Beautiful, Glowing Dust in Orion


On Earth, dust can be pretty mundane. But in space, dust can be beautiful, especially when the dust reflects starlight – and even more so when we have the chance to see the reflections in different wavelengths. Here in NGC 2068, also called Messier 78, this dazzling submillimetre-wavelength view from the Atacama Pathfinder Experiment (APEX) telescope Dust shows the glow of interstellar dust grains, pointing the way to where new stars are being formed.
This reflection nebula lies just to the north of Orion’s Belt. When seen in visible light glimmers in a pale blue glow of starlight, but much of the light is blocked by the dust. In this image, the APEX observations are overlaid on the visible-light image in orange. APEX’s view reveals the gentle glow of dense cold clumps of dust, some of which are even colder than -250 C.

A visible light image from ESO of the reflection nebula Messier 78. Credit: ESO and Igor Chekalin

Compare the new image with this earlier, visible light image of M78.

One filament seen by APEX appears in visible light as a dark lane of dust cutting across Messier 78. This tells us that the dense dust lies in front of the reflection nebula, blocking its bluish light. Another prominent region of glowing dust seen by APEX overlaps with the visible light from Messier 78 at its lower edge. The lack of a corresponding dark dust lane in the visible light image tells us that this dense region of dust must lie behind the reflection nebula.

Observations of the gas in these clouds reveal gas flowing at high velocity out of some of the dense clumps. These outflows are ejected from young stars while the star is still forming from the surrounding cloud. Their presence is therefore evidence that these clumps are actively forming stars.

At the top of the image is another reflection nebula, NGC 2071. While the lower regions in this image contain only low-mass young stars, NGC 2071 contains a more massive young star with an estimated mass five times that of the Sun, located in the brightest peak seen in the APEX observations.

This chart shows the location of Messier 78 in the famous constellation of Orion (The Hunter). This map shows most of the stars visible to the unaided eye under good conditions, and Messier 78 itself is highlighted with a red circle on the image. This reflection nebula is quite bright and can be seen well in moderate-sized amateur telescopes. Credit: ESO, IAU and Sky & Telescope

Source: ESO

Where All The Hottest Stars Gather


An ESO telescope captures a group of hot young stars that would outshine any Hollywood party!

At the upper left of this image is the star cluster NGC 6604, a grouping of hot young stars within a larger collection located in the sky near the much more famous Eagle Nebula (of “Pillars of Creation” fame.) The young stars, which burn bright and blue, are helping make a new generation of stars with their strong stellar winds, which condense nearby gas and dust into even more star-forming regions.

Eventually the new stars will replace the ones seen here, which, although big and bright, will quickly burn through their stellar fuel and fade. Such is the life cycle of massive stars — live fast and die young.

This image was acquired by the MPG/ESO 2.2-meter telescope at the European Southern Observatory’s La Silla Observatory in Chile. NGC 6604 is about 5,500 light-years from Earth, located in the constellation Serpens. Read more on the ESO news release here.

The Case of the Missing Dark Matter


A survey of the galactic region around our solar system by the European Southern Observatory (ESO) has turned up a surprising lack of dark matter, making its alleged existence even more of a mystery.

The 2.2m MPG-ESO telescope, used in the survey. (ESO/H.H.Heyer)

Dark matter is an invisible substance that is suspected to exist in large quantity around galaxies, lending mass but emitting no radiation. The only evidence for it comes from its gravitational effect on the material around it… up to now, dark matter itself has not been directly detected. Regardless, it has been estimated to make up 80% of all the mass in the Universe.

A team of astronomers at ESO’s La Silla Observatory in Chile has mapped the region around over 400 stars near the Sun, some of which were over 13,000 light-years distant. What they found was a quantity of material that coincided with what was observable: stars, gas, and dust… but no dark matter.

“The amount of mass that we derive matches very well with what we see — stars, dust and gas — in the region around the Sun,” said team leader Christian Moni Bidin of the Universidad de Concepción in Chile. “But this leaves no room for the extra material — dark matter — that we were expecting. Our calculations show that it should have shown up very clearly in our measurements. But it was just not there!”

Based on the team’s results, the dark matter halos thought to envelop galaxies would have to have “unusual” shapes — making their actual existence highly improbable.

Still, something is causing matter and radiation in the Universe to behave in a way that belies its visible mass. If it’s not dark matter, then what is it?

“Despite the new results, the Milky Way certainly rotates much faster than the visible matter alone can account for,” Bidin said. “So, if dark matter is not present where we expected it, a new solution for the missing mass problem must be found.

“Our results contradict the currently accepted models. The mystery of dark matter has just became even more mysterious.”

Read the release on the ESO site here.

Billions of Habitable Worlds Likely in the Milky Way


Could there be ‘tens of billions’ of habitable worlds in our own galaxy? That’s the results from a new study that searched for rocky planets in the habitable zones around red dwarf stars. An international team of astronomers using ESO’s HARPS spectrograph now estimates that there are tens of billions of such planets in the Milky Way galaxy, with probably about one hundred in the Sun’s immediate neighborhood, less than 30 light years away.

“Our new observations with HARPS mean that about 40% of all red dwarf stars have a super-Earth orbiting in the habitable zone where liquid water can exist on the surface of the planet,” said Xavier Bonfils, from IPAG, Observatoire des Sciences de l’Univers de Grenoble, France, and the leader of the team. “Because red dwarfs are so common — there are about 160 billion of them in the Milky Way — this leads us to the astonishing result that there are tens of billions of these planets in our galaxy alone.”

This is the first direct estimate of the number of smaller, rocky planets around red dwarf stars. Add this to another recent finding which suggested that every star in our night sky has at least one planet circling it — which didn’t include red dwarf stars – and our galaxy could be teeming with worlds.

This team used the HARPS spectrograph on the 3.6-metre telescope at ESO’s La Silla Observatory in Chile to search for exoplanets orbiting the most common kind of star in the Milky Way — red dwarf stars (also known as M dwarfs). These stars are faint and cool compared to the Sun, but very common and long-lived, and therefore account for 80% of all the stars in the Milky Way.

The Milky Way over the ESO 3.6-metre Telescope, a photo submitted via Your ESO Pictures Flickr Group. Credit: ESO/A. Santerne

The HARPS team surveyed a carefully chosen sample of 102 red dwarf stars in the southern skies over a six-year period. A total of nine super-Earths (planets with masses between one and ten times that of Earth) were found, including two inside the habitable zones of Gliese 581 and Gliese 667 C respectively.

By combining all the data, including observations of stars that did not have planets, and looking at the fraction of existing planets that could be discovered, the team has been able to work out how common different sorts of planets are around red dwarfs. They find that the frequency of occurrence of super-Earths in the habitable zone is 41% with a range from 28% to 95%.

Bonfils and his team also found that rocky planets were far more common than massive gas giants like Jupiter and Saturn. Less than 12% of red dwarfs are expected to have giant planets (with masses between 100 and 1000 times that of the Earth).

However, the rocky worlds orbiting red dwarfs wouldn’t necessarily be a good place to spend your first exo-vacation – or for harboring life.

“The habitable zone around a red dwarf, where the temperature is suitable for liquid water to exist on the surface, is much closer to the star than the Earth is to the Sun,” said Stéphane Udry from the Geneva Observatory and member of the team. “But red dwarfs are known to be subject to stellar eruptions or flares, which may bathe the planet in X-rays or ultraviolet radiation, and which may make life there less likely.”

New Exoplanet Discovered

A new exoplanet was discovered in this HARPS survey of red dwarfs: Gliese 667 Cc. This is the second planet in this triple star system and seems to be situated close to the center of the habitable zone. Although this planet is more than four times heavier than the Earth it is the closest twin to Earth found so far and almost certainly has the right conditions for the existence of liquid water on its surface. This is the second super-Earth planet inside the habitable zone of a red dwarf discovered during this HARPS survey, after Gliese 581d was announced in 2007 and confirmed in 2009.

“Now that we know that there are many super-Earths around nearby red dwarfs we need to identify more of them using both HARPS and future instruments,” said Xavier Delfosse, another member of the team. “Some of these planets are expected to pass in front of their parent star as they orbit — this will open up the exciting possibility of studying the planet’s atmosphere and searching for signs of life.”

Research papers: Bonfils et al. and Delfosse et al.

Source: ESO

VISTA View Is Chock Full Of Galaxies


See all those tiny points of light in this image? Most of them aren’t stars; they’re entire galaxies, seen by the European Southern Observatory’s VISTA survey telescope located at the Paranal Observatory in Chile.

This is a combination of over 6000 images taken with a total exposure time of 55 hours, and is the widest deep view of the sky ever taken in infrared light.

The galaxies in this VISTA image are only visible in infrared light because they are very far away. The ever-increasing expansion rate of the Universe shifts the light coming from the most distant objects (like early galaxies) out of visible wavelengths and into the infrared spectrum.

(See a full-size version — large 253 mb file.)

ESO’s VISTA (Visual and Infrared Survey Telescope for Astronomy) telescope is the world’s largest and most powerful infrared observatory, and has the ability to peer deep into the Universe to reveal these incredibly distant, incredibly ancient structures.

By studying such faraway objects astronomers can better understand how the structures of galaxies and galactic clusters evolved throughout time.

The region seen in this deep view is an otherwise “unremarkable” and apparently empty section of sky located in the constellation Sextans.

Read more on the ESO website here.

The VISTA telescope in its dome at sunset. Its primary mirror is 4.1 meters wide. G. Hüdepohl/ESO.


Erasure and VLT Team Up for ESO’s 50th Anniversary


British synthpop band Erasure released a video today featuring lead singer Andy Bell in front of the telescopes of ESO’s Paranal Observatory, located high in the mountains of Chile’s Atacama Desert. The new single “Fill Us With Fire” honors ESO’s 50th anniversary this year. Watch the full video below!

The video features the Very Large Telescope as well as some of ESO’s stunning images of the night sky. This is the third single to be released from their 2011 album Tomorrow’s World.

According to ESO’s press announcement:

Andy spent one day at Paranal in February 2012, during which time footage was shot of him singing Erasure’s latest single. The footage was edited with some of ESO’s best astronomical images. Andy, thrilled with the result, decided to dedicate it to ESO’s 50th Anniversary and make it the exclusive video for the single.

Shooting the Fill Us With Fire video. (F. Huber/Erasure/ESO)

Standing on a 20-foot-high platform in front of the VLT, Andy didn’t have a lot of room to move around during the shooting of the video. Say what you will about the choreography, I think it’s awesome to see the observatory and some of its amazing images featured in a new music video!

Personally, I would have wanted to be standing on top of one of the telescope domes but I’m not sure if that’s allowed.

Credit: Erasure/ESO (S. Lowery)

Directed by: Simon Lowery

Editing: Simon Lowery, Lars Lindberg Christensen & Patrick Geeraert

Music: Erasure/Andy Bell

Footage and photos: ESO, Guillaume Blanchard & Simon Lowery