth Vallis on Mars, and it’s Positively Bursting with Evidence of Past Water Action on Mars”

There’s a Vast Microbial Ecosystem Underneath the Crater that Wiped Out the Dinosaurs

A three-dimensional cross-section of the hydrothermal system in the Chicxulub impact crater and its seafloor vents. The system has the potential for harboring microbial life. Illustration by Victor O. Leshyk for the Lunar and Planetary Institute.

How did life arise on Earth? How did it survive the Hadean eon, a time when repeated massive impacts excavated craters thousands of kilometres in diameter into the Earth’s surface? Those impacts turned the Earth into a hellish place, where the oceans turned to steam, and the atmosphere was filled with rock vapour. How could any living thing have survived?

Ironically, those same devastating impacts may have created a vast subterranean haven for Earth’s early life. Down amongst all those chambers and pathways, pumped full of mineral-rich water, primitive life found the shelter and the energy needed to keep life on Earth going. And the evidence comes from the most well-known extinction event on Earth: the Chicxulub impact event.

Continue reading “There’s a Vast Microbial Ecosystem Underneath the Crater that Wiped Out the Dinosaurs”

What Role do Radioactive Elements Play in a Planet’s Habitability?

Illustration of Kepler-186f, a recently-discovered, possibly Earthlike exoplanet that could be a host to life. Scientists could use this one or one like it to measure planetary entropy production as a prelude to exploration. (NASA Ames, SETI Institute, JPL-Caltech, T. Pyle)
Illustration of Kepler-186f, a recently-discovered, possibly Earthlike exoplanet that could be a host to life. Scientists could use this one or one like it to measure planetary entropy production as a prelude to exploration. (NASA Ames, SETI Institute, JPL-Caltech, T. Pyle)

To date, astronomers have confirmed the existence of 4,301 extrasolar planets in 3,192 star systems, with another 5,650 candidates awaiting confirmation. In the coming years, next-generation telescopes will allow astronomers to directly observe many of these exoplanets and place tighter constraints on their potential habitability. In time, this could lead to the discovery of life beyond our Solar System!

The only problem is, finding evidence of life requires that we know what to look for. According to a new study by an interdisciplinary team of scientists from the University of California Santa Cruz (UCSC), radioactive elements might play a role in planetary habitability. Future studies of rocky exoplanets, they argue, should therefore look for specific isotopes that indicate the presence of long-lived elements like thorium and uranium.

Continue reading “What Role do Radioactive Elements Play in a Planet’s Habitability?”

Scientists in Japan Have Found a Detailed Record of the Earth’s Last Magnetic Reversal, 773,000 Years Ago

Earth Observation has come a long way. But if satellites could orbit closer to Earth, in VLEO, then our observations would be a lot better. Image Credit: NASA Earth Observatory.

Every 200,000 to 300,000 years Earth’s magnetic poles reverse. What was once the north pole becomes the south, and vice versa. It’s a time of invisible upheaval.

The last reversal was unusual because it was so long ago. For some reason, the poles have remained oriented the way they are now for about three-quarters of a million years. A new study has revealed some of the detail of that reversal.

Continue reading “Scientists in Japan Have Found a Detailed Record of the Earth’s Last Magnetic Reversal, 773,000 Years Ago”

Geologists Have Found the Earth’s Missing Tectonic Plate

This image shows plate tectonic reconstruction of western North America 60 million years ago showing subduction of three key tectonic plates, Kula, Farallon and Resurrection. Image Credit: Wu and Fuston 2020.

Northern Canada has been keeping a secret from the rest of the world. It’s home to “Resurrection,” a tectonic plate that has been much theorized but never found until now. A team of researchers used what amounts to a CAT scan of northern Canada and the mantle underneath it to find the missing plate.

Finding it could lead to better hazard prediction and also to finding mineral and hydrocarbon deposits. But better than that, it’s helping scientists piece together Earth’s history.

Continue reading “Geologists Have Found the Earth’s Missing Tectonic Plate”

Ancient Terrain on Venus Looks Like it Was Formed Through Volcanism

A simulated view from above Tellus Tessera, one of the regions on Venus where Byrne et al. identify the presence of layering. Credit: NASA/JPL-Caltech

Ever since NASA’s Magellan orbiter was able to peak beneath Venus’ dense cloud layer and map out the surface, scientists have puzzled over the planet’s geological history. One of the greatest mysteries is the role volcanic activity has played in shaping Venus’ surface. In particular, there are what is known as “tesserae,” tectonically deformed regions on the surface that often stand above the surrounding landscape.

These features comprise about 7% of the planet’s surface and are consistently the oldest features in their immediate surroundings (dating to about 750 million years ago). In a new study, an international team of geologists and Earth scientists showed how a significant portion of these tesserae appear to be made up of layered rock, which is similar to features on Earth that are the result of volcanic activity.

Continue reading “Ancient Terrain on Venus Looks Like it Was Formed Through Volcanism”

A New Mass Extinction has been Discovered, Wiping Out Life 233 Million Years Ago, and Leading to the Rise of the Dinosaurs

Earth Observation has come a long way. But if satellites could orbit closer to Earth, in VLEO, then our observations would be a lot better. Image Credit: NASA Earth Observatory.

Most everybody knows that the dinosaurs perished rapidly in a tumultuous extinction, caused by an asteroid strike about 66 million years ago. But it looks like another extinction prior to the appearance of the dinosaurs paved the way for their long reign. That extinction took place about 233 million years ago.

And scientists have only now discovered it.

Continue reading “A New Mass Extinction has been Discovered, Wiping Out Life 233 Million Years Ago, and Leading to the Rise of the Dinosaurs”

There Could Be Carbon-Rich Exoplanets Made Of Diamonds

llustration of a carbon-rich planet with diamond and silica as main minerals. Water can convert a carbide planet into a diamond-rich planet. In the interior, the main minerals would be diamond and silica (a layer with crystals in the illustration). The core (dark blue) might be iron-carbon alloy. Credit: Shim/ASU/Vecteezy

Scientists are getting better at understanding exoplanets. We now know that they’re plentiful, and that they can even orbit dead white dwarf stars. Researchers are also getting better at understanding how they form, and what they’re made of.

A new study says that some carbon-rich exoplanets could be made of silica, and even diamonds, under the right circumstances.

Continue reading “There Could Be Carbon-Rich Exoplanets Made Of Diamonds”