The Youngest Stellar Disk Ever Seen, Just 500,000 Years Old

IRS 63 Circumstellar Disk C. ALMA/ Segura-Cox et al. 2020

Unless you’re reading this in an aircraft or the International Space Station, then you’re currently residing on the surface of a planet. You’re here because the planet is here. But how did the planet get here? Like a rolling snowball picking up more snow, planets form from loose dust and gas surrounding young stars. As the planets orbit, their gravity draws in more of the lose material and they grow in mass. We’re not certain when the process of planet formation begins in orbit of new stars, but we have incredible new insights from one of the youngest solar systems ever observed called IRS 63.

The Rho Ophiuchi cloud complex is a nebula of gas and dust that is located in the constellation Ophiuchus. It is one of the closest star-forming regions to the Solar System and where the young star system IRS 63 was observed

Primordial Soup

Swirling in orbit of young stars (or protostars) are massive disks of dust and gas called circumstellar disks. These disks are dense enough to be opaque hiding young solar systems from visible light. However, energy emanating from the protostar heats the dust which then glows in infrared radiation which more easily penetrates obstructions than wavelengths of visible light. In fact, the degree to which a newly forming star system is observed in either visible or infrared light determines its classification. Class 0 protostars are completely enshrouded and can only be observed in submillimeter wavelengths corresponding to far-infrared and microwave light. Class I protostars, are observable in the far-infrared, Class II in near-infrared/red, and finally a Class III protostar’s surface and solar system can be observed in visible light as the remaining dust and gas is either blown away by the increasing energy of the star AND/OR has formed into PLANETS! That’s where we came from. That leftover material orbiting newly forming stars is what accumulates to form US. The whole process from Class 0 to Class III, when the solar system leaves its cocoon of dust and joins the galaxy, is about 10 million years. But at what stage does planet formation begin? The youngest circumstellar disks we’d observed are a million years old and had shown evidence that planetary formation had already begun. The recently observed IRS 63 is less than 500,000 years old – Class I – and shows signs of possible planet formation. The excitement? We were surprised to see evidence of planetary formation so early in the life of a solar system.

IRS 63 Circumstellar Disk C. ALMA/ Segura-Cox et al. 2020
Continue reading “The Youngest Stellar Disk Ever Seen, Just 500,000 Years Old”

The Color of Habitable Worlds

An arrangement of 3 exoplanets to explore how the atmospheres can look different based on the chemistry present and incoming flux. - image and image description by Jack H. Madden used with permission

“This is where we live. On a Blue Dot.” said Carl Sagan when the now famous Pale Blue Dot photo was released. Captured February 14, 1990 by the Voyager 1 Space Probe, Pale Blue Dot remains the most distant photograph of the Earth ever taken at 6 billion kilometers. This past February marked the 30th anniversary of Pale Blue Dot which was reprocessed using modern digital photo techniques creating an even more remarkable image.

This updated version of the iconic “Pale Blue Dot” image taken by the Voyager 1 spacecraft uses modern image-processing software and techniques to revisit the well-known Voyager view while attempting to respect the original data and intent of those who planned the images. Credit: NASA/JPL-Caltech

Whether Pale Blue Dot, or Blue Marble, our planet is associated with the color blue. As Earth is the only inhabited world we know of, it might stand to reason that other habitable planets in space will also be blue. But it’s a little more complicated than that.

Continue reading “The Color of Habitable Worlds”

We use the Transit Method to Find other Planets. Which Extraterrestrial Civilizations Could use the Transit Method to Find Earth?

The three planets discovered in the L98-59 system by NASA’s Transiting Exoplanet Survey Satellite (TESS) are compared to Mars and Earth in order of increasing size in this illustration. Credit: NASA’s Goddard Space Flight Center

We have discovered more than 4,000 planets orbiting distant stars. They are a diverse group, from hot Jupiters that orbit red dwarf stars in a few days to rocky Earth-like worlds that orbit Sun-like stars. With spacecraft such as Gaia and TESS, that number will rise quickly, perhaps someday leading to the discovery of a world where intelligent life might thrive. But if we can discover alien worlds, life on other planets could find us. Not every nearby star would have a good view of our world, but some of them would. New work in the Monthly Notices of the Royal Astronomical Society tries to determine which ones.

Continue reading “We use the Transit Method to Find other Planets. Which Extraterrestrial Civilizations Could use the Transit Method to Find Earth?”

An Exoplanet So Hot There Are 7 Different Kinds of Gaseous Metals in its Atmosphere

This artist's illustration shows an alien world that is losing magnesium and iron gas from its atmosphere. The observations represent the first time that so-called "heavy metals"—elements more massive than hydrogen and helium—have been detected escaping from a hot Jupiter, a large gaseous exoplanet orbiting very close to its star. The planet, known as WASP-121b, orbits a star brighter and hotter than the Sun. Image Credit: NASA, ESA, and J. Olmsted (STScI)

The search for exoplanets has revealed types of planets that are nothing like the worlds in our own Solar System. One such type is the hot-Jupiter. They’re gas giants like Jupiter that orbit their host star very closely. That proximity raises their temperatures to extreme heights.

Hot-Jupiters can be hot enough to vaporize metals, making their atmospheres un-Earthlike. A team of astronomers examining one exoplanet has found 7 different gaseous metals in its atmosphere.

Continue reading “An Exoplanet So Hot There Are 7 Different Kinds of Gaseous Metals in its Atmosphere”

The Search for Superhabitable Planets. Worlds Even More Habitable Than Earth

Kepler-22b, seen in this artist's rendering, is a planet a bit larger than Earth that orbits in the habitable zone of its star. Some researchers think there might be "superhabitable" worlds that may not resemble Earth. c. NASA

REMINDER: – Universe Today will be hosting an interview with Dr. Dirk Schulze-Makuch, co-author of the research featured in this article, on Thursday October 15th, 2020 at 8:30am PT. Click the video below to watch live or to see the recorded stream afterward

Out Earthing Earth

What planet is this?

c. NASA

If you said Hoth, that’s a good guess. But, it’s actually Earth depicted in one of two known “snowball” states. The entire planet’s surface was locked beneath glacial ice during the Cryogenian Period 650 million years ago and during the Huronian Glaciation 2 – 2.4 billion years ago.

Continue reading “The Search for Superhabitable Planets. Worlds Even More Habitable Than Earth”

Time Flies. NASA Releases a Mosaic of TESS’ View of the Northern Sky After Two Years of Operation

This detail of the TESS northern panorama features a region in the constellation Cygnus. At center, the sprawling dark nebula Le Gentil 3, a vast cloud of interstellar dust, obscures the light of more distant stars. A prominent tendril extending to the lower left points toward the bright North America Nebula, glowing gas so named for its resemblance to the continent. Credit: NASA/MIT/TESS and Ethan Kruse (USRA)

NASA’s TESS planet-finding spacecraft completed its primary mission about 3 months ago. TESS’s (Transiting Exoplanet Survey Satellite) job was to search the brightest stars nearest to Earth for transiting exoplanets. It found 74 confirmed exoplanets, with another ~1200 candidates awaiting confirmation.

It surveyed 75% of the sky during its two-year primary mission, and now NASA has released a composite image of the northern sky, made up of more than 200 individual images.

Continue reading “Time Flies. NASA Releases a Mosaic of TESS’ View of the Northern Sky After Two Years of Operation”

Here’s a Clever Idea, Looking for the Shadows of Trees On Exoplanets to Detect Multicellular Life

Exoplanet Kepler 62f would need an atmosphere rich in carbon dioxide for water to be in liquid form. Artist's Illustration: NASA Ames/JPL-Caltech/T. Pyle

That’s the kind of headline that can leave us scratching our heads. How can you see tree shadows on other worlds, when those planets are tens or hundreds of light years—or even further—away. As it turns out, there might be a way to do it.

One team of researchers thinks that the idea could potentially be used to answer one of humanity’s long-standing questions: Are we alone?

Continue reading “Here’s a Clever Idea, Looking for the Shadows of Trees On Exoplanets to Detect Multicellular Life”

Astronomers think they’ve found an exoplanet in a galaxy 23 million light-years away

Artist's impression of of Kepler-1649c orbiting around its host star. Credit: NASA’s Ames Research Center/Daniel Rutter

Using a variety of techniques astronomers have successfully identified thousands of exoplanets, which are planets orbiting stars outside of our own solar system. But a new research paper introduces a breakthrough: the first detection of an exoplanet not just in another solar system, but in an entirely different galaxy sitting millions of light years away.

Continue reading “Astronomers think they’ve found an exoplanet in a galaxy 23 million light-years away”

Cheops Finds a World That’s Utterly Alien From Anything We Have in the Solar System

An artist's impression of WASP-189 and WASP-189b. Image Credit: ESA/CHEOPS

The ESA’s CHEOPS (Characterizing Exoplanets Satellite) mission has announced its first discovery. It’s called WASP-189 b, and it’s a blistering hot temperature of 3,200 °C (5,790 °F), hotter than some stars. They’re calling the planet an “ultra-hot Jupiter.”

Continue reading “Cheops Finds a World That’s Utterly Alien From Anything We Have in the Solar System”

There Could Be Carbon-Rich Exoplanets Made Of Diamonds

llustration of a carbon-rich planet with diamond and silica as main minerals. Water can convert a carbide planet into a diamond-rich planet. In the interior, the main minerals would be diamond and silica (a layer with crystals in the illustration). The core (dark blue) might be iron-carbon alloy. Credit: Shim/ASU/Vecteezy

Scientists are getting better at understanding exoplanets. We now know that they’re plentiful, and that they can even orbit dead white dwarf stars. Researchers are also getting better at understanding how they form, and what they’re made of.

A new study says that some carbon-rich exoplanets could be made of silica, and even diamonds, under the right circumstances.

Continue reading “There Could Be Carbon-Rich Exoplanets Made Of Diamonds”