NASA Issues Report On Commercial Crew as SpaceX’s CEO Testifies About SpaceX’s Progress

[/caption]
NASA has recently posted the latest update as to how the Commercial Crew Development 2 (CCDev2) program is doing in terms of meeting milestones laid out at the program’s inception. According to the third status report that was released by NASA, CCDev2’s partners continue to meet these objectives. The space agency has worked to provide regular updates about the program’s progress.

“There is a lot happening in NASA’s commercial crew and cargo programs and we want to make sure the public and our stakeholders are informed about the progress industry is making,” said Phil McAlister, NASA’s director of commercial spaceflight development. “It’s exciting to see these spaceflight concepts move forward.”

One of the primary objectives of the Commercial Crew Development program is to cut down the length of time that NASA is forced to rely on Russia for access to the International Space Station. Photo Credit: NASA

Reports on the progress of commercial crew are issued on a bi-monthly basis. The reports are directed toward the primary stakeholder of this program, the U.S. taxpayer. NASA has invested both financial and technical assets in an effort to accelerate the development of commercial access to orbit.

This report came out at the same time as Space Exploration Technologies’ (SpaceX) CEO, Elon Musk, testified before the U.S. House Science, Space, and Technology Committee regarding NASA’s commercial crewed program.

Elon Musk testified before the U.S. House Science, Space, and Technology Committee regarding his company's efforts to provide commercial access to the International Space Station. Photo Credit: SpaceX

SpaceX itself has been awarded $75 million under the CCDev program to develop a launch abort system, known as “DragonRider” that would enable the company’s Dragon spacecraft to transport astronauts. SpaceX was awarded $1.6 billion under the Commercial Orbital Transportation Services or COTS contract with NASA. Under the COTS contract, SpaceX must fly three demonstration flights as well as nine cargo delivery flights to the orbiting outpost. SpaceX is currently working to combine the second and third demonstration flights into one mission, currently scheduled to fly at the end of this year.

During Musk’s comments to the House, he highlighted his company’s efforts to make space travel more accessible.

“America’s endeavors in space are truly inspirational. I deeply believe that human spaceflight is one of the great achievements of humankind. Although NASA only sent a handful of people to the moon, it felt like we all went,” Musk said in a written statement. “We vicariously shared in the adventure and achievement. My goal, and the goal of SpaceX, is to help create the technology so that more can share in that great adventure.”

SpaceX's Falcon 9 launch vehicle is currently being readied for a liftoff date later this year. Photo Credit: Alan Walters/awaltersphoto.com

To date, SpaceX is the only company to have demonstrated the capacity of their launch vehicle as well as a spacecraft. The company launched the first of its Dragon spacecraft atop of its Falcon 9 rocket this past December. The Dragon completed two orbits successfully before splashing down safely off the coast of California.

NASA is relying on companies like SpaceX to develop commercial crew transportation capabilities that could one day send astronauts to and from the International Space Station (ISS). It is hoped that CCDev2 will help reduce U.S. dependence on Russia’s Soyuz spacecraft for access to the ISS. Allowing commercial companies to take over the responsibility of sending crews to the ISS might also allow the space agency focus on sending astronauts beyond low-Earth-orbit for the first time in four decades.

SpaceX's Dragon spacecraft recently arrived at the firm's hangar located at Cape Canaveral Air Force Station's Space Launch Complex-40 (SLC-40). Photo Credit: Alan Walters/awaltersphoto.com

Here There Be Dragons: SpaceX’s Spacecraft Arrives at Launch Complex 40

[/caption]
CAPE CANAVERAL, Fla – Space Exploration Technologies (SpaceX) welcomed a new guest to Space Launch Complex 40 (SLC-40) on Sunday – the next Dragon spacecraft that is set to launch later this year. Members of the media were invited to a photo opportunity to chronicle the Dragon spacecraft’s arrival which had been delayed a day due to issues with travel permits.

The Dragon that arrived on Sunday is destined to fly to the International Space Station (ISS). It will be the first time that a private firm docks with the space station. The COTS Demo 2 Dragon was shipped from SpaceX’s facilities in Hawthorne, California to Cape Canaveral in Florida.

SpaceX's next Dragon spacecraft, the one set to fly to the International Space Station, was delivered to Cape Canaveral Air Force Station's Space Launch Complex 40 on Sunday. Photo Credit: SpaceX

The Falcon 9 rocket, with its Dragon spacecraft payload, is currently scheduled to launch from Cape Canaveral Air Force Station’s SLC-40 on Dec. 19. If all goes as it is currently planned the Dragon will maneuver along side of the orbiting laboratory where the space station’s robot Canadarm 2 will grapple the unmanned spacecraft it and dock it with the station.

“When it comes to the launch day, NASA will determine that, we’re pushing to launch on Dec. 19, but the final “go” date is set by NASA and the range,” said SpaceX’s Vice-President for Communications Bobby Block. “We are currently working to conduct a wet dress rehearsal on November 21st.”

The Dragon spacecraft that is bound for the ISS will ride this Falcon 9 rocket to orbit. The launch date is tentatively set for Dec. 19. Photo Credit: Alan Walters/awaltersphoto.com

SpaceX recently passed a Preliminary Draft Review (PDR) of the Dragon’s Launch Abort System (LAS). This system, which pulls astronauts and their spacecraft to safety in case of some problem with the Falcon 9 launch vehicle, is unlike other systems of its type. Normal abort systems are essentially small rockets affixed to the top of the spacecraft (which is normally on top of the rocket). Not so with SpaceX’s design, dubbed DragonRider – it will be built into the walls of the spacecraft.

The reason for the difference in the abort system’s design is twofold. First, it will drive the costs down (Dragon is being developed as a reusable spacecraft) -whereas traditional abort systems are not capable of being reused. Secondly the system could one day be used as a potential means of landing spacecraft on other terrestrial worlds, such as the planet Mars.

SpaceX has been working with NASA to get the Dragon spacecraft ready for its historic mission. This will mark the first time that many of the systems have been used on an actual mission. Photo Credit: Alan Walters/awaltersphoto.com

This will mark the second demonstration flight that SpaceX will have flown to accomplish the objectives laid out in the Commercial Orbital Transportations Services or COTS contract. The $1.6 billion contract is an effort to ensure that needed cargo is delivered to the station safely and in a timely fashion.

SpaceX so far has launched two of its Falcon 9 rockets – both in 2010. The first flight occurred on June 4, 2010 with the second being launched on Dec. 8, 2010. It was on this second flight that SpaceX became the first private entity to launch a spacecraft into orbit and then safely recover it after it had successfully orbited the Earth twice. Before this only nations were capable of achieving this feat.

“This is very exciting, our last launch was about a year ago, so to have a fully-operational Dragon up-and-ready to make a historic docking to the International Space Station it’s terrifically exciting.” Block said.

SpaceX is working toward expanding the role of not only the Falcon 9 rocket - but the Dragon spacecraft as well. Photo Credit: Alan Walters/awaltersphoto.com

SpaceX Completes Crucial Milestone Toward Launching Astronauts

[/caption]

Space Exploration Technologies (SpaceX) is now one more step closer to sending astronauts to orbit. The commercial space firm announced today that it has completed a successful review of the company’s launch abort system (LAS). SpaceX’s LAS, dubbed “DragonRider” is designed differently than abort systems that have been used in the past.

The first review of the system’s design and its subsequent approval by NASA represents a step toward the realization of the space agency’s current objective of having commercial companies provide access to the International Space Station (ISS) while it focuses on sending astronauts beyond low-Earth-orbit (LEO) for the first time in four decades.

The DragonRider launch abort system would allow astronauts to be safely pulled away from the Falcon 9 launch vehicle in the advent of an emergency. Image Credit: SpaceX

“Each milestone we complete brings the United States one step closer to once again having domestic human spaceflight capability,” said former astronaut Garrett Reisman, who is one of the two program leads who are working on SpaceX’s DragonRider program.

With the space shuttle program over and its fleet of orbiters headed to museums, the United States is paying Russia an estimated $63 million per seat on its Soyuz spacecraft. SpaceX has estimated that, by comparison, flights on a man-rated version of its Dragon spacecraft would cost approximately $20 million. Despite the dramatically lower cost, SpaceX has emphatically stated that safety is one of the key drivers of its spacecraft.

NASA, who currently lacks the capacity to launch astronauts on its own, has to pay fellow space station program partner $63 million a seat on its Soyuz spacecraft. SpaceX has estimated by comparison that flights on a man-rated Dragon would cost around $20 million. Photo Credit: NASA.gov

“Dragon’s integrated launch abort system provides astronauts with the ability to safely escape from the beginning of the launch until the rocket reaches orbit,” said David Giger, the other lead on the DragonRider program. “This level of protection is unprecedented in manned spaceflight history.”

SpaceX had already met three of NASA’s milestones under the Commercial Crew Development (CCDev) contract that the company has signed into with the U.S. space agency. With the Preliminary Design Review or PDR completed of the abort system SpaceX can now rack up another milestone that it has met.

SpaceX is currently working to see that the next flight of its Dragon spacecraft tentatively scheduled for late this year will incorporate mission objectives of both the second and third COTS demonstration flights and be allowed to dock with the International Space Station. Image Credit: SpaceX

Unlike conventional abort systems, which are essentially small, powerful rockets that are attached to the top of the spacecraft, Dragon’s LAS is actually built into the walls of the Dragon. This is not an effort just to make the spacecraft’s abort system unique – rather it is meant as a cost-cutting measure. The Dragon is intended to be reusable, as such its abort system needed to be capable of being reused on later flights as well. Traditional LAS simply do not allow for that. With every successful launch by conventional means – the LAS is lost.

SpaceX is also working to see that this system not only can save astronaut lives in the advent of an emergency – but that it can actually allow the spacecraft to conduct pinpoint landings one day. Not just on Earth – but possibly other terrestrial bodies – including Mars.

SpaceX is hopeful that if all goes well with its DragonRider system that it could one deay be developed to land future versions of the company's spacecraft on other terrestrial bodies - including the planet Mars. Image Credit: SpaceX

To date, SpaceX has launched two of its Falcon 9 launch vehicles. The first occurred on June 4 of 2010 and the second, and the first under the Commercial Orbital Transportation Services (COTS) contract took place six months later on Dec. 8. This second mission was the first to include a Dragon spacecraft, which was recovered in the Pacific Ocean off the coast of California after successfully completing two orbits.

“We have accomplished these four milestones on time and budget, while this is incredibly important, it is business as usual for SpaceX,” said SpaceX’s Vice-President for Communications Bobby Block during an interview. “These are being completed under a Space Act Agreement that demonstrates the innovative and efficient nature of what can be accomplished when the commercial sector and NASA work together.”

SpaceX's Vice-President for Communications, Bobby Block, said that the fact that SpaceX has accomplished these milestones on time and budget should show what can happen when NASA and the private industry work together. Photo Credit: Alan Walters/awaltersphoto.com

Stage Set For SpaceX to Compete for Military Contracts

[/caption]
The United States Air Force has entered into a Memorandum of Understanding or MOU with the National Reconnaissance Office (NRO) and NASA to bring more players into the launch vehicle arena. On Oct. 14, NASA, the NRO and the U.S. Air Force announced plans to certify commercial rockets so that they could compete for future contracts involving Evolved Expendable Launch Vehicle, or EELVs. This means that Space Exploration Technologies’ (SpaceX) could compete for upcoming military contracts.

“This strategy will provide us with the ability to compete in the largest launch market in the world,” said Kirstin Brost Grantham, a spokeswoman with SpaceX. “There are those who are opposed to competition for space launches, they would prefer to see the status quo protected. But SpaceX has shown it is no longer possible to ignore the benefits competition can bring.”

In terms of sheer numbers of launch vehicles purchased – the U.S. Air Force is the largest customer in the world – with the U.S. taxpayer picking up the tab. Therefore it was considered to be in the Air Force’s best interest to find means to reduce this cost. The U.S. Air Force’s requirements are currently handled by United Launch Alliance (ULA) in what is essentially a monopoly (or duopoly considering that ULA is a collective organization – comprised of both Boeing and Lockheed Martin).

The two launch vehicles that ULA provides are the Delta IV and Atlas V family of rockets. Photo Credit: Alan Walters/awaltersphoto.com

“SpaceX welcomes the opportunity to compete for Air Force launches. We are reviewing the MOU, and we expect to have a far better sense of our task after the detailed requirements are released in the coming weeks,” said Adam Harris, SpaceX vice president of government affairs.

The U.S. Department of Defense (DoD) has decided to go ahead with a five-year, 40-booster “block-buy” plan with ULA – despite the fact that the U.S. General Accounting Office’s (GAO) has requested that the DoD rethink that strategy. The GAO stated on Oct. 17, that they are concerned that the DoD is buying too many rockets and at too high of a price.

Under the Evolved Expendable Launch Vehicle Plan, the DoD is set to spend some $15 billion between 2013 and 2017 to acquire some 40 boosters from ULA to send satellites into orbit. For its part, the DoD conceded that it might need to reassess the manner in which it obtained launch vehicles.

As it stand now, United Launch Alliance has a virtual monopoly on providing launch vehicles for the Department of Defense. Photo Credit: Alan Walters/awaltersphoto.com

The new strategy which is set to allow new participants in to bid on DoD and NRO contracts is an attempt to allow the free-market system drive down the cost of rockets. Recently, the price of these rockets has actually increased. The cause for this price increase has been somewhat attributed to the vacuum created by the end of the space shuttle program.

Firms like SpaceX, which seek to compete for military contracts, will have to meet requirements that are laid out in “new entrant certification guides.”
“Fair and open competition for commercial launch providers is an essential element of protecting taxpayer dollars,” said Elon Musk, SpaceX CEO. “Our American-made Falcon vehicles can deliver assured, responsive access to space that will meet warfighter needs while reducing costs for our military customers.”

Space Exploration Technologies (SpaceX) CEO Elon Musk applauded the recent announcement that could see his company competing for military contracts. Photo Credit: Alan Walters/awaltersphoto.com

Lost in Translation: Cyrillic, Semantics and SpaceX

[/caption]
Matters of space flight are no different than other international issues. What is said (or not said as the case may be) can suffer from being “lost in translation.” Such was the case recently when the media (this website included) reported on a Ria Novosti article that claimed that members within the Russian Space Agency had stated opposition to Space Exploration Technologies (SpaceX) docking their next Dragon spacecraft with the International Space Station.

“This was never a SpaceX issue,” said NASA Spokesman Rob Navias during a recent interview. “This was an International Space Program issue – which has final approving authority for any spacecraft set to dock with the International Space Station – be it the HTV, ATV or even Soyuz, they all have to go through the exact same process.”

SpaceX is prepping the next Falcon 9 for launch, liftoff is currently slated to occur no-earler-than Dec. 19. Photo Credit: Alan Walters/awaltersphoto.com

Navias stated emphatically that the Russian Space Agency never stated that they would not allow SpaceX to dock with the ISS – only that they wanted to ensure that the NewSpace firm followed the same procedure required of all other participants on the station (both a Stage Readiness Review as well as a Flight Readiness Review).

“This is basically an issue of semantics, of interpretation,” Navias said. “The Russian media wrote this article and when it was translated – it appeared as if that Russia was saying something – which they simply weren’t.”

The Ria Novosti report is now widely being disputed, by NASA, SpaceX and several other organizations. Photo Credit: Alan Walters/awaltersphoto.com

The partners involved in the International Space Station Program, the United States, Russia, the European Union, Japan and Canada all comprise a committee that determines matters concerning the orbiting laboratory. No one partner has a ‘controlling authority’ over the ISS. A good example of this is when Russia flew Dennis Tito to the ISS in 2001 – over initial U.S. objections.

If all goes according to plan SpaceX will launch the next Falcon 9 rocket with its Dragon spacecraft payload no-earlier-than Dec. 19, 2011 (although technically that launch is still on the books for Nov. 30). The Dragon, if cleared, will conduct station-keeping alongside the ISS where the station’s mobile servicing system (Canadarm 2) will grab it and then it will be docked to the ISS.

This mission could see both COTS 2 and COTS 3 mission objectives combined. Cargo from the International Space Station would then be placed into the Dragon which would return to Earth, splashing down in the Pacific Ocean, off the Coast of California.

If all goes according to plan, the next Dragon spacecraft to be launched will rendezvous with the ISS, where the Canadarm 2 will grapple it and attach it to the orbiting laboratory. Image Credit: SpaceX

SpaceX: Next Dragon to Launch No-Earlier-Than Dec. 19

[/caption]
CAPE CANAVERAL, Fla – The launch date of the next Falcon 9 rocket with its Dragon Spacecraft payload has been announced to occur no-earlier-than Dec. 19. This will mean that it will have been over a year since the last time that the NewSpace firm launched one of its rockets.

“NASA is working with SpaceX on our technical and safety data for this mission while coordinating with its international partners to sort out a launch schedule once a definitive decision is reached on the next Soyuz flight to the International Space Station. As a result, we’ve submitted December 19th to NASA and the Air Force as the first in a range of dates that we would be ready to launch,” said Kirstin Brost Grantham SpaceX’s Communications Director. “We recognize that a target launch date cannot be set until NASA gives us the green light as well as the partners involved in the International Space Station program make a decision on when to continue Soyuz flights. Our flight is one of many that have to be carefully coordinated, so the ultimate schedule of launches to the ISS is still under consideration.”

At a speech at the National Press Club on Thursday, SpaceX founder and CEO Elon Musk also confirmed that the flight of Dragon will likely be delayed — perhaps until January — due to the failure of a Soyuz rocket carrying a Progress re-supply ship to the ISS on August 24, 2011.

“It actually will likely result in a delay to our launch to the ISS,” Musk said, “and NASA rightly wants to have the appropriate level of astronauts with the right training when we arrive, so it looks like January for the launch to space station, and that is contingent upon the Russians meeting the schedule they’ve currently stating.”

The Russian Space Agency has scheduled Progress launches on October 30, 2011, and January 26, 2012, with potential launches for the manned Soyuz-FG spacecraft on November 12 and December 20, 2011.

SpaceX's last launch of a Falcon 9 rocket, seen here, was on Dec. 8 and carried the first of the firm's Dragon spacecraft to orbit: Photo Credit: Alan walters/awaltersphoto.com

SpaceX last launched one of its Falcon 9 rockets on Dec. 8 of last year. That launch saw the first flight of the company’s Dragon Spacecraft, which completed two orbits before splashing safely down in the Pacific Ocean off the coast of California. This event marked the first time that a private entity had accomplished this feat. Up until that time only nations had sent and retrieved spacecraft from orbit.

Also during Musk’s speech on Sept. 29, he announced that SpaceX is developing the world’s first, fully-reusable rocket. Musk said that the development of this as-yet-unnamed rocket, if successful, would greatly reduce the cost of launching to orbit and open the doors to manned flights to Mars. But the SpaceX CEO cautioned that success was not guaranteed.

With the space shuttle fleet retired and being prepared for display in museums and tourist attractions, NASA is relying on many proposed commercial space taxis that, unlike the Dragon which has flown, have yet to be tested. Boeing, Sierra Nevada Corporation and Orbital Sciences Corporation all have proposed designs to ferry astronauts to and from low-Earth-orbit and the International Space Station.