M31’s Odd Rotation Curve

Early on in astronomical history, galactic rotation curves were expected to be simple; they should operate much like the solar system in which inner objects orbit faster and outer objects slower. To the surprise of many astronomers, when rotation curves were eventually worked out, they appeared mostly flat. The conclusion was that the mass we see was only a small fraction of the total mass and that a mysterious Dark Matter must be holding the galaxies together, forcing them to rotate more like a solid body.

Recent observations of the Andromeda Galaxy’s (M31) rotation curve has shown that there may yet be more to learn. In the outermost edges of the galaxy, the rotation rate has been shown to increase. And M31 isn’t alone. According to Noordermeer et al. (2007) “in some cases, such as UGC 2953, UGC 3993 or UGC 11670 there are indications that the rotation curves start to rise again at the outer edges of the HI discs.” A new paper by a team of Spanish astronomers attempts to explain this oddity.

Although many spiral galaxies have been discovered with the odd rising rotational velocities near their outer edges, Andromeda is both one of the most prominent and the closest. Detailed studies from Corbelli et al. (2010) and Chemin et al. (2009), mapped out the rise in HI gas, showing that the velocity increases some 50 km/s in the outer 7 kiloparsecs mapped. This makes up a significant fraction of the total radius given the studies extended to only ~38 kiloparsecs. While conventional models with Dark Matter are able to reproduce the rotational velocities of the inner portions of the galaxy, they have not explained this outer feature and instead predict that it should slowly fall off.

The new study, led by B. Ruiz-Granados and J.A. Rubino-Martin from the Instituto de Astrofisica de Canarias, attempts to explain this oddity using a force with which astronomers are very familiar: Magnetic fields. This force has been shown to decrease less rapidly than others over galactic distances and in particular, studies of M31’s magnetic field shows that it slowly changes angle with distance from the center of the galaxy. This slowly changing angle works in such a manner as to decrease the angle between the field and the direction of motion of particles within it. As a result, “the field becomes more tightly wound with increasing galactocentric distance” making the decrease in strength even slower.

Although galactic magnetic fields are weak by most standards, the sheer amount of matter they can affect and the charged nature of many gas clouds means that even weak fields may play an important role. M31’s magnetic field has been estimated to be ~4.6 microGauss. When a magnetic field with this value is added into the modeling equations, the team found that it greatly improved the fit of models to the observed rotation curve, matching the increase in rotational velocity.

The team notes that this finding is still speculative as the understanding of the magnetic fields at such distances is based solely on modeling. Although the magnetic field has been explored for the inner portions of the galaxy (roughly the inner 15 kiloparsecs), no direct measurement has yet been made in the regions in question. However, this model makes strict observational predictions which could be confirmed by future missions LOFAR and SKA.

Milky Way Sidelined in Galactic Tug of War

This plot shows the simulated gas distribution of the Magellanic System resulting from the tidal encounter between the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC) as they orbit our home Milky Way Galaxy. Credit: Plot by G. Besla, Milky Way background image by Axel Mellinger (used with permission)

[/caption]

From a Harvard-Smithsonian Center for Astrophysics press release:

The Magellanic Stream is an arc of hydrogen gas spanning more than 100 degrees of the sky as it trails behind the Milky Way’s neighbor galaxies, the Large and Small Magellanic Clouds. Our home galaxy, the Milky Way, has long been thought to be the dominant gravitational force in forming the Stream by pulling gas from the Clouds. A new computer simulation by Gurtina Besla and her colleagues from the Harvard-Smithsonian Center for Astrophysics now shows, however, that the Magellanic Stream resulted from a past close encounter between these dwarf galaxies rather than effects of the Milky Way.

“The traditional models required the Magellanic Clouds to complete an orbit about the Milky Way in less than 2 billion years in order for the Stream to form,” says Besla. Other work by Besla and her colleagues, and measurements from the Hubble Space Telescope by colleague Nitya Kallivaylil, rule out such an orbit, however, suggesting the Magellanic Clouds are new arrivals and not long-time satellites of the Milky Way.

This creates a problem: How can the Stream have formed without a complete orbit about the Milky Way?

To address this, Besla and her team set up a simulation assuming the Clouds were a stable binary system on their first passage about the Milky Way in order to show how the Stream could form without relying on a close encounter with the Milky Way.

The team postulated that the Magellanic Stream and Bridge are similar to bridge and tail structures seen in other interacting galaxies and, importantly, formed before the Clouds were captured by the Milky Way.

“While the Clouds didn’t actually collide,” says Besla, “they came close enough that the Large Cloud pulled large amounts of hydrogen gas away from the Small Cloud. This tidal interaction gave rise to the Bridge we see between the Clouds, as well as the Stream.”

“We believe our model illustrates that dwarf-dwarf galaxy tidal interactions are a powerful mechanism to change the shape of dwarf galaxies without the need for repeated interactions with a massive host galaxy like the Milky Way.”

While the Milky Way may not have drawn the Stream material out of the Clouds, the Milky Way’s gravity now shapes the orbit of the Clouds and thereby controls the appearance of the tail.

“We can tell this from the line-of-sight velocities and spatial location of the tail observed in the Stream today,” says team member Lars Hernquist of the Center.

The paper describing this work has been accepted for publication in the October 1 issue of the Astrophysical Journal Letters and is available online: Simulations of the Magenllanic Stream in a First Infall Scenario.

Astronomy Without A Telescope – Not So Ordinary

The Small and Large Magellanic Clouds - not the kind of things you usually find near large spiral galaxies. Cerro Tololo observatory, Credit: Fred Walker.

[/caption]

Sorry – a bit of southern sky bias in this one. But it does seem that our favourite down under naked eye objects are even more unique than we might have thought. The two dwarf galaxies, the Large and Small Magellanic Clouds, orbit the Milky Way and have bright star forming regions. It would seem that most satellite galaxies, in orbit around other big galaxies, don’t. And, taking this finding a step further, our galaxy may be one of a declining minority of galaxies still dining on gas-filled dwarf galaxies to maintain a bright and youthful appearance.

We used to think that the Sun was an ordinary, unremarkable star – but these days we should acknowledge that it’s out of statistical mid-range, since the most common stars in the visible universe are red dwarfs. Also, most stars are in binary or larger groups – unlike our apparently solitary one.

The Sun is also fortunately positioned in the Milky Way’s habitable zone – not too close-in to be constantly blasted with gamma rays, but close-in enough for there to be plenty of new star formation to seed the interstellar medium with heavy elements. And the Milky Way itself is starting to look a bit out of the ordinary. It’s quite large as spiral galaxies go, bright with active star formation – and it’s got bright satellites.

The Lambda Cold Dark Matter (CDM) model of large scale structure and galaxy formation has it that galaxy formation is a bottom-up process, with the big galaxies we see today having formed from the accretion of smaller structures – including dwarf galaxies – which themselves may have first formed upon some kind of dark matter scaffolding.

Through this building-up process, spinning spiral galaxies with bright star forming regions should become common place – only dimming if they run out of new gas and dust to feast on, only losing their structure if they collide with another big galaxy – first becoming a ‘train wreck’ irregular galaxy and then probably evolving into an elliptical galaxy.

The  Lambda CDM model suggests that other bright spiral galaxies should also be surrounded by lots of gas-filled satellite galaxies, being slowly draw in to feed their host. Otherwise how is it that these spiral galaxies get so big and bright? But, at least for the moment, that’s not what we are finding – and the Milky Way doesn’t seem to be a ‘typical’ example of what’s out there.

The relative lack of satellites observed around other galaxies could mean the era of rapidly accreting and growing galaxies is coming to a close – a point emphasised by the knowledge that we observe distant galaxies at various stages of their past lives anyway. So the Milky Way may already be a relic of a bygone era – one of the last of the galaxies still growing from the accretion of smaller dwarf galaxies.

Supernova 1987a, which exploded near the Tarantula Nebula of the Large Magellanic Cloud. Credit: Anglo-Australian Observatory.

On the other hand – maybe we just have some very unusual satellites. To a distant observer, the Large MC would have nearly a tenth of the luminosity of the Milky Way and the Small MC nearly a fortieth – we don’t find anything like this around most other galaxies. The Clouds may even represent a binary pair which is also fairly unprecedented in any current sky survey data.

They are thought to have passed close together around 2.5 billion years ago – and it’s possible that this event may have set off an extended period of new star formation. So maybe other galaxies do have lots of satellites – it’s just that they are dim and difficult to observe as they are not engaged in new star formation.

Either way, using our galaxy as a basis for modelling how other galaxies work might not be a good idea – apparently it’s not so ordinary.

Further reading: James, P. A. And Ivory C.F. On the scarcity of Magellanic Cloud-like satellites.

The Case of the Missing Bulges

The Hubble sequence is astronomer’s main tool for classifying galaxies. On one side, you have elliptical galaxies with defined structure. As you progress, the galaxies become more stretched out, but still lack definition until suddenly, there’s a bulge in the center and spiral arms! Oh yeah, and then there’s the cousins that no one really likes to hang out with, the “irregular” galaxies, hanging out in the corner.

But there’s another class of galaxies that seems to have fallen off the Hubble wagon. Some spiral galaxies seem to lack defined bulges. These oddities pose a challenge to our understanding of galactic formation.

The current understanding of galactic formation is one of hierarchical merging. Small dwarf galaxies form first, and then form bigger galaxies which merge and continue to eat more dwarf galaxies until a fully fledged galaxy is formed. However, the collisional nature of this formation tends to scatter stars, favoring random orbits towards the center of flattened galaxies, which should create a classical bulge. Galaxies that do not have a bulge, or have a “pseudobulge” (small bulges created by gravitational sorting of stars within an already formed galaxy) don’t seem to fit this picture.

A recent review suggests that galaxies without true bulges are in fact common and include many well-known galaxies such as M101 (the Pinwheel Galaxy) and M33. The team, led by John Kormendy of the University of Texas, Austin, conducted a survey of spiral galaxies in the Local Group to determine just how common they were. To determine the status of the bulge, the team analyzed the physical size of the bulge, its luminosity as a fraction of the overall light output, and the color/age of the stars therein. Bulges that were small, indistinct, and contained stars similar to the color/age of the stars found in the disk were considered examples of the psuedobulges. Ones with significant, bright, and distinctly redder/older bulges were indicative of what would be expected in the classical merger bulge.

The team determined that as much as 58-74% of their sample did not contain a classical bulge. Furthermore, they state, “Almost all of the classical bulges that we do identify – some with substantial uncertainty – are smaller than those normally made in simulations of galaxy formation.” Indeed, included among these galaxies is our own Milky Way which has a very odd, box shaped bulge. The team notes that the velocity distribution of the apparent bulge merges seamlessly into the disk portion of the galaxy as opposed to a discontinuous fit in classical bulges.

Kormendy’s team finds that one way to form such “pure-disk” galaxies is to allow for the possibility of early star formation. According to the paper, this would “give the halo time to grow without forming a classical bulge.”

These findings stand in strong contrast with a study published by the same group in 2009, analyzing the Virgo cluster of galaxies. In that study they found that classical bulge galaxies (including in this study, elliptical galaxies) seemed to dominate. As such, they suggest that the formation of bulges is somehow related to the local environment. Although the question cannot yet be answered, it begs the question for future study: What about our environment is so special that we can form galaxies in a non-merger process? The answer to this question will require further study.

Planck, XMM Newton Find New Galaxy Supercluster

A newly discovered supercluster of galaxies detected by Planck and XMM-Newton. This is the first supercluster to be discovered through its Sunyaev-Zel'dovich Effect. Copyright: Planck image: ESA/LFI & HFI Consortia; XMM-Newton image: ESA

[/caption]

Scanning the sky in microwaves, the Planck mission has obtained its very first images of galaxy clusters, and found a previously unknown supercluster which is among one of the largest objects in the Universe. The supercluster is having an effect on the Cosmic Microwave Background, and the observed distortions of the CMB spectrum are used to detect the density perturbations of the universe, using what is called the Sunyaev–Zel’dovich effect (SZE). This is the first time that a supercluster has been discovered using the SZE. In a collaborative effort, the XMM Newton spacecraft has confirmed the find in X-rays.

Sunyaev-Zel’dovich Effect (SZE) effect describes the change of energy experienced by CMB photons when they encounter a galaxy cluster as they travel towards us, in the process imprinting a distinctive signature on the CMB itself. The SZE represents a unique tool to detect galaxy clusters, even at high redshift. Planck is able to look across nine different microwave frequencies (from 30 to 857 GHz) to remove all sources of contamination from the CMB, and over time, will provide what is hoped to be the sharpest image of the early Universe ever.

“As the fossil photons from the Big Bang cross the Universe, they interact with the matter that they encounter: when travelling through a galaxy cluster, for example, the CMB photons scatter off free electrons present in the hot gas that fills the cluster,” said Nabila Aghanim of the Institut d’Astrophysique Spatiale in Orsay, France, a leading member of the group of Planck scientists investigating SZE clusters and secondary anisotropies. “These collisions redistribute the frequencies of photons in a particular way that enables us to isolate the intervening cluster from the CMB signal.”

Since the hot electrons in the cluster are much more energetic than the CMB photons, interactions between the two typically result in the photons being scattered to higher energies. This means that, when looking at the CMB in the direction of a galaxy cluster, a deficit of low-energy photons and a surplus of more energetic ones is observed.

The SZE signal from the newly discovered supercluster arises from the sum of the signal from the three individual clusters, with a possible additional contribution from an inter-cluster filamentary structure. This provides important clues about the distribution of gas on very large scales which is, in turn, crucial also for tracing the underlying distribution of dark matter.

These images of the Coma cluster (also known as Abell 1656), a very hot and nearby cluster of galaxies, show how it appears through the Sunyaev-Zel'dovich Effect (top left) and X-ray emission (top right). Copyright: Planck image: ESA/ LFI & HFI Consortia; ROSAT image: Max-Planck-Institut für extraterrestrische Physik; DSS image: NASA, ESA, and the Digitized Sky Survey 2. Acknowledgment: Davide De Martin (ESA/Hubble)

“The XMM-Newton observations have shown that one of the candidate clusters is in fact a supercluster composed of at least three individual, massive clusters of galaxies, which Planck alone could not have resolved,” said Monique Arnaud, who leads the Planck group following up sources with XMM-Newton.

“This is the first time that a supercluster has been discovered via the SZE,” said Aghanim. “This important discovery opens a brand new window on superclusters, one which complements the observations of the individual galaxies therein.”

Superclusters are large assemblies of galaxy groups and clusters, located at the intersections of sheets and filaments in the wispy cosmic web. As clusters and superclusters trace the distribution of both luminous and dark matter throughout the Universe, their observation is crucial to probe how cosmic structures formed and evolved.

The first Planck all-sky survey began in mid-August 2009 and was completed in June 2010. Planck will continue to gather data until the end of 2011, during which time it will complete over four all-sky scans.

The Planck team is currently analyzing the data from the first all-sky survey to identify both known and new galaxy clusters for the early Sunyaev-Zel’dovich catalogue, which will be released in January of 2011.

Source: ESA

The Hercules Satellite – A Galactic Transitional Fossil

Smaller satellite galaxies caught by a spiral galaxy are distorted into elongated structures consisting of stars, which are known as tidal streams, as shown in this artist's impression. Credit: Jon Lomberg

[/caption]

On Friday, I wrote about the population of the thick disk and how surveys are revealing that this portion of our galaxy is largely made of stars stolen from cannibalized dwarf galaxies. This fits in well with many other pieces of evidence to build up the general picture of galactic formation that suggests galaxies form through the combination of many small additions as opposed to a single, gigantic collapse. While many streams of what is, presumably, tidally shredded galaxies span the outskirts of the Milky Way, and other objects exist that are still fully formed galaxies, few objects have yet been identified as a satellite that is undergoing the process of tidal disruption.

A new study, to be published in the October issue of the Astrophysical Journal suggests that the Hercules satellite galaxy may be one of the first of this intermediary forms discovered.

In the past decade, numerous minor stellar systems have been discovered in the halo of our Milky Way galaxy. The properties of these systems have suggested to astronomers that they are faint galaxies in their own right. Although many have elongated and elliptical shapes (averaging an ellipticity of 0.47; 0.15 higher than that of brighter dwarf galaxies that orbit further out), simulations have suggested that even these stretched dwarfs are still able to remain largely cohesive. In general, the galaxy will remain intact until it is stretched to an ellipticity of 0.7.  At this point, a minor galaxy will lose ~90% of its member stars and dissolve into a stellar stream.

In 2008, Munoz et al. reported the first Milky Way satellite that was clearly over this limit. The Ursa Major I satellite was shown to have an ellipticity of 0.8. Munoz suggested that this, as well as the Hercules and Ursa Major II dwarfs were undergoing tidal break up.

The new paper, by Nicolas Martin and Shoko Jin, further analyzes this proposition for the Hercules satellite by going further and examining the orbital characteristics to ensure that their passage would continue to distort the galaxy sufficiently. The system already contains an ellipticity of 0.68, which puts it just under the theoretical limit.

The team looked to see just how closely the satellite would pass to our own galactic center. The closer it passed, the more disruption it would feel. By projecting the orbit, they estimated the galaxy would come within ~6 kiloparsecs of the galactic center which is about 40% of the radius of the galaxy overall. While this may not seem especially close Martin and Jin report that they cannot conclude that it will be insufficient. They state that disruption would be dependent on “the properties of the stellar system at that time of its journey in the Milky Way potential and, as such, out of reach to the current observer.”

However, there were some telling signs that the dwarf may already be shedding stars. Along the major axis of the galaxy, deep imaging has revealed a smaller number of stars that does not appear to be bound to the galaxy itself. Photometry of these stars has shown that their distribution on a color-magnitude diagram is strikingly similar to that of the Hercules galaxy itself.

At this point, we cannot fully determine if the Hercules galaxy is doomed to become another stellar stream around the Milky Way, but if it is not truly in the process of breaking up, it seems to be on the very edge.

The Thick Disk: Galactic Construction Project or Galactic Rejects?

Our Milky Way Gets a Makeover
Our Milky Way Gets a Makeover

[/caption]

The disk of spiral galaxies is comprised of two main components: The thin disk holds the majority of stars and gas and is the majority of what we see and picture when we think of spiral galaxies. However, hovering around that, is a thicker disk of stars that is much less populated. This thick disk is distinct from the thin disk in several regards: The stars there tend to be older, metal deficient, and orbit the center of the galaxy more slowly.

But where this population of the stars came from has been a long standing mystery since its identification in the mid 1970’s. One hypothesis is that it is the remainder of cannibalized dwarf galaxies that have never settled into a more standard orbit. Others suggest that these stars have been flung from the thin disk through gravitational slingshots or supernovae. A recent paper puts these hypothesis to the observational test.

At a first glance, both propositions seem to have a firm observational footing. The Milky Way galaxy is known to be in the process of merging with several smaller galaxies. As our galaxy pulls them in, the tidal effects shred these minor galaxies, scattering the stars. Numerous tidal streams of this sort have been discovered already. The ejection from the thin disk gains support from the many known “runaway” and “hypervelocity” stars which have sufficient velocity to escape the thin disk, and in some cases, the galaxy itself.

The new study, led by Marion Dierickx of Harvard, follows up on a 2009 study by Sales et al., which used simulations to examine the features stars would take in the thick disk should they be created via these methods. Through these simulations, Sales showed that the distribution of eccentricities of the orbits should be different and allow a method by which to discriminate between formation scenarios.

By using data from the Sloan Digital Sky Survey Data Release 7 (SDSS DR7), Dierickx’s team compared the distribution of the stars in our own galaxy to the predictions made by the various models. Ultimately, their survey included some 34,000 stars. By comparing the histogram of eccentricities to that of Sales’ predictions, the team hoped to find a suitable match that would reveal the primary mode of creation.

The comparison revealed that, should ejection from the thin disk be the norm there were too many stars in nearly circular orbits as well as highly eccentric ones. In general, the distribution was too wide. However, the match for the scenario of mergers fit well lending strong credence to this hypothesis.

While the ejection hypothesis or others can’t be ruled out completely, it suggests that, at least in our own galaxy, they play a rather minor role. In the future, additional tests will likely be employed, analyzing other aspects of this population.

Spiral Galaxies Could Eat Dwarfs All Across the Universe

Stellar streams around the galaxy M 63. Credit: R. Jay Gabany (Blackbird Obs.) in collaboration with D. Martinez-Delgado (MPIA and IAC) et al.

[/caption]

For years, astronomers have seen evidence that – at least in our own local neighborhood — spiral galaxies are consuming smaller dwarf galaxies. As they are digested, these dwarf galaxies are severely distorted, forming structures like strange, looping tendrils and stellar streams that surround the cannibalistic spirals. But now, for the first time, a new survey has detected such tell-tale structures in galaxies more distant than our immediate galactic neighborhood, providing evidence that this galactic cannibalism might take place on a universal scale. Remarkably, these cutting-edge results were obtained with small, amateur-sized telescopes.


Since 1997, astronomers have seen evidence that spirals in our local group of galaxies are swallowing dwarfs. In fact, our own Milky Way is currently in the process of eating the Canis Major dwarf galaxy and the Sagittarius dwarf galaxy. But the Local group with its three spiral galaxies and numerous dwarfs is much too small a sample to see whether this digestive process is happening elsewhere in the Universe. But an international group of researchers led by David Martínez-Delgado from the Max Planck Institute for Astronomy recently completed a survey of spiral galaxies at distances of up to 50 million light-years from Earth, discovering the tell-tale signs of spirals eating dwarfs.

For their observations, the researchers used small telescopes with apertures between 10 and 50 cm, equipped with commercially available CCD cameras. The telescopes are located at two private observatories — one in the US and one in Australia. They are robotic telescopes that can be controlled remotely.

During the “eating” process, when a spiral galaxy is approached by a much smaller companion, such as a dwarf galaxy, the larger galaxy’s uneven gravitational pull severely distorts the smaller star system. Over the course of a few billions of years, tendril-like structures develop that can be detected by sensitive observation. In one typical outcome, the smaller galaxy is transformed into an elongated “tidal stream” consisting of stars that, over the course of additional billions of years, will join the galaxy’s regular stellar inventory through a process of complete assimilation. The study shows that major tidal streams with masses between 1 and 5 percent of the galaxy’s total mass are quite common in spiral galaxies.

One of the galaxies in the survey, NGC 4651, sports a remarkable umbrella-like structure. It is composed of tidal star streams, the remnants of a smaller satellite galaxy which NGC 4651 has attracted and torn apart. This galaxy's distance from Earth is 35 million light-years.Credit: R. Jay Gabany (Blackbird Obs.) in collaboration with D. Martínez-Delgado (MPIA and IAC) et al.

Detailed simulations depicting the evolution of galaxies predict both tidal streams and a number of other distinct features that indicate mergers, such as giant debris clouds or jet-like features emerging from galactic discs. Interestingly, all these various features are indeed seen in the new observations – impressive evidence that current models of galaxy evolution are indeed on the right track.

Smaller satellite galaxies caught by a spiral galaxy are distorted into elongated structures consisting of stars, which are known as tidal streams, as shown in this artist's impression. Credit: Jon Lomberg

The ultra-deep images obtained by Delgado and his colleagues open the door to a new round of systematic galactic interaction studies. Next, with a more complete survey that is currently in progress, the researchers intend to subject the current models to more quantitative tests, checking whether current simulations make the correct predictions for the relative frequency of the different morphological features.

While larger telescopes have the undeniable edge in detecting very distant, but comparatively bright star systems such as active galaxies, this survey provides some of the deepest insight yet when it comes to detecting ordinary galaxies that are similar to our own cosmic home, the Milky Way. The results attest to the power of systematic work that is possible even with smaller instruments.

For more images see this page from the Max Planck Institute for Astronomy

*Note: Originally the lead image image was credited incorrectly, and is actually a product of R. Jay Gabany, an astrophotographer whose work has been featured quite often here on Universe Today. See more of his amazing handiwork at his website, Cosmotography.

Source: Max Planck Institute for Astronomy

The Black Hole/Globular Cluster Correlation

[/caption]

Often in astronomy, one observable property traces another property which may be more difficult to observe directly; X-ray activity on stars can be used to trace turbulent heating of the photosphere. CO is used to trace cold H2. Sometimes these correlations make sense. Activities in stars produce the X-ray emissions. Other times, the tracer seems distantly related at best.

This is the case of a newly discovered correlation between the mass of the central black hole of galaxies and the number of globular clusters they contain. What can this relationship teach astronomers? Why does it hold for some types of galaxies better than others? And where does it come from in the first place.

The mass of a galaxy’s super massive black hole (SMBH) is known to have a strong relationship between many features of their host galaxies. It has identified to follow the range of velocities of stars in the galaxy, the mass and luminosity of the bulge of spiral galaxies, and the total amount of dark matter in galaxies. Because dark matter in the halo of galaxies and the luminosity have also been known to correspond to the number of globular clusters, Andreas Burkert of the Max-Planck-Institute for Extraterrestrial Physics in Germany, and Scott Tremaine at Princeton wondered if they could cut out the middlemen of dark matter and luminosity and still maintain a strong correlation between the central SMBH and the number of globular clusters.

Their initial investigation involved only 13 galaxies, but a follow-up study by Gretchen and William Harris and submitted to the Monthly Notices of the Royal Astronomical Society, increased the number of galaxies included in the survey to 33. The results of these studies indicated that for elliptical galaxies, the SMBH-GC relationship is evident. However, for lenticular galaxies there was no clear correlation. While there appeared to be a trend for classical spirals, the small number of data points (4) would not provide a strong statistical case independently, but did appear to follow the trend established by the elliptical galaxies.

Although the correlation appeared strong in most cases, about 10% of the galaxies included in the larger surveys were clear outliers. This included the Milky Way which has a SMBH mass that falls significantly short of the expectation from cluster number. One source of error the authors of the original study suspect is that it is possible that, in some cases, objects identified as globular clusters may have been misidentified and in actuality, be the cores of tidally stripped dwarf galaxies. Regardless, the relationship as it stands presently, seems to be quite strong and is even more tightly defined than that of the correlation between that of the SMBH mass and velocity dispersion that implied the potential relationship in the first place. The reason for the discordance in lenticular galaxies has not yet been explained and no reasons have yet been postulated.

But what of the cause of this unusual relation? Both sets of authors suggest the connection lies in the formation of the objects. While distinct in most respects, both are fed by major merger events; Black holes gain mass by accreting gas and globular clusters are often formed from the resulting shocks and interactions. Additionally, the majority of both types of objects formed at high redshifts.

Sources:

A correlation between central supermassive black holes and the globular cluster systems of early-type galaxies

The Globular Cluster/Central Black Hole Connection in Galaxies

Ultraluminous Gamma Ray Burst 080607 – A “Monster in the Dark”

Shedding Light on Dark Gamma Ray Bursts
Shedding Light on Dark Gamma Ray Bursts

[/caption]

Gamma Ray Bursts (GRBs) are among the most energetic phenomena astronomers regularly observe. These events are triggered by massive explosions and a large amount of the energy if focused into narrow beams that sweep across the universe. These beams are so tightly concentrated that they can be seen across the visible universe and allow astronomers to probe the universe’s history. If such an event happened in our galaxy and we stood in the path of the beam, the effects would be pronounced and may lead to large extinctions. Yet one of the most energetic GRBs on record (GRB 080607) was shrouded in cloud of gas and dust dimming the blast by a factor of 20 – 200, depending on the wavelength.  Despite this strong veil, the GRB was still bright enough to be detected by small optical telescopes for over an hour. So what can this hidden monster tell astronomers about ancient galaxies and GRBs in general?

GRB 080607 was discovered on June 6, 2008 by the Swift satellite. Since GRBs are short lived events, searches for them are automated and upon detection, the Swift satellite immediately oriented itself towards the source. Other GRB hunting satellites quickly joined in and ground based observatories, including ROTSE-III and Keck made observations as well. This large collection of instruments allowed astronomers, led by D. A. Perley of UC Berkley, to develop a strong understanding of not just the GRB, but also the obscuring gas. Given that the host galaxy lies at a distance of over 12 billion light years, this has provided a unique probe into the nature of the environment of such distant galaxies.

One of the most surprising features was unusually strong absorption near 2175 °A. Although such absorption has been noticed in other galaxies, it has been rare in galaxies at such large cosmological distances. In the local universe, this feature seems to be most common in dynamically stable galaxies but tends to be “absent in more disturbed locations such as the SMC, nearby starburst galaxies” as well as some regions of the Milky Way which more turbulence is present. The team uses this feature to imply that the host galaxy was stable as well. Although this feature is familiar in nearby galaxies, observing it in this case makes it the furthest known example of this phenomenon. The precise cause of this feature is not yet known, although other studies have indicated “polycyclic aromatic hydrocarbons and graphite” are possible suspects.

Earlier studies of this event have shown other novel spectral features. A paper by Sheffer et al. notes that the spectrum also revealed molecular hydrogen. Again, such a feature is common in the local universe and many other galaxies, but never before has such an observation been made linked to a galaxy in which a GRB has occurred. Molecular hydrogen (as well as other molecular compounds) become disassociated at high temperatures like the ones in galaxies containing large amounts of star formation that would produce regions with large stars capable of triggering GRBs. With observations of one molecule in hand, this lead Sheffer’s team to suspect that there might be large amounts of other molecules, such as carbon monoxide (CO). This too was detected making yet another first for the odd environment of a GRB host.

This unusual environment may help to explain a class of GRBs known as “subluminous optical bursts” or “dark bursts” in which the optical component of the burst (especially the afterglow) is less bright than would be predicted by comparison to more traditional GRBs.

Sources:

Monster in the Dark: The Ultra Luminous GRB 080706 and its Dusty Environment

The Discovery of Vibrationally-Excited H2 In the Molecular Cloud Near GRB 080706

disassociated