The Case of the Disappearing Planetary Disks

photograph from NASA's Spitzer Space Telescope shows the young star cluster NGC 2362. Credit: NASA/JPL-Caltech/T. Currie (CfA)

[/caption]

After examining the 5-million-year old star cluster NGC 2362, astronomers say that planets like Jupiter must form quickly because the material that form giant gas planets disappears in just few million years in young protoplanetary (planet forming) systems. Using NASA’s Spitzer Space Telescope, astronomers from the Smithsonian Center for Astrophysics found that all stars in this cluster with the mass of the Sun or greater have lost their protoplanetary disks, and only a few stars less massive than the Sun retain their protoplanetary disks. These disks provide the raw material for forming gas giants like Jupiter. Therefore, gas giant planets have to form in less than 5 million years or they probably won’t form at all. However, the material to form rocky terrestrial planets like Earth appears to stick around much longer.

“Even though astronomers have detected hundreds of Jupiter-mass planets around other stars, our results suggest that such planets must form extremely fast. Whatever process is responsible for forming Jupiters has to be incredibly efficient,” said lead researcher Thayne Currie of the Harvard-Smithsonian Center for Astrophysics. Currie presented the team’s findings at a meeting of the American Astronomical Society in Long Beach, California.

Even though nearly all gas giant-forming disks in NGC 2362 have disappeared, several stars in the cluster have “debris disks,” which indicates that smaller rocky or icy bodies such as Earth, Mars, or Pluto may still be forming.

“The Earth got going sooner, but Jupiter finished first, thanks to a big growth spurt,” explained co-author Scott Kenyon.

Kenyon added that while Earth took about 20 to 30 million years to reach its final mass, Jupiter was fully grown in only 2 to 3 million years.

Previous studies indicated that protoplanetary disks disappear within 10 million years. The new findings put even tighter constraints on the time available to create gas giant planets around stars of various masses.

Source: Harvard Smithsonian Center for Astrophysics

Astronomers Now Looking For Exomoons Around Exoplanets

An artist impression of an exomoon orbiting an exoplanet, could the exoplanet's wobble help astronomers? (Andy McLatchie)

[/caption]It looks like astronomers have already grown tired of taking direct observations of exoplanets, been there, done that. So they are now pushing for the next great discovery: the detection of exomoons orbiting exoplanets. In a new study, a British astronomer wants to use a technique more commonly associated with the indirect observation of exoplanets. This technique watches a candidate star to see if it wobbles. The wobble is caused by the gravitational pull of the orbiting exoplanet, revealing its presence.

Now, according to David Kipping, the presence of exomoons can also be detected via the “wobble method”. Track an exoplanet during its orbit around a star to see its own wobble due to the gravitational interaction between the exoplanet/exomoon system. As if we needed any more convincing that this is not already an ‘all kinds of awesome’ project, Kipping has another motivation behind watching exoplanets wobble. He wants to find Earth-like exomoons with the potential for extraterrestrial life…

If you sat me in a room and asked me for ten years over and over again: “If you were an astronomer, and you had infinite funds, what would you want to discover?“, I don’t think I would ever arrive at the answer: the natural satellites orbiting exoplanets.” However, now I have read an article about it and studied the abstracts of a few papers, it doesn’t seem like such a strange proposition.

David Kipping, an astronomer working at the University College London (UCL), has acquired funding to investigate his method of measuring the wobble of exoplanets to reveal the presence of exomoons, and to measure their mass and distance from the exoplanet.

Until now astronomers have only looked at the changes in the position of a planet as it orbits its star. This has made it difficult to confirm the presence of a moon as these changes can be caused by other phenomena, such as a smaller planet,” said Kipping. “By adopting this new method and looking at variations in a planet’s position and velocity each time it passes in front of its star, we gain far more reliable information and have the ability to detect an Earth-mass moon around a Neptune-mass gas planet.”

Kipping’s work appeared in the December 11th Monthly Notices of the Royal Astronomical Society and could help the search for exomoons that lie within the habitable zone. Of the 300+ exoplanets observed so far, 30 are within the habitable zones of their host stars, but the planets themselves are large gas giants, several times the size of Jupiter. These gas giants are therefore assumed to be hostile for the formation for life (life as we know it in any case) and so have been discounted as habitable exoplanets.

But what if these exoplanets in the habitable zone have Earth-like exomoons orbiting them? Could they be detected? It would appear so.

Prof. Keith Mason, Chief Executive of the Science and Technology Facilities Council (STFC), added, “It’s very exciting that we can now gather so much information about distant moons as well as distant planets. If some of these gas giants found outside our Solar System have moons, like Jupiter and Saturn, there’s a real possibility that some of them could be Earth-like.”

Watch this space for an announcement of the first Earth-like exomoon to be discovered, at the rate of current technological advancement in astronomy, we could be looking at our first Earth-like exoplanet exomoon sooner than we anticipated…

Source: New Scientist, STFC

Time Magazine Top 10 Scientific Discoveries of 2008: Space and Physics Dominate

Direct observation of an exoplanet orbiting the star Fomalhaut - Number 6 in the top 10 (NASA/HST)

[/caption]2008 has been an astounding year of scientific discovery. To celebrate this fact, Time Magazine has listed the “Top 10 Scientific Discoveries” where space exploration and physics dominate. Other disciplines are also listed; including zoology, microbiology, technology and biochemistry, but the number 1 slot goes to the most ambitious physics experiment of our time. Can you guess what it is? Also, of all our endeavours in space, can you pick out three that Time Magazine has singled out as being the most important?

As we approach the end of the year, ready to welcome in 2009, it is good to take stock and celebrate the mind-blowing achievements mankind has accomplished. Read on for the top 10 scientific discoveries of 2008

The best thing about writing for a leading space news blog is that you gain wonderful overview to all our endeavours in astronomy, space flight, physics, politics (yes, space exploration has everything to do with politics), space commercialization and science in general. 2008 has been such a rich year for space exploration; we’ve landed probes on other worlds, studied other worlds orbiting distant stars, peered deep into the quantum world, learnt profound things about our own planet, developed cutting-edge instrumentation and redefined the human existence in the cosmos. We might not have all the answers (in fact, I think we are only just beginning to scratch the surface of our understanding of the Universe), but we have embarked on an enlightening journey on which we hope to build strong foundations for the next year of scientific discovery.

In an effort to assemble some of the most profound scientific endeavours of this year, Time Magazine has somehow narrowed the focus down to just 10 discoveries. Out of the ten, four are space and physics related, so here they are:

6. Brave New Worlds: First direct observations of exoplanets

Infrared observations of a multi-exoplanet star system HR 8799 (Keck Observatory)
Infrared observations of a multi-exoplanet star system HR 8799 (Keck Observatory)
In November, we saw a flood of images of alien worlds orbiting distant stars. On the same day, Hubble publicised strikingly sharp images of an exoplanet orbiting a star called Fomalhaut (pictured top) and then a ground-based Keck-Gemini campaign made the first direct observations of a multi-exoplanet system around a star called HR8799 (pictured left). A few days later, yet another image came in from another research group at the European Southern Observatory, spotting the very compact orbit of an exoplanet around the star Beta Pictorus.

Considering there have never been any direct observations of exoplanets before November 2008–although we have known about the presence of worlds orbiting other stars for many years via indirect methods–this has been a revolutionary year for exoplanet hunters.

4. China Soars into Space: First taikonaut carries out successful spacewalk

Zhai Zhigang exits the Shenzhou-7 capsule with Earth overhead (Xinhua/BBC)
Zhai Zhigang exits the Shenzhou-7 capsule with Earth overhead (Xinhua/BBC)
Following hot on the heels of one of the biggest Olympic Games in Beijing, China launched a three-man crew into space to make history. The taikonauts inside Shenzhou-7 were blasted into space by a Long March II-F rocket on September 25th.

Despite early controversy surrounding recorded spaceship transmissions before the rocket had even launched, and then the sustained efforts by conspiracy theorists to convince the world that the whole thing was staged, mission commander Zhai Zhigang did indeed become the first ever Chinese citizen to carry out a spacewalk. Zhai spent 16 minutes outside of the capsule, attached by an umbilical cable, to triumphantly wave the Chinese flag and retrieve a test sample of solid lubricant attached to the outside of the module. His crew mate Liu Boming was also able to do some spacewalking.

Probably the most incredible thing about the first Chinese spacewalk wasn’t necessarily the spacewalk itself, it was the speed at which China managed to achieve this goal in such a short space of time. The first one-man mission into space was in 2003, the second in 2005, and the third was this year. Getting man into space is no easy task, to build an entire manned program in such a short space of time, from the ground-up, is an outstanding achievement.

2. The North Pole – of Mars: The Phoenix Mars Lander

Phoenix (NASA/UA)
Capturing the world's attention: Phoenix (NASA/UA)
Phoenix studied the surface of the Red Planet for five months. It was intended to only last for three. In that time, this robotic explorer captured the hearts and minds of the world; everybody seemed to be talking about the daily trials and tribulations of this highly successful mission. Perhaps it was because of the constant news updates via the University of Arizona website, or the rapid micro-blogging via Twitter; whatever the reason, Phoenix was a short-lived space celebrity.

During the few weeks on Mars, Phoenix discovered water, studied atmospheric phenomena, plus it characterized the regolith to find it is more “soil-like” than we gave it credit for. However, Phoenix also discovered a chemical called perchlorate that could be hazardous to life on the Martian surface, but there is a flip-side to that coin; the chemical may provide energy for basic forms of life.

Like all good adventures there were twists and turns in Phoenix’s progress, with the odd conspiracy thrown in for good measure. Even during Phoenix’s sad, slow death, the lander had some surprises in store before it slowly slipped into a Sun-deprived, low energy coma.

To give the highly communicative lander the last word, MarsPhoenix on Twitter has recently announced: “Look who made Time Mag’s Top 10 list for Scientific Discoveries in 2008: http://tinyurl.com/5mwt2l

1. Large Hadron Collider

The complexity of the Large Hadron Collider (CERN/LHC/GridPP)
The complexity of the Large Hadron Collider (CERN/LHC/GridPP)

Speaking of “capturing the hearts and minds” of the world, the Large Hadron Collider (LHC) has done just that, but not always in a positive way (although common sense seems to be winning). So, in the #1 spot of Time Magazine’s Top 10 Scientific Discoveries of 2008, the LHC is a clear winner.

In the run-up to the switch-on of the LHC in September, the world’s media focused its attention on the grandest physics experiment ever constructed. The LHC will ultimately probe deep into the world of subatomic particles to help to explain some of the fundamental questions of our Universe. Primarily, the LHC has been designed to hunt for the elusive Higgs boson, but the quest will influence many facets of science. From designing an ultra-fast method of data transmission to unfolding the theoretical microscopic dimensions curled up in space-time, the LHC is a diverse science, with applications we won’t fully appreciate for many years.

Unfortunately, as you may be wondering, the LHC hasn’t actually discovered anything yet, but the high-energy collisions of protons and other, larger subatomic particles, will revolutionize physics. I’d argue that the simple fact the multi-billion euro machine has been built is a discovery of how advanced our technological ability is becoming.

Although the first particles were circulated on that historic day on September 10th, we’ll have to wait for the first particle collisions to occur some time in the summer of 2009. Engineers are currently working hard to repair the estimated £14 million (~$20 million) damage caused by the “quench” that knocked out a number of superconducting electromagnets on September 19th.

For more, check out the Top 10 Scientific Discoveries in Time Magazine, there’s another six that aren’t related to space or physics

Carbon Dioxide Detected on Exoplanet HD 189733b

Artist's impression of a transiting exoplanet (ESA - C.Carreau)

[/caption]The Hubble Space Telescope has detected carbon dioxide on a planet orbiting another star. The star in question is HD 189733 (also known as V452 Vulpeculae, a variable star designation), a binary system over 60 light years away, and the planet is approximately the size of Jupiter (called HD 189733b). The exoplanet is already known to contain water and methane molecules from previous Hubble and Spitzer campaigns, but this is the first time CO2 has been discovered.

But why all the fuss? CO2 is another chemical marker for the existance of life. But HD 189733b isn’t a candidate planet for the search for life. After all, this “hot Jupiter” will not be hospitable to the development of even the most basic lifeforms (life as we know it in any case). This discovery is ground-breaking in that CO2 can be sensed on a planet many light years from Earth…

The carbon dioxide is kind of the main focus of the excitement, because that is a molecule that under the right circumstances could have a connection to biological activity as it does on Earth,” said Mark Swain of NASA’s Jet Propulsion Laboratory. “The very fact that we’re able to detect it, and estimate its abundance, is significant for the long-term effort of characterizing planets both to find out what they’re made of and to find out if they could be a possible host for life.”

Indeed, it wasn’t only carbon dioxide that was found; carbon monoxide was also detected in the exoplanet’s atmosphere. But the fact that CO2 is a “tracer” for life and it has been detected on a planet other than a planet known to contain life (Earth) is incredibly significant. As time goes on, observation techniques advance, it is hoped small rocky bodies will be observed. If this can be done, an Earth-like planetary survey can be carried out.

Earth atmospheric molecules detected by Venus Express (ESA)
Earth atmospheric molecules detected by Venus Express (ESA)
In fact, ESA’s Venus Express was recently used to characterize what Earth looks like from a distant vantage point, providing astronomers and future extraterrestrial hunters with a model that can be used when observing distant star systems. If a planet, with a similar chemical composition to that of the Earth is discovered, it would become a prime candidate for harbouring alien life.

So how did Hubble detect CO2 on HD 189733b? Through a spectroscopic analysis of the infrared radiation being emitted by the hot planet, Hubble’s Near Infrared Camera and Multi-Object Spectrometer (NICMOS) spotted an abundance of CO and CO2. Certain molecules in the exoplanet’s atmosphere absorb certain wavelengths of infrared light, leaving a spectroscopic “fingerprint” in the light detected by Hubble.

This kind of campaign is best carried out on star systems with their ecliptic plane seen edge-on to the Earth. This means the orbit of the exoplanet carries it behind the parent star and then infront of it. HD 189733b transits (or eclipses) its parent star every 2.2 days and then orbits behind the star. This is an ideal situation as astronomers are able to measure the emission from the star (when the line of sight to the exoplanet is blocked by the star) and use those measurements to subtract from spectroscopic analysis of the exoplanet. This technique isolates the exoplanet emission making it possible to analyse the chemical composition of its “day-side” atmosphere.

We’re starting to find the molecules and to figure out how many of them there are to see the changes between the day side and the night side,” Swain said.

All these developments by Hubble will aid the future of exoplanet studies. In 2013, NASA’s James Webb Space Telescope will be launched to look out for “super-Earth” exoplanets (i.e. rocky planets larger than Earth), observing in near-infrared wavelengths. Therefore, the carbon dioxide discovery in the atmosphere of HD 189733b helps astronomers refine techniques to detect yet another tracer for life…

Source: HubbleSite

Students Find Exoplanet

Francis Vuijsje, Meta de Hoon, and Remco van der Burg (left to right), discovered an extrasolar planet that is larger than and about five times as massive as Jupiter and orbiting a fast-rotating hot star. Credit: Leiden Observatory

[/caption]
Three undergraduate students doing a research project discovered an extrasolar planet. The planet is about five times as massive as Jupiter, not all that big as far as previously detected exoplanets go. This is also the first planet discovered orbiting a fast-rotating hot star. The students, Meta de Hoon, Remco van der Burg, and Francis Vuijsje from Leiden University in the Netherlands, were testing a method of investigating the light fluctuations of thousands of stars in the OGLE database in an automated way. The brightness of one of the stars was found to decrease for two hours every 2.5 days by about one percent. Follow-up observations, taken with ESO’s Very Large Telescope in Chile, confirmed that this phenomenon is caused by a planet passing in front of the star, blocking part of the starlight at regular intervals. “It is exciting not just to find a planet, but to find one as unusual as this one; it turns out to be the first planet discovered around a fast rotating star, and it’s also the hottest star found with a planet,” says Meta. “The computer needed more than a thousand hours to do all the calculations,” continues Remco.

According to Ignas Snellen, supervisor of the research project, the discovery was a complete surprise. “The project was actually meant to teach the students how to develop search algorithms. But they did so well that there was time to test their algorithm on a so far unexplored database. At some point they came into my office and showed me this light curve. I was completely taken aback!”

The planet is given the prosaic name OGLE2-TR-L9b. “But amongst ourselves we call it ReMeFra-1, after Remco, Meta, and myself,” says Francis.

Artist's impression of the planet OGLE-TR-L9b. Credit: ESO/H. Zodet
Artist's impression of the planet OGLE-TR-L9b. Credit: ESO/H. Zodet

The planet was discovered by looking at the brightness variations of about 15,700 stars, which had been observed by the OGLE survey once or twice per night for about four years between 1997 and 2000. Because the data had been made public, they were a good test case for the students’ algorithm, who showed that for one of stars observed, OGLE-TR-L9, the variations could be due to a transit — the passage of a planet in front of its star. The team then used the GROND instrument on the 2.2 m telescope at ESO’s La Silla Observatory to follow up the observations and find out more about the star and the planet.

“But to make sure it was a planet and not a brown dwarf or a small star that was causing the brightness variations, we needed to resort to spectroscopy, and for this, we were glad we could use ESO’s Very Large Telescope,” says Snellen.

The planet, which is about five times as massive as Jupiter, circles its host star in about 2.5 days. It lies at only three percent of the Earth-Sun distance from its star, making it very hot and much larger than normal planets.

The spectroscopy also showed that the star is pretty hot — almost 7000 degrees, or 1200 degrees hotter than the Sun. It is the hottest star with a planet ever discovered, and it is rotating very fast. The radial velocity method — that was used to discover most extrasolar planets known — is less efficient on stars with these characteristics. “This makes this discovery even more interesting,” concludes Snellen.

Source: ESO

Another Direct Image of an Exoplanet?

Beta Pictorus. Credit: ESO

[/caption]
Have the floodgates opened for imaging exoplanets?! A team of French astronomers using ESO’s Very Large Telescope have discovered an object located very close to the star Beta Pictoris. This object lies only 8 times the Earth-Sun distance, and it’s likely a giant planet that astronomers suspected was there from the peculiar shape of the disc that surrounds the star. If the object is actually a planet, this would then be the first image of a planet that is as close to its host star as Saturn is to the Sun. This comes on the heels of the news of two of the first direct images ever of exoplanets just last week (see here and here).

Only 12 million years old, the ‘baby star’ Beta Pictoris is located about 70 light-years away towards the constellation Pictor (the Painter). The above image is an infrared image, and visible is the dusty debris disk surrounding the star Beta Pictoris. Debris discs are composed of dust resulting from collisions among larger bodies like planetary embryos or asteroids, and they are a bigger version of the zodiacal dust in our Solar System. Its disc was the first to be imaged — as early as 1984 — and remains the best-studied system. Earlier observations showed a warp of the disc, a secondary inclined disc and infalling comets onto the star. “These are indirect, but tell-tale signs that strongly suggest the presence of a massive planet lying between 5 and 10 times the mean Earth-Sun distance from its host star,” says team leader Anne-Marie Lagrange. “However, probing the very inner region of the disc, so close to the glowing star, is a most challenging task.”

Using an adaptive optics system in infrared wavelengths attached to the VLT, the astronomers were able to discern a feeble, point-like glow well inside the star’s halo. To eliminate the possibility that this was an artifact and not a real object, a battery of tests was conducted and several members of the team, using three different methods, did the analysis independently, always with the same success. Moreover, the companion was also discovered in other data sets, further strengthening the team’s conclusion: the companion is real.

“Our observations point to the presence of a giant planet, about 8 times as massive as Jupiter and with a projected distance from its star of about 8 times the Earth-Sun distance, which is about the distance of Saturn in our Solar System,” says Lagrange.

“We cannot yet rule out definitively, however, that the candidate companion could be a foreground or background object,” cautions co-worker Gael Chauvin. “To eliminate this very small possibility, we will need to make new observations that confirm the nature of the discovery.”

The fact that the candidate companion lies in the plane of the disc also strongly implies that it is bound to the star and its proto-planetary disc.

“Moreover, the candidate companion has exactly the mass and distance from its host star needed to explain all the disc’s properties. This is clearly another nail in the coffin of the false alarm hypothesis,” adds Lagrange.

Candidate planetary systems imaged.  Credit: ESO
Candidate planetary systems imaged. Credit: ESO

When confirmed, this candidate companion will be the closest planet from its star ever imaged. In particular, it will be located well inside the orbits of the outer planets of the Solar System. Several other planetary candidates have indeed been imaged, but they are all located further away from their host star: if located in the Solar System, they would lie close or beyond the orbit of the farthest planet, Neptune. The formation processes of these distant planets are likely to be quite different from those in our Solar System and in Beta Pictoris.

“Direct imaging of extrasolar planets is necessary to test the various models of formation and evolution of planetary systems. But such observations are only beginning. Limited today to giant planets around young stars, they will in the future extend to the detection of cooler and older planets, with the forthcoming instruments on the VLT and on the next generation of optical telescopes,” concludes team member Daniel Rouan.

For a list of candidate exoplanets directly imaged, see this link.

Source: ESO

Hubble Takes First Visible Light Image of Extrasolar Planet

Fomalhaut and orbiting planet. Credit: NASA, ESA and P. Kalas (University of California, Berkeley, USA)

[/caption]
Persistence has paid off for astronomer Paul Kalas. After eight years and taking repeated photographs with the Hubble Space Telescope of a nearby star, he finally has what he and many astronomers have been striving for: the first visible-light snapshot of a planet outside our solar system. This coincides with the announcement of the first time astronomers have taken pictures of another multi-planet solar system, using the Gemini and Keck Telescopes. Kalas has been studying the star Fomalhaut, located about 25 light years from Earth, for several years. He knew the planet was there, because its perturbations were evident in the ring of gas and dust surrounding the star. The planet is probably close to the mass of Jupiter, and it orbits Fomalhaut at a distance about four times that between Neptune and the sun. Formally known as Fomalhaut b, the planet could have a ring system about the dimension of Jupiter’s early rings, before the dust and debris coalesced into the four Galilean moons. Learn more in the video below…

The planet’s existence was suspected in 2005, when images Kalas took with the Hubble Space Telescope’s Advanced Camera for Surveys showed a sharply defined inner edge to the dust belt around Fomalhaut, in the southern constellation Piscus Austrinus. The sharp edge and off-center belt suggested to Kalas that a planet in an elliptical orbit around the star was shaping the inner edge of the belt, much like Saturn’s moons groom the edges of its rings.

“The gravity of Fomalhaut b is the key reason that the vast dust belt surrounding Fomalhaut is cleanly sculpted into a ring and offset from the star,” Kalas said. “We predicted this in 2005, and now we have the direct proof.”

Check out this video from ESA about the discovery:

“It will be hard to argue that a Jupiter-mass object orbiting an A star like Fomalhaut is anything other than a planet,” said coauthor James R. Graham, professor of astronomy at UC Berkeley. “That doesn’t mean it’s exactly what we expected when we went hunting for planets in this system.”

“Every planet has a chaotic zone, which is basically a swath of space that encloses the planet’s orbit and from which the planet ejects all particles,” said Eugene Chiang, a UC Berkeley associate professor of astronomy and of earth and planetary science, and first author of the ApJ paper. “This zone increases with the mass of the planet, so, given the size of the chaotic zone around Fomalhaut b, we can estimate that its likely mass is in the vicinity of one Jupiter mass.”

Fomalhaut annotated.  Credit: Credit: NASA, ESA, and Z. Levay (STScI)
Fomalhaut annotated. Credit: Credit: NASA, ESA, and Z. Levay (STScI)

Kalas now has two photographs of the planet, taken in 2004 and 2006, which show that its movement over a 21-month period exactly fits what would be expected from a planet orbiting Fomalhaut every 872 years at a distance of 119 astronomical units, or 11 billion miles. One astronomical unit (AU) is the average distance between the Earth and the sun, or 93 million miles.

“I nearly had a heart attack at the end of May when I confirmed that Fomalhaut b orbits its parent star,” Kalas said. “It’s a profound and overwhelming experience to lay eyes on a planet never before seen.”

Sources: EurekAlert, ESA’s Space Telescope site

First Image of Another Multi-Planet Solar System

Image shows two of the three confirmed planets indicated as "b" and "c" on the image above. "b" is the ~7 Jupiter-mass planet orbiting at about 70 AU, "c" is the ~10 Jupiter-mass planet orbiting the star at about 40 AU. Credit: Gemini Observatory

Here’s what we’ve all been waiting for: for the first time, astronomers have taken pictures of a multi-planet solar system, much like ours, orbiting another star. This coincides with announcement of the first visible light image of an extrasolar planet taken by the Hubble Space Telescope. This new solar system orbits a dusty young star named HR8799, which is 140 light years away and about 1.5 times the size of our sun. Three planets, roughly 10, 10 and 7 times the mass of Jupiter, orbit the star. The size of the planets decreases with distance from the parent star, much like the giant planets do in our system. And there may be more planets out there, but scientists say they just haven’t seen them yet.

“We’ve been trying to image planets for eight years with no luck and now we have pictures of three planets at once,” said Bruce Macintosh, an astrophysicist from Lawrence Livermore National Laboratory.

Using high-contrast, near-infrared adaptive optics observations with the Keck and Gemini telescopes, the team of researchers were able to see three orbiting planetary companions to HR8799.

Astronomers have known for a decade through indirect techniques that the sun was not the only star with orbiting planets.

“But we finally have an actual image of an entire system,” Macintosh said. “This is a milestone in the search and characterization of planetary systems around stars.”

Three exoplanets orbiting a young star 140 light years away are captured using Keck Observatory near-infrared adaptive optics. The planets are labeled and the two outer ones have arrows showing the size of their motion over a 4 year period.
Three exoplanets orbiting a young star 140 light years away are captured using Keck Observatory near-infrared adaptive optics. The planets are labeled and the two outer ones have arrows showing the size of their motion over a 4 year period.

The planets are 24, 37 and 67 times the Earth-sun separation from the host star. The furthest planet in the new system orbits just inside a disk of dusty debris, similar to that produced by the comets of the Kuiper belt of our solar system (just beyond the orbit of Neptune at 30 times Earth-sun distance).

“HR8799’s dust disk stands out as one of the most massive in orbit around any star within 300 light years of Earth” said UCLA’s Ben Zuckerman.

Binocular finder chart for the star HR 8799 in Pegasus.    Credit: "Gemini Observatory Illustration by Stephen James O'Meara"
Binocular finder chart for the star HR 8799 in Pegasus. Credit: “Gemini Observatory Illustration by Stephen James O’Meara”

The host star is known as a bright, blue A-type star. These types of stars are usually ignored in ground and space-based direct imaging surveys since they offer a less favorable contrast between a bright star and a faint planet. But they do have an advantage over our sun: Early in their life, they can retain heavy disks of planet-making material and therefore form more massive planets at wider separations that are easier to detect. In the recent study, the star also is young – less than 100 million years old – which means its planets are still glowing with heat from their formation.

“Seeing these planets directly – separating their light from the star – lets us study them as individuals, and use spectroscopy to study their properties, like temperature or composition,” Macintosh said.

During the past 10 years, various planet detection techniques have been used to find more than 200 exoplanets. But these methods all have limitations. Most infer the existence of a planet through its
influence on the star that it orbits, but don’t actually tell scientists anything about the planet other than its mass and orbit. Second, the techniques are all limited to small to moderate planet-star separation, usually less than about 5 astronomical units.

The planets themselves each appear very interesting.

“Detailed comparison with theoretical model atmospheres confirms that all three planets possess complex atmospheres with dusty clouds partially trapping and re-radiating the escaping heat” said Lowell Observatory astronomer Travis Barman.

Source: Gemini Observatory

Spock’s Solar System Looks Like Ours

This artist's conception shows the closest known planetary system to our own, called Epsilon Eridani. Credit: NASA/JPL/Caltech

[/caption]

Back in 2000, astronomers discovered a Jupiter-sized planet orbiting the nearby star Epsilon Eridani. Since that star system is listed in some Star Trek lore as the location of the fabled planet Vulcan, astronomers joked they had found Spock’s homeworld. But enticing new discoveries of the Epsilon Eridani system implies it could be a younger twin to our own solar system. It has two rocky asteroid belts and an outer icy ring, making it a triple-ring system. The inner asteroid belt looks strikingly similar to the one in our solar system, while the outer asteroid belt holds 20 times more material. All of this material implies that unseen planets lie hidden, shaping the rings. But if another civilization possibly could have developed in this region, let’s hope they are more like Spock than Kirk’s evil twin….

Kirk's evil twin.  Credit: Paramount
Kirk's evil twin. Credit: Paramount


Epsilon Eridani is the ninth closest star to the Sun. It is slightly smaller and cooler than our own Sun, and is located about 10.5 light-years from Earth in the constellation Eridanus. Epsilon Eridani is visible to the unaided eye, and is younger than the Sun, with an approximate age of 850 million years.

Astronomers say Epsilon Eridani and its planetary system show remarkable similarities to our solar system at a comparable age.

“Studying Epsilon Eridani is like having a time machine to look at our solar system when it was young,” said Smithsonian astronomer Massimo Marengo. Dana Backman from the SETI Institute agreed, saying, “This system probably looks a lot like ours did when life first took root on Earth.” The two astronomers’ paper will appear in the Jan. 10 issue of The Astrophysical Journal.

artist's diagram compares the Epsilon Eridani system to our own solar system. Credit:  NASA/JPL/Caltech
artist's diagram compares the Epsilon Eridani system to our own solar system. Credit: NASA/JPL/Caltech

As the above image shows, the two systems are structured similarly, and both host asteroids (brown), comets (blue) and planets (white dots). Epsilon Eridani’s inner asteroid belt is located at about the same position as ours, approximately three astronomical units from its star (an astronomical unit is the distance between Earth and the sun.). The system’s second, denser belt lies at about the same place where Uranus orbits in our solar system, or 20 astronomical units from the star. Epsilon Eridani is thought to have planets orbiting near the rims of its two belts. The “Vulcan” –like home world was identified in 2000 via the radial velocity technique. The second planet orbiting near the rim of the outer asteroid belt at 20 astronomical units was inferred when Spitzer discovered the belt. A third planet might orbit in Epsilon Eridani at the inner edge of its outermost comet ring, which lies between 35 and 90 astronomical units. This planet was first hinted at in 1998 due to observed lumpiness in the comet ring.

When the Sun was 850 million years old, theorists calculate that our Kuiper Belt looked about the same as that of Epsilon Eridani. Since then, much of the Kuiper Belt material was swept away, some hurled out of the solar system and some sent plunging into the inner planets in an event called the Late Heavy Bombardment. (The Moon shows evidence of the Late Heavy Bombardment—giant craters that formed the lunar seas of lava called mare.) It is possible that Epsilon Eridani will undergo a similar dramatic clearing in the future.

“Epsilon Eridani looks a lot like the young solar system, so it’s conceivable that it will evolve similarly,” said Marengo.

The Spitzer data show gaps between each of the three rings surrounding Epsilon Eridani. Such gaps are best explained by the presence of planets that gravitationally mold the rings, just as the moons of Saturn constrain its rings.

“Planets are the easiest way to explain what we’re seeing,” stated Marengo.

Future studies may detect these currently unseen worlds, as well as any terrestrial planets that may orbit inside the innermost asteroid belt.

Source: Harvard Smithsonia CfA

Hottest Ever Exoplanet Discovered: WASP-12b

WASP-12b orbits so close to its star that it is heated to a record-breaking 2250°C (ESA/C Carreau)

[/caption]
Planets approximately the size of Jupiter orbiting close to their star in other systems are often referred to as “Hot Jupiters.” It would appear that a new classification is required: Very Hot and Very Fast Jupiters. WASP-12b is an exoplanet, about 50% more massive than Jupiter, orbiting a star (imaginatively called WASP-12) over 800 light years away, but it isn’t any ordinary exoplanet. It orbits its host star 1/40th of the distance at which the Earth orbits the Sun and it takes a breathtaking one day to complete one orbit. As a consequence, its host star heats WASP-12b to record-breaking temperatures; the planet is being toasted up to 2250 °C. For an exoplanet of this size, to be orbiting so close to a star has caused a stir amongst planet hunters. WASP-12b is and oddity, there’s nothing else like it… so far.

This new discovery originates from the UK’s Wide Area Search for Planets, a.k.a. “SuperWASP”. SuperWASP is a robotic system surveying both hemispheres, consisting of two observatories (one in the Canary Islands, off the coast of Africa, called SuperWASP-North; one in South Africa called SuperWASP-South) with eight cameras in both. The north and south observatories are on the look out for extrasolar planets, but rather than focusing on one star and seeing whether it wobbles (thereby giving away the presence of the gravitational pull of an orbiting planet), SuperWASP looks out for the periodic dimming of stars as their companion planets pass in front of them. Since it began operations in 2004, the two observatories have found 15 transiting exoplanets (as of April 2008).

Artist illustration of the planet orbiting the sun-like star HD 149026 (U.C. Santa Cruz)
Artist illustration of the planet orbiting the sun-like star HD 149026 (U.C. Santa Cruz)
Now, astronomers have focused their attentions on one rather strange exoplanet. When WASP-12b was first seen by the robotic planet spotters, researchers knew they were on to something special. The speed at which WASP-12b was transiting its host star (WASP-12) indicated that it had an orbital period of only 1.1 (Earth) days. This therefore meant that it had to be located very close to the star. This meant that it was going to be hot. Very, very hot in fact. Early estimates put WASP-12b’s surface temperature into the record-breaking range, possibly challenging the calculated temperature of HD 149026b, an exoplanet some 257 light-years away in the constellation of Hercules, with an estimated temperature of 2050°C. WASP-12b has an estimated surface temperature of 2250°C – that’s half as hot as the temperature of our Sun’s photosphere, and approximately the same temperature as many Class M stars.

Although impressive, there may be hotter “Hot Jupiters” out there, but the orbital velocity of WASP-12b will be a tougher record to beat. To date, most Jupiter-sized exoplanets have orbital periods of a few days, which led astronomers to believe there was some planetary mechanism preventing these planets from migrating very close to their host stars. Although Jupiter-like planets will have formed further away from their stars, they drift closer as they evolve until they settle into a stable orbit. Usually these orbits are located far away from the star, but WASP-12b obviously didn’t read the rule book before it set up home in its stellar oven.

When the planets form and migrate inward, something is causing them to stop and preferentially stop with a period of three days,” said Leslie Hebb of the University of St Andrews, UK. “I was surprised that the period could be so much shorter.”

So WASP-12b has a strange orbit, making it orbit very fast, causing it to be heated to astounding temperatures. But the strangeness doesn’t stop there. It has a diameter 1.8 times that of Jupiter, far bigger than gas giants are thought to grow. However, the extreme temperatures WASP-12b is experiencing may explain its obesity problem – the star could be causing the planet to “puff up,” making the gas giant less dense, but blowing it 80% larger than Jupiter proportions.

Now, SuperWASP researchers hope to probe the planetary system for UV light radiating from the exoplanet, possibly showing evidence that WASP-12b’s atmosphere is undergoing aggressive stripping or evaporation at such close proximity to the host star.

Source: New Scientist