Vortex Coronagraph A Game Changer For Seeing Close In Exoplanets

The vortex coronagraph at the Keck Observatory captured this image of the protoplanetary disk surrounding the young star HD 141569. which is about 380 light years from Earth. Image: NASA/JPL-Caltech
The vortex coronagraph at the Keck Observatory captured this image of the protoplanetary disk surrounding the young star HD 141569, which is about 380 light years from Earth. Image: NASA/JPL-Caltech

The study of exoplanets has advanced a great deal in recent years, thanks in large part to the Kepler mission. But that mission has its limitations. It’s difficult for Kepler, and for other technologies, to image regions close to their stars. Now a new instrument called a vortex coronagraph, installed at Hawaii’s Keck Observatory, allows astronomers to look at protoplanetary disks that are in very close proximity to the stars they orbit.

The problem with viewing disks of dust, and even planets, close to their stars is that stars are so much brighter than objects that orbit them. Stars can be billions of times brighter than the planets near them, making it almost impossible to see them in the glare. “The power of the vortex lies in its ability to image planets very close to their star, something that we can’t do for Earth-like planets yet,” said Gene Serabyn of NASA’s Jet Propulsion Laboratory (JPL). “The vortex coronagraph may be key to taking the first images of a pale blue dot like our own.”

“The power of the vortex lies in its ability to image planets very close to their star, something that we can’t do for Earth-like planets yet.” – Gene Serabyn, JPL.

“The vortex coronagraph allows us to peer into the regions around stars where giant planets like Jupiter and Saturn supposedly form,” said Dmitri Mawet, research scientist at NASA’s Jet Propulsion Laboratory and Caltech, both in Pasadena. “Before now, we were only able to image gas giants that are born much farther out. With the vortex, we will be able to see planets orbiting as close to their stars as Jupiter is to our sun, or about two to three times closer than what was possible before.”

Rather than masking the light of stars, like other methods of viewing exoplanets, the vortex coronagraph redirects light away from the detectors by combining light waves and cancelling them out. Because there is no occulting mask, the vortex coronagraph can capture images of regions much closer to stars than other coronagraphs can. Dmitri Mawet, research scientist who invented the new coronagraph, compares it to the eye of a storm.

The vortex mask shown at left is made out of synthetic diamond. When viewed with a scanning electron microscope, right, the "vortex" microstructure of the mask is revealed. Image credit: University of Liège/Uppsala University
The vortex mask shown at left is made out of synthetic diamond. When viewed with a scanning electron microscope, right, the “vortex” microstructure of the mask is revealed. Image credit: University of Liège/Uppsala University

“The instrument is called a vortex coronagraph because the starlight is centered on an optical singularity, which creates a dark hole at the location of the image of the star,” said Mawet. “Hurricanes have a singularity at their centers where the wind speeds drop to zero — the eye of the storm. Our vortex coronagraph is basically the eye of an optical storm where we send the starlight.”

The results from the vortex coronagraph are presented in two papers (here and here) published in the January 2017 Astronomical Journal. One of the studies was led by Gene Serabyn of JPL, who is also head of the Keck vortex project. That study presented the first direct image of HIP79124 B, a brown dwarf that is 23 AU from its star, in the star-forming region called Scorpius-Centaurus.

The vortex coronagraph captured this image of the brown dwarf PIA21417.
The vortex coronagraph captured this image of the brown dwarf PIA21417. Image: NASA/JPL-Caltech

“The ability to see very close to stars also allows us to search for planets around more distant stars, where the planets and stars would appear closer together. Having the ability to survey distant stars for planets is important for catching planets still forming,” said Serabyn.

“Having the ability to survey distant stars for planets is important for catching planets still forming.” – Gene Serabyn, JPL.

The second of the two vortex studies presented images of a protoplanetary disk around the young star HD141569A. That star actually has three disks around it, and the coronagraph was able to capture an image of the innermost ring. Combining the vortex data with data from the Spitzer, WISE, and Herschel missions showed that the planet-forming material in the disk is made up pebble-size grains of olivine. Olivine is one of the most abundant silicates in Earth’s mantle.

“The three rings around this young star are nested like Russian dolls and undergoing dramatic changes reminiscent of planetary formation,” said Mawet. “We have shown that silicate grains have agglomerated into pebbles, which are the building blocks of planet embryos.”

These images and studies are just the beginning for the vortex coronagraph. It will be used to look at many more young planetary systems. In particular, it will look at planets near so-called ‘frost lines’ in other solar systems. The is the region around star systems where it’s cold enough for molecules like water, methane, and carbon dioxide to condense into solid, icy grains. Current thinking says that the frost line is the dividing line between where rocky planets and gas planets are formed. Astronomers hope that the coronagraph can answer questions about hot Jupiters and hot Neptunes.

Hot Jupiters and Neptunes are large gaseous planets that are found very close to their stars. Astronomers want to know if these planets formed close to the frost line then migrated inward towards their stars, because it’s impossible for them to form so close to their stars. The question is, what forces caused them to migrate inward? “With a bit of luck, we might catch planets in the process of migrating through the planet-forming disk, by looking at these very young objects,” Mawet said.

Four Planet System Directly Imaged In Motion

Artist's concept of the multi-planet system around HR 8799, initially discovered with Gemini North adaptive optics images. Credit: Gemini Observatory/Lynette Cook"

Located about 129 light years from Earth in the direction of the Pegasus constellation is the relatively young star system of HR 8799. Beginning in 2008, four orbiting exoplanets were discovered in this system which – alongside the exoplanet Formalhaut b – were the very first to be confirmed using the direct imaging technique. And over time, astronomer have come to believe that these four planets are in resonance with each other.

In this case, the four planets orbit their star with a 1:2:4:8 resonance, meaning that each planet’s orbital period is in a nearly precise ratio with the others in the system. This is a relatively unique phenomena, one which inspired a Jason Wang – a graduate student from the Berkeley arm of the NASA-sponsored Nexus for Exoplanet System Science (NExSS) – to produce a video that illustrates their orbital dance.

Using images obtained by the W.M. Keck Observatory over a seven year period, Wang’s video provides a glimpse of these four exoplanets in motion. As you can see below, the central star is blacked out so that the light reflecting off of its planets can be seen. And while it does not show the planets completing a full orbital period (which would take decades and even centuries) it beautifully illustrates the resonance that exists between the star’s four planets.

As Jason Wang told Universe Today via email:

“The data was obtained over 7 years from one of the 10 meter Keck telescopes by a team of astronomers (Christian Marois, Quinn Konopacky, Bruce Macintosh, Travis Barman, and Ben Zuckerman). Christian reduced each of the 7 epochs of data, to make 7 frames of data. I then made a movie by using a motion interpolation to interpolate those 7 frames into 100 frames to get a smooth video so that it’s not choppy (as if we could observe them every month from Earth).”

The images of the four exoplanets were originally captured by Dr. Christian Marois of the National Research Council of Canada’s Herzberg Institute of Astrophysics. It was in 2008 that Marois and his colleagues discovered the first three of HR 8799’s planets – HR 8799 b, c and d – using direct imaging technique. At around the same time, a team from UC Berkeley announced the discovery of Fomalhaut b, also using direct imaging.

These planets were all determined to be gas giants of similar size and mass, with between 1.2 and 1.3 times the size of Jupiter, and 7 to 10 times its mass. At the time of their discovery, HR 8799 d was believed to be the closest planet to its star, at a distance of about 27 Astronomical Units (AUs) – while the other two orbit at distances of about 42 and 68 AUs, respectively.

Image of HR 8799 (left) taken by the HST in 1998, image processed to remove scattered starlight (center), and illustration of the planetary system (right). Credit: NASA/ESA/STScI/R. Soummer

It was only afterwards that the team realized the planets had already been observed in 1998. Back then, the Hubble Space Telescope’s Near Infrared Camera and Multi-Object Spectrometer (NICMOS) had obtained light from the system that indicated the presence of planets. However, this was not made clear until after a newly-developed image-processing technique had been installed. Hence, the “pre-discovery” went unnoticed.

Further observations in 2009 and 2010 revealed the existence of fourth planet – HR 8799 e – which had an orbit placing it inside the other three. Even so, this planet is fifteen times farther from its star than the Earth is from the Sun, which results in an orbital period of about 18,000 days (49 years). The others take around 112, 225, and 450 years (respectively) to complete an orbit of HR 8799.

Ultimately, Wang decided to produce the video (which was not his first), to illustrate how exciting the search for exoplanets can be. As he put it:

“I had written this motion interpolation algorithm for another exoplanet system, Beta Pictoris b, where we see one planet on an edge-on orbit looking like it’s diving into its star (it’s actually just circling in front of it). We wanted to do the same thing for HR 8799 to bring this system to life and share our excitement in directly imaging exoplanets. I think it’s quite amazing that we have the technology to watch other worlds orbit other stars.”

In addition, the video draws attention to a star system that presents some unique opportunities for exoplanet research. Since HR 8799 was the first multi-planetary system to be directly-imaged means that astronomers can directly observe the orbits of the four planets, observe their dynamical interactions, and determine how they came to their present-day configuration.

Astronomers will also be able to take spectra of these planet’s atmospheres to study their composition, and compare this to our own Solar System’s gas giants. And since the system is really quite young (just 40 million years old), it can tell us much about the planet-formation process. Last, but not least, their wide orbits (a necessity given their size) could mean the system is less than stable.

In the future, according to Wang, astronomers will be watching to see if any planets get ejected from the system. I don’t know about you, but I would consider a video that illustrates one of HR 8799’s gas giants getting booted out of its system would be pretty inspiring too!

Further Reading: NASA

A “Breakthrough” to Search for Planets in Closest Star System to Earth

Artist’s impression of Proxima b, which was discovered using the Radial Velocity method. Credit: ESO/M. Kornmesser

Ever since the European Southern Observatory (ESO) announced that they had discovered an exoplanet in the nearby system of Proxima Centauri, there have been a lot of questions about this exoplanet. In addition to whether or not this planet could actually support life, astronomers have also been eager to see if its companion stars – Alpha Centauri A and B – have exoplanets too.

Prior to the discovery of Proxima b, Alpha Centauri was thought to host the closest exoplanets to Earth (Alpha Bb and Bc). However, time has cast doubt on the existence of the first, while the second’s existence remains unconfirmed. But thanks to a recent agreement between the ESO and Breakthrough Initiatives, we may yet find out if there are exoplanets in Alpha Centauri – which will come in handy when it comes time to explore there!

In accordance with this agreement, Breakthrough Initiatives will provide additional funds so that the ESO’s Very Large Telescope (VLT), located at the La Silla Paranal Observatory in Chile, can be modified to conduct a special search program of Alpha Centauri. This will involve upgrading the VLT Imager and Spectrometer for mid-Infrared (VISIR) instrument with new equipment that will enhance its planet-hunting abilities.

Image of the Alpha Centauri AB system and its distant and faint companion, Proxima Centauri. Credit: ESO

This includes a new instrument module that will allow the VLT to use a technique known as coronagraphy – a form of adaptive optics that corrects for a star’s brightness, thus making it easier for a telescope to spot the thermal glow of orbiting planets around them. While the Breakthrough Prize Foundation will pay a large fraction of the upgrade costs, the ESO will be making the VLT and its staff available to conduct the survey – which is scheduled for 2019.

Such an agreement is truly a win-win scenario. For the ESO, this will not only improve the VLT’s imaging abilities, but will also assist with the development of the European Extremely Large Telescope (E-ELT). This proposed array, which is scheduled for completion by 2024, will rely on the Mid-infrared E-ELT Imager and Spectrograph (METIS) instrument to hunt for potentially habitable exoplanets.

Any lessons learned from the upgrade of VISIR will allow them to develop the necessary expertise to run METIS, and will also allow them to test the effectiveness of the technology beforehand. For Breakthrough Initiatives, determining if there are any planets in the Alpha Centauri system will go a long way towards helping them mount their historic mission to this star.

In the coming years, Breakthrough Initiatives hopes to mount the first interstellar voyage in history using a lightsail and nanocraft that would rely on lasers to push it up to relativistic speeds (20% the speed of light). Known as Breakthrough Starshot, this craft could be ready to launch in a few years time, and would reach Alpha Centauri in just 20 years time.

The ESO’s Very Large Telescope (VLT) at the Paranal Observatory in Chile and a stellar backdrop showing the location of Alpha Centauri. Credit: ESO

Once there, the nanocraft (using a series of microsensors) would relay information back to Earth about the Alpha Centauri system – which would include any information on its system of planets, and whether or not they are habitable. Hence, determining if there’s anything there to study in the first place will help lay the groundwork for the mission.

As Professor Avi Loeb – the Frank B. Baird, Jr. Professor of Science at Harvard and a member of the Breakthrough Starshot Advisory Committee – told Universe Today via email:

“We hope that the partnership between the Breakthrough Prize Foundation and ESO will lead to the discovery of new habitable planets around the nearest stars. Once discovered, we could search for the molecular signatures of life in the atmosphere of these planets, and potentially even send a spacecraft that will reach them within our lifetime. The latter is the driver for the Starshot Initiative. The discovery of habitable nearby planets will provide us with targets for photography by gram-scale spacecrafts, launched at a fraction of the speed of light and  equipped with cameras. For example, we would like to find out whether such planets are covered by blue oceans, green vegetation or yellow deserts.”

It’s one of the hallmarks of the new space age: a private and public organization coming together for the sake of mutual benefit. But when those benefits include advancing scientific research, space exploration, and the hunt for habitable planets other than our own, it truly is a win-win situation!

In the meantime, enjoy this video provided by ESO about their new partnership with Breakthrough Initiatives:

Further Reading: ESO, Breakthrough Initiatives

Princeton Team Directly Observes Planets Around Nearby Stars

The Subaru Telescope atop Mauna Kea. CHARIS works in conjunction with Subaru. Image: Dr. Hideaki Fujiwara - Subaru Telescope, NAOJ.
The Subaru Telescope atop Mauna Kea. CHARIS works in conjunction with Subaru. Image: Dr. Hideaki Fujiwara - Subaru Telescope, NAOJ.

The revelation that there are thousands of planets out there, orbiting other stars, is mostly due to the success of the Kepler mission. But now that we know these exoplanets are there, we want to know all about them. We want to know their mass, their temperature, how old they are, and pretty much everything else about them.

Now, a new instrument called the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) has captured the light from one of those exoplanets. This has the researchers excited about what they can see.

“We couldn’t have been more pleased by the results.” – N. Jeremy Kasdin

CHARIS allows astronomers to isolate light reflecting from planets. That’s difficult to do, since they are so much dimmer than the stars they orbit. CHARIS is able to isolate the reflective light from planets larger than Jupiter. Then astronomers can analyze that light to learn about the planet’s age, atmospheric composition, and its size.

“By analyzing the spectrum of a planet, we can really understand a lot about the planet. You can see specific features that can allow you to understand the mass, the temperature, the age of the planet.” – team member Tyler Groff

This image from the CHARIS instrument shows planets located around a star in the planetary system HR8799. Image: N. Jeremy Kasdin and team
This image from the CHARIS instrument shows planets located around a star in the planetary system HR8799. Image: N. Jeremy Kasdin and team.

CHARIS was designed and built by a team led by N. Jeremy Kasdin, a professor of mechanical and aerospace engineering at Princeton University. It took them five years to build CHARIS.

The spectrograph sits inside a 500 lb case that measures 30x30x12. Inside that case, it’s kept at -223.15 Celsius (50 Kelvin, -369 F.) The CHARIS instrument has nine mirrors, five filters, two prism assemblies and a microlens array. The microlens array is a special optical device with an array of tiny lenses etched into its surface.

During a CHARIS field test, researchers captured images of celestial objects, including vapor clouds moving across a section of the planet Neptune.  (Images courtesy of N. Jeremy Kasdin and the research team)
During a CHARIS field test, researchers captured images of celestial objects, including vapor clouds moving across a section of the planet Neptune. (Images courtesy of N. Jeremy Kasdin and the research team)

CHARIS works in conjunction with the Subaru Telescope in Hawaii. It’s part of a long-time collaboration between Princeton, the University of Tokyo and the National Astronomical Observatory of Japan, which operates the Subaru Telescope at Mauna Kea, Hawaii. And these first results are generating a lot of interest.

According to Tyler Groff, a team member from Princeton who now works for NASA, the preliminary result from CHARIS have generated a lot of interest from the astronomy community. The CHARIS team is now reviewing research proposals.

“There is a lot of excitement,” Groff said. “Charis is going to open for science in February to everyone.”

CHARIS is designed to capture the light from distant exoplanets, so its field of view is tiny. It’s only 2 arc-seconds, which is a tiny patch of sky. For reference, the full Moon is about 1,800 arc-seconds. But it can take images across a wide band of light wavelengths. The fact that it captures such a wide band of light is what allows such detailed analysis of anything it’s pointed at.

“We tested CHARIS on Neptune, but the entire planet doesn’t even fit on our detector.” -Tyler Groff

CHARIS is located behind a coronagraph. The coronagraph channels light from the Subaru Telescope and divides the light coming directly from a star from the light that is reflecting off planets orbiting that star. The team says it’s like picking out the light reflecting from a speck of tinsel floating in front of a spotlight that’s hundreds of miles away.

An Exoplanet With Huge Rings Intrigues

Artist’s conception of the extrasolar ring system circling the young giant planet or brown dwarf J1407b. Credit: Ron Miller

Back in 2007, astronomers observed a series of unusual eclipses coming from a star 420 light years from Earth. In 2012, a team from Japan and the Netherlands reasoned that this phenomena was due to the presence of a large exoplanet – designated J1407b – with a massive ring system orbiting the star. Since then, several surprising finds have been made.

For example, in 2015, the same team concluded that the ring system is one-hundred times larger and heavier than Saturn’s (and may be similarly sculpted by exomoons). And in their most recent study, they have shown that these giant rings may last for over 100,000 years, assuming they have a rare and unusual orbit around their planet.

In their previous work, Rieder and Kenworth determined that the ring system around J1407b consisted about 37 rings that extend to a distance of 0.6 AU (90 million km) from the planet. They also estimated that these rings are 100 times as massive as our Moon – 7342 trillion trillion metric tons. What’s more, while J1407b’s existence is yet to be confirmed, they were able to rule out the possibility of it having a circular orbit around the star.

Giant Rings. The rings around J1407b are so large that we could see in the dusk from the earth when they were placed around the planet Saturn. The rings can be seen above the Old Leiden Observatory. Credit: M. Kenworthy / Leiden University
Artist’s impression of what the rings around J1407b would look like from Earth if they were placed around Saturn. The rings can be seen above the Old Leiden Observatory. Credit: M. Kenworthy / Leiden University

As a result, there were doubts that such a ring system could exist. Given the fact that the planet periodically gets closer to its star, the ring system would experience gravitational disruption. Therefore, Steven Rieder (of the RIKEN institute in Japan) and Matthew Kenworth (of Leiden University in the Netherlands) set out to assess how long such a ring system could remain stable for.

For the sake of their study, titled “Constraints on the Size and Dynamics of the J1407b Ring System“, they conducted a series of simulations using the Astrophysical Multi-purpose Software Environment (AMUSE) framework. In the end, their results showed that a ring structure with an 11 year orbital period and a retrograde orbit could survive for at least 10,000 orbits.

In other words, the ring system that they hypothesized back in 2012 could endure for 110,000 years. As Rieder (the lead author on the paper) explained in a statement, the results were surprising, but happened to fit the facts:

“The system is only stable when the rings rotate opposite to how the planet orbits the star. It might be far-fetched: massive rings that rotate in opposite direction, but we now have calculated that a ‘normal’ ring system cannot survive.”

How such a ring system could have come about is a mystery, as retrograde ring systems are quite uncommon. But Rieder and Kenworth have stated that they think it might be the result of a catastrophic event – such as a massive collision – that caused the rings (or the planet) to change the direction of their rotation.

Their results also indicated that a retrograde ring system would allow for eclipses, like the one that was observed in 2007. While there was some chance of these being caused by another object, the results suggested otherwise. “The chance of that is minimal,” said Rieder. “Also, the velocity measured with previous observations may not be right, but that would be very strange, because those measurements are very accurate.”

In the future, Rieder and Kenswoth hope to investigate the mysteries of this ring formation more closely. This will include how it could have formed in the first place, and how it has evolved over time. Their study has been accepted for publication in the journal Astronomy & Astrophysics and be viewed online at arXiv.

Further Reading: astronomie.nl, arXiv

Turns out Proxima Centauri is Strikingly Similar to our Sun

Artist's depiction of the interior of a low-mass star, such as the one seen in an X-ray image from Chandra in the inset. Credit: NASA/CXC/M.Weiss

In August of 2016, the European Southern Observatory announced that the nearest star to our own – Proxima Centauri – had an exoplanet. Since that time, considerable attention has been focused on this world (Proxima b) in the hopes of determining just how “Earth-like” it really is. Despite all indications of it being terrestrial and similar in mass to Earth, there are some lingering doubts about its ability to support life.

This is largely due to the fact that Proxima b orbits a red dwarf. Typically, these low mass, low temperature, slow fusion stars are not known for being as bright and warm as our Sun. However, a new study produced by researchers at the Harvard Smithsonian Center for Astrophysics (CfA) has indicated that Proxima Centauri might be more like our star than we thought.

For instance, our Sun has what is known as a “Solar Cycle“, an 11-year period in which it experiences changes in the levels of radiation it emits. This cycle is driven by changes in the Sun’s own magnetic field, and corresponds to the appearance of Sunspots on its surface. During a “solar minimum”, the Sun’s surface is clear of spots, while at a solar maximum, one hundred sunspots can appear on an area the size of 1% the Sun’s surface area.

This image is a composite of 25 separate images spanning the period of April 16, 2012, to April 15, 2013. It uses the SDO AIA wavelength of 171 angstroms and reveals the zones on the sun where active regions are most common during this part of the solar cycle. Credit: NASA/SDO/AIA/S. Wiessinger
Composite of 25 separate images spanning the period of April 16, 2012, to April 15, 2013, revealing active regions during this part of the Solar Cycle. Credit: NASA/SDO/AIA/S. Wiessinger

For the sake of their research, the Harvard Smithsonian team examined Proxima Centauri over the course of several years to see if it too had a cycle. As they explain in their research paper, titled “Optical, UV, and X-Ray Evidence for a 7-Year Stellar Cycle in Proxima Centauri” they relied on several years worth optical, UV, and X-ray observations made of the star.

This included 15 years of visual data and 3 years of infrared data from the All Sky Automated Survey (ASAS), 4 years of x-ray and UV data from the Swift x-ray telescope (XRT), and 22 years worth of x-ray observations taken by the Advanced Satellite for Cosmology and Astrophysics (ASCA), the XXM-Newton mission and the Chandra X-ray Observatory.

What they found was that Proxima Centauri does indeed have a cycle that involves changes in its minimum and maximum amount of emitting radiation, which corresponds to “starspots” on its surface. As Dr. Wargelin told Universe Today via email:

“The optical/ASAS data showed a nice 7-year cycle, as well as an 83-day rotation period. When we broke down that data by year we saw the period vary from around 77 to 90 days. We interpret that as ‘differential rotation’ like that found on the Sun. The rotation rate differs at different latitudes; on the Sun it’s around 35 days at the poles and 24.5 at the equator. The “average” rotation is usually given as 27.3 days.”

In essence, Proxima Centauri has its own cycle, but one that is a lot more dramatic than our Sun’s. Besides lasting 7 years from peak to peak, it involves spots covering over 20% of its surface at one time. These spots are apparently much bigger than the ones we regularly observe on our Sun as well.

X-Ray image of Proxima Centauri. Image credit: Chandra
An X-Ray image of Proxima Centauri. Credit: Chandra/Harvard/NASA

This was surprising, given that Proxima’s interior is very different from our Sun’s. Because of its low mass, the interior of Proxima Centauri is convective, where material in the core is transferred outward. In contrast, only the outer layer of our Sun undergoes convection while the core remains relatively still. This means that, unlike our Sun, energy is transferred to the surface through physical movement, and not radiative processes.

While these findings cannot tell us anything directly about whether or not Proxima b might be habitable, the existence of this solar cycle is an interesting find that might be leading in that general direction. As Dr. Wargelin explained:

“Magnetic fields are what drive high energy emission (UV and X rays) and stellar winds (like the solar wind) in solar-type and smaller stars, AND a stellar cycle (if it has one). That X-ray/UV emission and stellar wind can ionize/evaporate/strip the atmosphere of close-in planets, particularly if the planet doesn’t have a protective magnetic field of its own.

“Therefore….. a necessary but not sufficient requirement for understanding (i.e., modeling) the evolution of a planet’s atmosphere is understanding the magnetic field of the host star.  If you don’t understand why a star has a cycle (and standard theory says fully convective stars like Proxima can NOT have cycles) then you don’t understand its magnetic field.”

As always, further observations and research will be necessary before we can fully understand Proxima Centauri, and whether or not any planets that orbit it could support life. But then again, we’ve only known about Proxima b for a short time, and the rate at which we are learning new things about it is quite impressive!

Further Reading: CfA, arXiv

Is Proxima Centauri b Basically Kevin Costner’s Waterworld?

Artist's depiction of a waterworld. A new study suggests that Earth is in a minority when it comes to planets, and that most habitable planets may be greater than 90% ocean. Credit: David A. Aguilar (CfA)
Artist's depiction of a waterworld. A new study suggests that Earth is in a minority when it comes to planets, and that most habitable planets may be greater than 90% ocean. Credit: David A. Aguilar (CfA)

The discovery of an exoplanet candidate orbiting around nearby Proxima Centauri has certainly been exciting news. In addition to being the closest exoplanet to our Solar System yet discovered, all indications point to it being terrestrial and located within the stars’ circumstellar habitable zone. However, this announcement contained its share of bad news as well.

For one, the team behind the discovery indicated that given the nature of its orbit around Proxima Centauri, the planet likely in terms of how much water it actually had on its surface. But a recent research study by scientists from the University of Marseilles and the Carl Sagan Institute may contradict this assessment. According to their study, the exoplanet’s mass may consist of up to 50% water – making it an “ocean planet”.

According to the findings of the Pale Red Dot team, Proxima Centauri b orbits its star at an estimated distance of 7 million kilometers (4.35 million mi) – only 5% of the Earth’s distance from the Sun. It also orbits Proxima Centauri with an orbital period of 11 days, and either has a synchronous rotation, or a 3:2 orbital resonance (i.e. three rotations for every two orbits).

Artist’s impression of the planet Proxima b orbiting the red dwarf star Proxima Centauri, the closest star to the Solar System. Credit: ESO/M. Kornmesser
Artist’s impression of the planet Proxima b orbiting the red dwarf star Proxima Centauri, the closest star to the Solar System. Credit: ESO/M. Kornmesser

Because of this, liquid water is likely to be confined to either the sun-facing side of the planet (in the case of a synchronous rotation), or in its tropical zone (in the case of a 3:2 resonance). In addition, the radiation Proxima b receives from its red dwarf star would be significantly higher than what we are used to here on Earth.

However, according to a study led by Bastien Brugger of the Astrophysics Laboratory at the University of Marseilles, Proxima b may be wetter than we previously thought. For the sake of their study, titled “Possible Internal Structures and Compositions of Proxima Centauri b” (which was accepted for publication in The Astrophysical Journal Letters), the research team used internal structure models to compute the radius and mass of Proxima b.

Their models were based on the assumptions that Proxima b is both a terrestrial planet (i.e. composed of rocky material and minerals) and did not have a massive atmosphere. Based on these assumptions, and mass estimates produced by the Pale Red Dot survey (~1.3 Earth masses), they concluded that Proxima b has a radius that is between 0.94 and 1.4 times that of Earth, and a mass that is roughly 1.1 to 1.46 times that of Earth.

As Brugger told Universe Today via email:

“We listed all compositions that Proxima b could have, and ran the model for each of them (that makes about 5000 simulations), giving us each time the corresponding planet radius. We finally excluded all the results that were not compatible with a planetary body, basing on the formation conditions of our solar system (since we do not know these conditions for the Proxima Centauri system). And thus, we obtained a range of possible planet radii for Proxima b, going from 0.94 to 1.40 times the radius of the Earth.”

Goldilocks Zone
Tidally-locked planets like Gliese 581 g (artist’s impression) are likely to be “eyeball” worlds, with a warm-water ocean on the sun-facing side surrounded by ice. Credit: Lynette Cook/NSF

This range in size allows for some very different planetary compositions. At the lower end, being slightly smaller but a bit more massive than Earth, Proxima b would likely be a Mercury-like planet with a 65% core mass fraction. However, at the higher end of the radii and mass estimates, Proxima b would likely be half water by mass.

“If the radius is 0.94 Earth radii, then Proxima b is fully rocky with a huge metallic core (like Mercury in the solar system),” said Brugger. “On the opposite, Proxima b can reach a radius of 1.40 only if it harbors a massive amount of water (50% of the total planet mass), and in this case it would be an ocean planet, with a 200 km deep liquid ocean! Below that, the pressure is so high that the water would turn into ice, forming a ~3000 km thick ice layer (Under which there would be a core made of rocks).”

In other words, Proxima b could be an “eyeball planet”, where the sun-facing side has a liquid ocean surface, while the dark side is covered in frozen ice. Recent studies have suggested that this may be the case with planet’s that orbit within the habitable zones of red dwarf stars, where tidal-locking ensures that only one side gets the heat necessary to maintain liquid water on the surface.

On the other hand, if it has an orbital resonance of 3:2, its likely to have a double-eyeball pattern – with liquid oceans in both the eastern and western hemispheres – while remaining frozen at the terminators and poles. However, if the lower estimates should be true, then Proxima b is likely to be a rocky, dense planet where liquid water is rare on one side, and frozen on the other.

Artist’s impression of the surface of the planet Proxima b orbiting the red dwarf star Proxima Centauri. The double star Alpha Centauri AB is visible to the upper right of Proxima itself. Credit: ESO
Artist’s impression of the surface of the planet Proxima b orbiting the red dwarf star Proxima Centauri. New research suggest the planet may be more watery than previously thought. Credit: ESO

But perhaps the most interesting aspect of the the research is that it offers a glimpse into the likelihood of Proxima b being habitable. Ever since its discovery, the question of whether or not the planet can support life has remained contentious. But as Brugger explained:

“The interesting part is that all the cases we considered are compatible with a habitable planet. So if the planet radius is finally measured (in some months or years), two cases are possible: either (i) the measurement lies within the 0.94-1.40 range and we will be able to give the exact composition of the planet (and not only a range of possibilities), or (ii) the measured radius is out of this range, and we will know that the planet is not habitable. The case where Proxima b is an ocean planet is particularly interesting, because this kind of planet does not need an atmosphere of oxygen and nitrogen (like on the Earth) to harbor life, since it can develop in its huge ocean.”

But of course, these scenarios are based on the assumption that Proxima b has a lot in common with the planets of our own Solar System. It’s also based on the assumption that the planet is indeed about 1.3 Earth masses. Until the planet can be observed making a transit of Proxima Centauri, astronomers won’t know for sure how massive it is.

Ultimately, we’re still a long ways away from determining Proxima b’s exact size, composition, and surface features – to say nothing about whether or not it can actually support life. Nevertheless, research like this is beneficial in that it helps us to come up with constrains on what kind of planetary conditions could exist there.

And who knows? Someday, we may be able to send probes or crewed missions to the planet, and perhaps they will beam back images of sentient beings navigating vast oceans, looking for some fabled parcel of land they heard about? God I hope not! Once was more than enough!

Further Reading: arXiv

Hubble Detects A Planet Around Binary Star System

This artist's illustration shows a planet circling a pair of distant red dwarf stars, representing the the system OGLE-2007-BLG-349 system, about 8,000 lightyears from Earth. Credit: NASA, ESA, and G. Bacon (STScI).

Binary stars are common throughout the galaxy, as it has been estimated about half the stars in our sky consist of two stars orbiting each other. Therefore, it’s also thought that about half of all exoplanet host stars are binaries as well. However, only about 10 of these so called circumbinary planets have been found so far in the 3,000-plus confirmed extrasolar planets that have been discovered.

But chalk up one more circumbinary planet, and this one bodes well for a technique that could help scientists find planets that orbit far away from their stars. Astronomers using the Hubble Space Telescope have confirmed a very interesting “three-body” system where two very close stars have a planet that orbits them both at a rather large distance.

The two red dwarf stars are just 7 million miles apart, or about 14 times the diameter of the Moon’s orbit around Earth. The planet orbits roughly 300 million miles from the stellar duo, about the distance of the asteroid belt from the Sun. The planet completes an orbit around both stars roughly every seven years.

Will China's new space telescope out-perform the Hubble? Image:
The Hubble Space Telescope. Image: NASA

Hubble used the a technique called gravitational microlensing, where the gravity of a foreground star bends and amplifies the light of a background star that momentarily aligns with it. The light magnification can reveal clues to the nature of the foreground star and any associated planets.

The system, called OGLE-2007-BLG-349, was originally detected in 2007 by the Optical Gravitational Lensing Experiment (OGLE), a telescope at the Las Campanas Observatory in Chile that searches for and observes microlensing effects from small distortions of spacetime, caused by stars and exoplanets.

However, the original OGLE observations could not confirm the details of the OGLE-2007-BLG-349 system. OGLE and several other ground-based observations determined there was a star and a planet in this system, but they couldn’t positively identify what the observed third body was.

“The ground-based observations suggested two possible scenarios for the three-body system: a Saturn-mass planet orbiting a close binary star pair or a Saturn-mass and an Earth-mass planet orbiting a single star,” said David Bennett, from NASA’s Goddard Space Flight Center, who is the first author in a new paper about the system, to be published in the Astrophysical Journal.

With Hubble’s sharp eyesight, the research team was able to separate the background source star and the lensing star from their neighbors in the very crowded star field. The Hubble observations revealed that the starlight from the foreground lens system was too faint to be a single star, but it had the brightness expected for two closely orbiting red dwarf stars, which are fainter and less massive than our sun.

“So, the model with two stars and one planet is the only one consistent with the Hubble data,” Bennett said.
“OGLE has detected over 17,000 microlensing events, but this is the first time such an event has been caused by a circumbinary planetary system,” explains Andrzej Udalski from the University of Warsaw, Poland, co-author of the study and leader of the OGLE project.

The team said this first-ever confirmation of an exoplanet system using the gravitational microlensing technique suggests some intriguing possibilities. While data from the Kepler Space Telescope is more likely to reveal planets that orbit close to their stars, microlensing allows planets to be found at distances far from their host stars.

“This discovery, suggests we need to rethink our observing strategy when it comes to stellar binary lensing events,” said Yiannis Tsapras, another member of the team, from the Astronomisches Recheninstitut in Heidelberg, Germany. “This is an exciting new discovery for microlensing”.

The team said that since this observation has shown that microlensing can successfully detect circumbinary planets, Hubble could provide an essential new role in the continued search for exoplanets.

OGLE-2007-BLG-349 is located 8,000 light-years away, towards the center of our galaxy.

(And, you’re welcome… I didn’t mention Tatooine in this article, until now!)

Further reading: Hubblesite, ESA Hubble,

Talk About A Crowded Neighborhood: Closest Binary Stars With Multiple Planets Found

Artist’s conception of the binary system with three giant planets discovered in this study. One star hosts two planets and the other hosts the third. The system represents the smallest-separation binary in which both stars host planets that has ever been observed. Image courtesy of Robin Dienel/Carnegie.

The more we look, the more we see the great diversity in planetary systems around other stars. And curiously, planet hunters are finding that most star systems are very different from our own.

An example is a recently discovered system that is extremely crowded. It consists of a three giant planets in a binary (two stars) system. One star hosts two planets and the other hosts the third. The system represents the smallest-separation binary in which both stars host planets that has ever been observed.

“The probability of finding a system with all these components was extremely small,” said Johanna Teske from the Carnegie Institution for Science, “so these results will serve as an important benchmark for understanding planet formation, especially in binary systems.”

An illustration of this highly unusual system, which features the smallest-separation binary stars that both host planets ever discovered. Only six other metal-poor binary star systems with exoplanets have ever been found. Illustration  courtesy of Timothy Rodigas/Carnegie.
An illustration of this highly unusual system, which features the smallest-separation binary stars that both host planets ever discovered. Only six other metal-poor binary star systems with exoplanets have ever been found. Illustration courtesy of Timothy Rodigas/Carnegie.

Teske and her team said this busy system might help explain the influence that giant planets like Jupiter have over a solar system’s architecture.

“We are trying to figure out if giant planets like Jupiter often have long and, or eccentric orbits,” Teske explained. “If this is the case, it would be an important clue to figuring out the process by which our Solar System formed, and might help us understand where habitable planets are likely to be found.”

The twin stars are named HD 133131A and HD 133131B. The former hosts two Jupiter-sized worlds and the latter a planet with a mass at least 2.5 times Jupiter’s. All three planets have “eccentric” or highly elliptical orbits. So far no smaller, rocky worlds have been detected but the team said those type of planets could be part of the system, or may have been part of the system in the past.

The two stars themselves are separated by only 360 astronomical units (AU – the distance between the Earth and the Sun, approximately 150,000,000 km or 93,000,000 miles). This is extremely close for twin stars with detected planets orbiting the individual stars. The next-closest known binary star system with planets has stars about 1,000 AU apart.

The two stars are more like fraternal twins rather than identical because they have slight different chemical compositions. The team said this could indicate that one star swallowed some baby planets early in its life, changing its composition slightly. Or another option is that the gravitational forces of the detected giant planets may have had a strong effect on fully-formed small planets, flinging them in towards the star or out into space.

But both stars are “metal poor,” meaning that most of their mass is hydrogen and helium, as opposed to other elements like iron or oxygen. This is another curious thing about this system, as most stars that host giant planets are “metal rich.”

The system was found using the Planet Finder Spectrograph, an instrument developed by Carnegie scientists and mounted on the Magellan Clay Telescopes at Carnegie’s Las Campanas Observatory. This finding represents the first exoplanet detection made based solely on data from the. PFS is able to find large planets with long-duration orbits or orbits that are very elliptical rather than circular.

This video tells more about the PFS:

You can read the team’s paper here. It has been accepted for publication in the Astronomical Journal.

Who Else Is Looking For Cool Worlds Around Proxima Centauri?

Artist's impression of a system of exoplanets orbiting a low mass, red dwarf star. Credit: NASA/JPL

Finding exoplanets is hard work. In addition to requiring seriously sophisticated instruments, it also takes teams of committed scientists; people willing to pour over volumes of data to find the evidence of distant worlds. Professor Kipping, an astronomer based at the Harvard-Smithsonian Center for Astrophysics, is one such person.

Within the astronomical community, Kipping is best known for his work with exomoons. But his research also extends to the study and characterization of exoplanets, which he pursues with his colleagues at the Cool Worlds Laboratory at Columbia University. And what has interested him most in recent years is finding exoplanets around our Sun’s closest neighbor – Proxima Centauri.

Kipping describes himself as a “modeler”, combining novel theoretical modeling with modern statistical data analysis techniques applied to observations. He is also the Principal Investigator (PI) of The Hunt for Exomoons with Kepler (HEK) project and a fellow at the Harvard College Observatory. For the past few years, he and his team have been taking the hunt for exoplanets to the local stellar neighborhood.

The inspiration for this search goes back to 2012, when Kipping was at a conference and heard the news about a series of exoplanets being discovery around Kepler 42 (aka. KOI-961). Using data from the Kepler mission, a team from the California Institute of Technology discovered three exoplanets orbiting this red dwarf star, which is located about 126 light years from Earth.

At the time, Kipping recalled how the author of the study – Professor Philip Steven Muirhead, now an associate professor at the Institute for Astrophysical Research at Boston University – commented that this star system looked a lot like our nearest red dwarf stars – Barnard’s Star and Proxima Centauri.

In addition, Kepler 42’s planets were easy to spot, given that their proximity to the star meant that they completed an orbital period in about a day. Since they pass regularly in front of their star, the odds of catching sight of them using the Transit Method were good.

As Prof. Kipping told Universe Today via email, this was the “ah-ha moment” that would inspire him to look at Proxima Centauri to see if it too had a system of planets:

“We were inspired by the discovery of planets transiting KOI-961 by Phil Muirhead and his team using the Kepler data. The star is very similar to Proxima, a late M-dwarf harboring three sub-Earth sized planets very close to the star. It made me realize that if that system was around Proxima, the transit probability would be 10% and the star’s small size would lead to quite detectable signals.”

The MOST satellite, a Canadian built space telescope. Credit: Canadian Space Agency
The MOST satellite, a Canadian built space telescope. Credit: Canadian Space Agency

In essence, Kipping realized that if such a planetary system also existed around Proxima Centauri, a star with similar characteristics, then they would very easy to detect. After that, he and his team began attempting to book time with a space telescope. And by 2014-15, they had been given permission to use the Canadian Space Agency’s Microvariability and Oscillation of Stars (MOST) satellite.

Roughly the same size as a suitcase, the MOST satellite weighs only 54 kg and is equipped with an ultra-high definition telescope that measures just 15 cm in diameter. It is the first Canadian scientific satellite to be placed in orbit in 33 years, and was the first space telescope to be entirely designed and built in Canada.

Despite its size, MOST is ten times more sensitive than the Hubble Space Telescope. In addition, Kipping and his team knew that a mission to look for transiting exoplanets around Proxima Centauri would be too high-risk for something like Hubble. In fact, the CSA initially rejected their applications for this same reason.

“MOST initially denied us because they wanted to look at Alpha Centauri following the announcement by Dumusque et al. of a planet there,” said Kipping. “So understandably Proxima, for which no planets were known at the time, was not as high priority as Alpha Cen. We never even tried for Hubble time, it would be a huge ask to stare HST at a single star for months on end with just a a 10% chance for success.”

Artist's impression of the Earth-like exoplanet discovered orbiting Alpha Centauri B iby the European Southern Observatory on October 17, 2012. Credit: ESO
Artist’s impression of the Earth-like exoplanet discovered orbiting Alpha Centauri B iby the European Southern Observatory on October 17, 2012. Credit: ESO

By 2014 and 2015, they secured permission to use MOST and observed Proxima Centauri twice – in May of both years. From this, they acquired a month and half’s-worth of space-based photometry, which they are currently processing to look for transits. As Kipping explained, this was rather challenging, since Proxima Centauri is a very active star – subject to star flares.

“The star flares very frequently and prominently in our data,” he said. “Correcting for this effect has been one the major obstacles in our analysis. On the plus side, the rotational activity is fairly subdued. The other issue we have is that MOST orbits the Earth once every 100 minutes, so we get data gaps every time MOST goes behind the Earth.”

Their efforts to find exoplanets around Proxima Centauri are especially significant in light of the European Southern Observatory’s recent announcement about the discovery of a terrestrial exoplanet within Proxima Centauri’s habitable zone (Proxima b). But compared to the ESO’s Pale Red Dot project, Kipping and his team were relying on different methods.

As Kipping explained, this came down to the difference between the Transit Method and the Radial Velocity Method:

“Essentially, we seek planets which have the right alignment to transit (or eclipse) across the face of the star, whereas radial velocities look for the wobbling motion of a star in response to the gravitational influence of an orbiting planet. Transits are always less likely to succeed for a given star, because we require the alignment to be just right. However, the payoff is that we can learn way more about the planet, including things like it’s size, density, atmosphere and presence of moons and rings.”

Artist’s impression of the planet Proxima b orbiting the red dwarf star Proxima Centauri, the closest star to the Solar System. Credit: ESO/M. Kornmesser
Artist’s impression of the planet Proxima b orbiting the red dwarf star Proxima Centauri, the closest star to the Solar System. Credit: ESO/M. Kornmesser

In the coming months and years, Kipping and his team may be called upon to follow up on the success of the ESO’s discovery. Having detected Proxima b using the Radial Velocity method, it now lies to astronomers to confirm the existence of this planet using another detection method.

In addition, much can be learned about a planet through the Transit Method, which would be helpful considering all the things we still don’t know about Proxima b. This includes information about its atmosphere, which the Transit Method is often able to reveal through spectroscopic measurements.

Suffice it to say, Kipping and his colleagues are quite excited by the announcement of Proxima b. As he put it:

“This is perhaps the most important exoplanet discovery in the last decade. It would be bitterly disappointing if Proxima b does not transit though, a planet which is paradoxically so close yet so far in terms of our ability to learn more about it. For us, transits would not just be the icing on the cake, serving merely as a confirmation signal – rather, transits open the door to learning the intimate secrets of Proxima, changing Proxima b from a single, anonymous data point to a rich world where each month we would hear about new discoveries of her nature and character.”

This coming September, Kipping will be joining the faculty at Columbia University, where he will continue in his hunt for exoplanets. One can only hope that those he and his colleagues find are also within reach!

Further Reading: Cool Worlds