Phobos and Jupiter Conjunction in 3 D and Amazing Animation – Blastoff to Martian Moon near

3 D view of the rare Phobos–Jupiter conjunction taken on 1 June 2011 by the High Resolution Stereo Camera on Mars Express. Credits: ESA/DLR/FU Berlin (G. Neukum)

Video Caption: Phobos and Jupiter in Conjunction – taken from Mars orbit !
A movie of the 1 June 2011 Phobos–Jupiter conjunction made by combining a sequence of 100 images of the encounter taken by the High Resolution Stereo Camera on ESA’s Mars Express orbiter. Mars Express is searching for safe landing zones on Phobos for Russia’s Phobos-Grunt lander blasting off on November 9. Credits: ESA/DLR/FU Berlin (G. Neukum)
3 D images of Phobos-Jupiter conjuction below
Update – Phobos-Grunt launch processing photo below

In just 7 days, Russia’s Phobos-Grunt sample return mission will blast off for Mars on November 9 on a daring mission to grab soil samples from the surface of the miniscule martian moon Phobos and return them back to Earth for analysis to give us breathtaking new insights into the formation and evolution of Mars, Phobos and our Solar System.

So, check out the amazing animation and 3 D stereo images of fish-like Phobos and banded Jupiter snapped by Europe’s Mars Express orbiter to get a bird’s eye feel for the battered terrain, inherent risks and outright beauty that’s in store for the Phobos -Grunt spaceship when it arrives in the Red Planet’s vicinity around October 2012. Whip out your red-cyan 3 D glasses – Now !

[/caption]

ESA’s Mars Express orbiter (MEX) was tasked to help Russia locate suitable and safe landing sites on Phobos’ pockmarked terrain. MEX was built by ESA, the European Space Agency and has been in Mars orbit since 2003.

To capture this impressive series of rare photos of Jupiter and Phobos in conjunction, Mars Express performed a special maneuver to observe an unusual alignment of Jupiter and Phobos on 1 June 2011.

Mars Express High Resolution Stereo Camera (HRSC) snapped a total of 104 images over 68 seconds when the distance from the spacecraft to Phobos was 11,389 km and the distance to Jupiter was 529 million km.

Phobos- Jupiter Conjunction: before, during and after on 1 June 2011 from Mars Express. Credits: ESA/DLR/FU Berlin (G. Neukum)

Enjoy the exquisite views of the bands of Jupiter and imagine exploring the deep pockets and mysterious grooves on Phobos – which may be a captured asteroid.

The camera was kept fixed on Jupiter, to ensure it remained static as Phobos passed in front and which afforded an improvement in our knowledge of the orbital position of Phobos.

Phobos in 3 D during flyby of 10 March 2010. Image taken from a distance of 278 km. Russia’s Phobos-Grunt will retrieve rogolith and rock for return to Earth. Credit: ESA/DLR/FU Berlin (G. Neukum)

NASA’s twin Mars rovers Spirit and Opportunity have also occasionally photographed both of Mars’ moons to further refine their orbital parameters.

NASA’s Curiosity rover remains on track to liftoff for Mars on Nov. 25

Orbital Paths of Phobos and Mars Express. The trajectories of Phobos and Mars Express at the time of the conjunction with Jupiter on 1 June 2011. The letter ‘S’ denotes the South Pole of Mars.
Technicians at Baikonur Cosmodrome prepare Phobos-Grunt for upper stage attachment. Credit: Roscosmos

Read Ken’s continuing features about Phobos-Grunt here:
Russia Fuels Phobos-Grunt and sets Mars Launch for November 9
Phobos-Grunt and Yinghou-1 Arrive at Baikonur Launch Site to tight Mars Deadline
Phobos-Grunt: The Mission Poster
Daring Russian Sample Return mission to Martian Moon Phobos aims for November Liftoff

Mars500 Crew Ready To Open Hatch

Diego Urbina looking out from the hatch inside Mars500 facility. Credits: ESA

[/caption]

With less than 48 hours left to go – and after 520 days – the Mars500 crew will officially “open the hatch” on their isolation on November 4. Scientists are eagerly awaiting the last of the experiments, but the inside team is awaiting freedom. They’ve been there since June of last year!

It’s been 17 long months filled with countless hours of experiments. During this simulated Mars mission, these gents have had their brains monitored, bodies scanned, donated samples and kept house. On top of that, they’ve done it so well that scientists can’t wait to get their hands on the results. The most important question of all has already been answered.

And the answer is “Yes.”

Romain Charles taking an air sample for the European MICHA experiment in Mars500. Credits: ESA
“And the scientists have already highlighted the importance of their investigations for terrestrial medical issues.” says Patrik Sundblad, the human life sciences specialist at ESA. “Yes, the crew can survive the inevitable isolation that is for a mission to Mars and back. Psychologically, we can do it.”

Can you imagine what would almost seem like purgatory? Even the most dedicated of us get days off, and knowing you truly aren’t in space would be a difficult hurdle to overcome. “They have had their ups and downs, but these were to be expected. In fact, we anticipated many more problems, but the crew has been doing surprisingly well.” continues Sunblad. “August was the mental low point: it was the most monotonous phase of the mission, their friends and families were on vacation and didn’t send so many messages, and there was also little variation in food.”

However, things didn’t stay bleak for long. Morale returned as the end came into sight after an artificial delay and communications with friends and family began again on September 15th. “The high fidelity of the simulation has been an important factor in the success of the experiment,” notes Patrik. “Simulating a real mission to Mars as closely as is possible on Earth has been very important for the crew. Knowing this mission is really helping to make a real mission to Mars possible has made the challenging long-duration experiment somehow easier for the crew.”

Wang Yue with EEG measurement device. Credits: ESA
Even as grueling as these simulations might seem to be, it’s still not as stressful as a genuine mission to Mars would be. The reality check is the astronauts would know they couldn’t just be “rescued” in case of an emergency. Add to that weightlessness, radiation and the genuine separation of miles. While you might be able to hibernate in Antarctica to explore some facets of the human psyche, it’s not going to account for everything that goes on in our bodies and minds.“We are using to some extent the same psychological questionnaires with Mars500 as with over-wintering crews at the Concordia base and bedrest studies,” says Patrik. “Comparing them is extremely interesting.”

Crew portrait from May 2011. Credits: ESA
Yep. The mission is ending – but it’s about a lot more than just six men who chose to isolate themselves for science. It’s about international cooperation and the whole infrastructure surrounding the mission. “The crew has worked individually and as team very well, and the cooperation in the outside world has been outstanding,” observes Patrik. “Russia, China and Europe have maintained the integrity of the unique experiment. This is a very important lesson for any future mission to Mars: it is not only about the spacecraft and its crew, but also about close cooperation on Earth between all the teams and the international space agencies.”

Way to go, Mars500 crew! The first round is on the house…

Original Story Source: ESA News Release.

Asteroid Lutetia May Have A Molten Core

Several images have been combined into a map of the asteroid. This image represents the total area viewed by the spacecraft during the flyby, which amounted to more than 50% of Lutetia’s surface. Credits: ESA 2011 MPS for OSIRIS Team MPS/UPD/LAM/IAA/RSSD/INTA/UPM/DASP/IDA

[/caption]

Way out in space, 282 million miles from home, the intrepid ESA Rosetta spacecraft is still busy, but had time to send us an unprecedented view of ancient asteroid Lutetia. On July 10, 2010, Rosetta flew past Lutetia and the results of the imaging revealed surface features which point to an astonishing history. This particular asteroid might not have a “heart of gold”, but it may very well have – or had – a molten interior.

Buzzing by at a speed of 54 000 km/hr and a closest distance of 3170 km, Rosetta took a series of high resolution images and returned them to an international team of researchers from France, Germany, the Netherlands and the United States. By closely examining the craters, cracks and surface, the team was able to determine that Lutetia survived a multitude of impacts – yet retained much of its original structure.

Lutetia fly-by from Science News on Vimeo.

Benjamin Weiss, an associate professor of planetary sciences in MIT’s Department of Earth, Atmospheric and Planetary Sciences, reports Lutetia may have a molten core and this finding shows a “hidden diversity” for known structures within the greater asteroid belt.

“There might be many bodies that have cores and interesting interiors that we never noticed, because they’re covered by unmelted surfaces,” says Weiss, who is a co-author on both Science papers and lead author for the paper in PSS. “The asteroid belt may be more interesting than it seems on the surface.”

Although the encounter was brief, images from the OSIRIS camera revealed some surface features which are believed to be up to 3.6 billion years old – while others appear to be 50-80 million. These ages can be estimated through impact events and the amount and distribution of ejecta. Some of the areas on Lutetia are heavily cratered, implying greater age, while others appear to be landslide events perhaps caused by nearby fractures. While most asteroids are small, light, and have smooth surfaces – Lutetia is different. It appears to be dense, yet relatively porous… a finding that points toward a “dense metallic core, with a once melted interior underneath its fractured crust.”

“We don’t think Lutetia was born looking like this,” says Holger Sierks, of the Max-Planck-Institut für Sonnensystemforschung, Lindau, Germany. “It was probably round when it formed.”

You’ve got to hand it to Rosetta. By being able to study these images, the many teams of scientists now have evidence for a theory developed last year by Weiss, Elkins-Tanton and MIT’s Maria Zuber. By studying chondrite meteorites, they’ve speculated these strongly magnetized samples most likely occurred in an asteroid with a melted, metallic core. If this theory proves to be correct, the Lutetia simply managed to dodge the proverbial bullets and developed with a molten interior.

“The planets … don’t retain a record of these early differentiation processes,” Weiss says. “So this asteroid may be a relic of the first events of melting in a body.”

According to MIT news, Erik Asphaug, a professor of planetary science at the University of California at Santa Cruz, studies “hit-and-run” collisions between early planetary bodies. He says the work by Weiss and his colleagues is a solid step toward resolving how certain asteroids like Lutetia may have evolved.

“We’ve had decades of cartoon speculation, and here’s speculation that’s anchored in physical understanding of how the interiors of these bodies would evolve,” says Asphaug, who was not involved in the research. “It’s like getting through the first 100 pages of a novel, and you don’t know where it’s leading, but it feels like the beginnings of a coherent picture.”

Another Rosetta stone?

Original Story Sources: ESA News Release and MIT News Release.

Are Pluto and Eris Twins?

Artist's rendering of the distant dwarf planet Eris. New suggests that Eris is almost exactly the same diameter as Pluto. Eris is very reflective - possibly due to the frozen remains of its atmosphere. Image Credit: ESO/L. Calçada

[/caption]

Back a couple of weeks ago, I wrote an article highlighting the debate between scientists on which dwarf planet is bigger, Pluto or Eris. During a planetary science conference earlier this month in France, word “leaked” out that Eris was still more massive, but likely smaller in diameter.

Today, the latest findings were published in Nature, and as such are now “official”. There’s also some additional information, so I’d like to revisit this topic and include some new details which may help answer the question:

Could Eris and Pluto actually be twins?

Before we answer the pressing question, let’s revisit my prior post at: http://www.universetoday.com/89901/pluto-or-eris-which-is-bigger/.

Bruno Sicardy of the Paris Observatory and his team calculated the diameter of Eris in 2010. The technique they used took advantage of an occultation between Eris and a faint background star. Sicardy’s results provided a diameter of 2,326 kilometers for Eris, slightly less than his 2009 estimate of Pluto’s diameter at 2,338 kilometers.

Combining the diameter estimate with mass estimates yielded a density estimate for Eris which suggests, and is supported by its extra mass, that its composition is far more rocky than Pluto, with Eris being only 10-15% ice by mass.

In this week’s announcement by the European Southern Observatory, additional information was presented which sheds new light on cold, distant Eris.

Regarding the new density estimates, Emmanuel Jehin, one of Sicardy’s team members mentions, “This density means that Eris is probably a large rocky body covered in a relatively thin mantle of ice”.

Further supporting Jehin’s assertion, The surface of Eris was found to be extremely reflective, (96% of the light that falls on Eris is reflected, making it nearly as reflective as a backyard telescope mirror). Based on the current estimate, Eris is more reflective than freshly fallen snow on Earth. Based on spectral analysis of Eris, its surface reflectivity is most likely due to a surface of nitrogen-rich ice and frozen methane. Some estimates place the thickness of this layer at less than one millimeter.

Jehin also added, “This layer of ice could result from the dwarf planet’s nitrogen or methane atmosphere condensing as frost onto its surface as it moves away from the Sun in its elongated orbit and into an increasingly cold environment. The ice could then turn back to gas as Eris approaches its closest point to the Sun, at a distance of about 5.7 billion kilometers.”

Based on the new information on surface composition and surface reflectivity, Sicardy and his team were able to make temperature estimates for Eris. The team estimates daytime temperatures on Eris of -238 C, and that temperatures on the night side of Eris would be much lower.

Sicardy concluded with, “It is extraordinary how much we can find out about a small and distant object such as Eris by watching it pass in front of a faint star, using relatively small telescopes. Five years after the creation of the new class of dwarf planets, we are finally really getting to know one of its founding members.”

Source(s): ESO Press Release , Universe Today

Video Duet – Soyuz Debut Blast off from the Amazon Jungle and Rockin’ Russian Rollout !

Soyuz launch through the Amazon jungle raindrops on 21 October 2011. Credit:Thilo Kranz/DLR - Special to Universe Today

Watch the video of today’s debut lift off of a Russian Soyuz rocket from the edge of the Amazon jungle at the Guiana Space Center in French Guiana as it successfully carried the first two Galileo In-Orbit Validation satellites to space after an arduous 7 year struggle to mesh Russian and European technologies and cultures – a magnificent achievement that opens a wide realm of new commercial and science exploration possibilities to exploit space for humankind. Launch photos below and here.

Now have some real fun and enjoy this absolutely cool Rockin’ Russian music video showing a headless Soyuz rollout to the pad, an erection like you’ve never imagined and capping with the Galileo satellites. Guaranteed you’ve never seen struttin’ like this but will totally get the Soyuz experience in 2 minutes – give it a whirl. They never did it like this in Russia.

[/caption]

“This historic first launch of a genuine European system like Galileo was performed by the legendary Russian launcher that was used for Sputnik and Yuri Gagarin, a launcher that will, from now on, lift off from Europe’s Spaceport,” said Jean-Jacques Dordain, Director General of ESA.

“These two historical events are also symbols of cooperation: cooperation between ESA and Russia, with a strong essential contribution of France; and cooperation between ESA and the European Union, in a joint initiative with the EU”.

First Soyuz lift from Europe’s Spaceport in French Guiana on 21 October 2011. Credits: ESA/CNES/ARIANESPACE - Optique Video du CSG, Service Optique
Soyuz inside the Mobile Launch Gantry after installation of Galileo satellites mounted inside Upper Composite. Credit: Claus Lippert/DLR

Read Ken’s continuing features about Soyuz from South America starting here:
Historic 1st Launch of Legendary Soyuz from South America
Russian Soyuz Poised for 1st Blastoff from Europe’s New South American Spaceport

Read Ken’s features about Russia’s upcoming Phobos-Grunt launch from Baikonur here:
Phobos-Grunt and Yinghou-1 Arrive at Baikonur Launch Site to tight Mars Deadline
Phobos-Grunt: The Mission Poster
Daring Russian Sample Return mission to Martian Moon Phobos aims for November Liftoff

Historic 1st Launch of Legendary Soyuz from South America

First Soyuz lift from Europe’s Spaceport in French Guiana on 21 October 2011. Credits:Thilo Kranz/DLR

[/caption]

Russia’s legendary Soyuz rocket soared skywards today (Oct.21) on its historic 1st ever blastoff from a new European space base in the equatorial jungles of South America. The history making liftoff of the Soyuz ST-B launcher from French Guiana occurred at exactly 6:30:26 a.m. EST (10:30:26 GMT) and lofted the first two operational satellites of Europe’s new Galileo GPS navigation system.

The flawless liftoff of the Soyuz booster from the ELS pad in French Guiana marked the first time that a Soyuz was launched from outside of the six existing pads in Russia and Kazakhstan. The joint Russian-European project was started back in 2004 and culminated with today’s launch of the Soyuz-VSO1 mission.

“This launch represents a lot for Europe: we have placed in orbit the first two satellites of Galileo, a system that will position our continent as a world-class player in the strategic domain of satellite navigation, a domain with huge economic perspectives,” said Jean-Jacques Dordain, Director General of ESA.

First Soyuz lift blastoff from Europe’s Spaceport in French Guiana on 21 October 2011. Mobile gantry at left. Credits:Thilo Kranz/DLR - Special to Universe Today

Soyuz lineage dates back to the beginning of the Space Age with the launch of Sputnik-1 in 1957 and the first man in space, Yuri Gagarin, in 1961. Soyuz had flown 1776 times to date.

First Soyuz lift from Europe’s Spaceport in French Guiana on 21 October 2011. Credits: ESA/CNES/ARIANESPACE - S. Corvaja, 2011

The launcher is based on the existing Soyuz design with a few changes to accommodate European safety standards and the construction of the ELS launch pad was modeled after the existing pads in Baikonur in Kazakhstan and Plesetsk in Russia. One significant difference is the construction of a 45 meter (170 foot) mobile gantry

A leaky valve delayed the flight by one day.

The duo of 700 kg Galileo satellites were mounted side by side on the Fregat upper stage atop the three stage Soyuz-2 rocket. These two Galileo In-orbit Validation (IOV) model satellites are experimental models that will be used to test the GPS technology.

Soyuz lifts off for the first time on 21 October 2011 from Europe’s Spaceport in French Guiana carrying the first two Galileo In-Orbit Validation satellites. Credits: ESA/CNES/ARIANESPACE - S. Corvaja, 2011

Two additional Galileo IOV satellites will be launched in 2012 as the initial segment of a 30 strong constellation of satellites in total.

The Galileo satelites will provide pinpoint accuracy to within about 1 meter (3 feet) compared to about 3 meters (10 feet) for the GPS system.

The 4 meter diameter payload fairing jettisoned as planned three minutes into the flight and the first of two firings of the Fregat upper stage was successfully completed after burnout of the lower stages. The second Fregat firing was accomplished about 4 hours after launch and injected the Galileo satellites into orbit some 23,000 km (14,000 miles) miles high.

The Fregat upper stage was designed to reignite and fire up to 20 times. It is fueled with nitrogen tetroxide and unsymmetrical dimethylhydrazine (UDMH).

First Soyuz lift from Europe’s Spaceport in French Guiana on 21 October 2011. Credits: ESA/CNES/ARIANESPACE - S. Corvaja, 2011

By launching from near the equator (5°N), the Soyuz gains about a 50% performance boost from 1.7 tons to nearly 3 tons to geostationary orbit due to the Earth’s faster spin compared to Baikonur (46°N).

Manned Soyuz missions from South America could be possible at some future date if the political and funding go ahead was approved by ESA and Russia. It is technically possible to reach the ISS from the French Guiana pad and would require the installation of additional ground support equipment.

The next Soyuz launch from South America is set for Dec. 16, 2011. 17 contracts have already been signed for future liftoffs at a rate of 2 to 3 per year.

Read Ken’s continuing features about Soyuz from South America starting here:
Russian Soyuz Poised for 1st Blastoff from Europe’s New South American Spaceport

Read Ken’s features about Russia’s upcoming Phobos-Grunt launch from Baikonur here:
Phobos-Grunt and Yinghou-1 Arrive at Baikonur Launch Site to tight Mars Deadline
Phobos-Grunt: The Mission Poster
Daring Russian Sample Return mission to Martian Moon Phobos aims for November Liftoff

GAIA – A Billion Eyes On The Skies

Artist Concept of GAIA - Credit: ESA

[/caption]

Its name is GAIA and it’s perhaps the most ambitious project which has ever faced the European Space Agency. Scheduled to launch in 2013, this new breed of space telescope will stately progress to Lagrange Point 2, where it will spend the next five years. Its mission? To create the largest and most precise three dimensional chart of our Galaxy by providing unprecedented positional and radial velocity measurements for about one billion stars in our Galaxy and throughout the Local Group.

While this number represents perhaps only 1% of the Milky Way’s stellar population, the GAIA mission will be “seeing” far more than just stars. Its astrophysical information data base will work hand-in-hand with on-board multi-color photometry… providing an information set which has the precision necessary to quantify the early formation, and subsequent dynamical, chemical and star formation evolution of the Milky Way Galaxy. As a result of its tracking capabilities, GAIA will also capture information on asteroids, comets, extra-solar planets and even low temperature, low mass objects. Its sensitive equipment will sweep over neighboring galaxies and reach out into space for a half million quasars. GAIA will push the boundaries of general relativity and cosmology to the limits.

What’s inside? GAIA will carry twin telescopes complete with two camera arrays incorporating charge coupled devices – each one measuring 45.0mm by 59.0mm and encompassing 1,966 pixels by 4,500 pixels. “The mounting and precise alignment of the 106 CCDs is a key step in the assembly of the flight model focal plane assembly,” said Philippe Gare, ESA’s GAIA Payload Manager.

The diminutive sensors will be placed in rows across a silicon carbide framework and span an area just slightly under half a square meter. It’s a billion little eyes ready to be turned towards the skies…

However, no optical telescope is complete without a mirror assembly and GAIA delivers. It is crafted with a set of 10 mirrors… all with outstanding physical and optical characteristics. “Since the design process began in 2006, the GAIA team has learned how to produce a set of sintered silicon carbide mirrors which is not only extremely strong and ultra-stable – with about twice the rigidity of steel – but also lightweight and with a high thermal conductivity,” said Matthias Erdmann, ESA’s GAIA Payload Systems Engineer responsible for optics and ceramics.

“Although these are not the first silicon carbide mirrors that have been made for a space mission, no mirrors as large as the GAIA primary mirror have previously been coated using the CVD process,” he added. “The degree of similarity of the mirror pairs is also quite unique. This is particularly important for GAIA , since each telescope must have similar optical capabilities, with diffraction limited viewing and minimal wavefront errors. Their outstanding optical characteristics achieve new standards that will be of great value to the development of future space observatories. As a result of this programme, the European industrial team has been able to master all of the processes required for making state-of-the-art space mirrors, and become the world leader in silicon carbide mirror technology.”

GAIA Telescope Array - Credit: ESA

But getting GAIA into space hasn’t been an overnight process. From initial approval of the project to launch encompasses 13 years – and an additional 7 to 8 to analyze the resulting data. Just consider its downlink – about 5 Mbit/s during its daily passes. While that’s comparable to a home broadband system, GAIA isn’t doing it from home. It’s transmitting from a million and a half kilometers away.

“The raw data that has to be collected is about 100 terabytes, and when all the data are processed in the archive we are talking about up to one petabyte,” says Giuseppe Sarri, Esa’s Gaia project manager. “For the analysis, a supercomputer will be needed to get out all the numbers.”

Yet, Gaia is not the first space mission to chart the heavens. In 1989, ESA also took on Hipparcos – a catalog effort well known even to the amateur community. It produced a primary catalogue of about 118 000 stars, and a secondary catalogue, called Tycho, of over 2 million stars. Even these impressive numbers will pale next to GAIA, whose mirrors will collect thirty times more light and measure a star’s position and motion two hundred times more accurately. At the end of its five-year mission, the information will fill over 30,000 CD ROMs – filled with 1000 million celestial objects – and be freely distributed to the astronomical community.

And we’ll be waiting…

For Further Reading: GAIA Mission Pages.

Russian Soyuz Poised for 1st Blastoff from Europe’s New South American Spaceport

1st Russian Soyuz poised for blastoff from Europe’s Spaceport in South America. Soyuz VS01, the first Soyuz flight from Europe’s Spaceport in French Guiana is scheduled to liftoff on 20 October 2011. Credit: ESA - S. Corvaja

[/caption]

A Russian Soyuz-2 rocket sits poised for its first ever blast off in less than 24 hours from a brand new launch pad built in the jungles of French Guiana, South America by the European Space Agency (ESA) .

The payload for the debut liftoff of the Soyuz ST-B booster consists of the first pair of operational Galilieo satellites, critical to Europe’s hopes for building an independent GPS navigation system in orbit.

Soyuz VS01, the first Soyuz flight from Europe’s Spaceport in French Guiana, will lift off on 20 October 2011. The rocket will carry the first two satellites of Europe’s Galileo navigation system into orbit. Credit:ESA - S. Corvaja

The Soyuz VS01 mission is set to soar on Thursday, Oct. 20 at 6:34 a.m. EDT (1034 GMT ) from Europe’s new South American pad, specially built for the Soyuz rocket. The three stage rocket was rolled out 600 meters horizontally to the launch pad and vertically raised to its launch position.

Soyuz VS01 on launch pad. Soyuz VS01vehicle was rolled out horizontally on its erector from the preparation building to the launch zone and then raised into the vertical position. The ‘Upper Composite’, comprising the Fregat upper stage, payload and fairing, was also transferred and added onto the vehicle from above, completing the very first Soyuz on its launch pad at Europe’s Spaceport. Soyuz VS01 will lift off on 20 October 2011. The rocket will carry the first two satellites of Europe’s Galileo navigation system into orbit. Credit: ESA - S. Corvaja

The two Galileo satellites were mated to the Fregat-MT upper stage, enclosed inside their payload fairing and then hoisted atop the Soyuz rocket. They should seperate from the upper stage about 3.5 hous after launch.

Because French Guiana is so close to the equator, the Soyuz gains a significant boost in performance from 1.7 tons to 3 tons due to the Earth’s greater spin.

This marks the first time in history that the renowned Soyuz workhorse will blast off from outside of Kazakhstan or Russia and also the start of orbital construction of Europe’s constellation of 30 Gallileo satellites.

28 more of the navigation satellites, built by the EADS consortium based in Germany, will be lofted starting in 2012 aboard the medium class Soyuz rockets.

French Guiana is already home to Europe’s venerable Ariane rocket family and will soon expand further to include the new Vega rocket for smaller class satellites.

ESA will begin live streaming coverage starting about an hour before the planned launch time of 6:34 a.m. EDT (1034 GMT)

Soyuz VS01 poised for launch on Oct. 20, 2011. Credit: ESA - S. Corvaja

ESA Issues Invitation To Russia To Partner ExoMars Mission

Jean-Jacques Dordain. Credit: ESA photo by S. Corvaja

[/caption]

What’s new in the avenue of space exploration? Right now the European Space Agency (ESA) has issued a formal invitation to Russia to join the U.S.-European Mars exploration program in a last-ditch attempt to save the project from being cut in half, ESA Director-General Jean-Jacques Dordain said October 13th.

The appeal to Russia, which came in the form of a letter to the head of the Russian space agency, Roscosmos, is likely ESA’s only hope of saving the full U.S.-European Mars exploration project, which Europe calls ExoMars, Dordain said in an interview. At this point in time, the agency is hoping for a solid answer by the beginning of 2012. This will allow for planning for a two-launch mission of the ExoMars program and lead to a full partnership between the Russian Space Agency and NASA. What’s more, this partnership could mean additional support for the U.S.-European program and even incorporate a Proton rocket launch carrying a jointly-build Mars telecommunications orbiter and an entry, descent and landing system in 2016.

By cutting NASA’s budget, the U.S. contribution to world-wide space programs looks bleak… even with the planned 2018 launch, aboard a NASA-provided Atlas 5 rocket, of the Euro-American Mars rover. This lack of funds hurts everyone – including ESA – dashing hopes of of purchasing its own Ariane 5 rocket for the 2016 mission. Even though NASA appears to be committed at this point, there’s always the uncertainty of the U.S. economic picture.

“At this point I am becoming a Doubting Thomas in that I believe only what I can see,” Dordain said. “But NASA has said nothing that would lead me to believe the 2018 mission is not going forward. At this point I have only two options: Keep the mission as we would like it by finding an additional partner, or reduce the mission.”

This doesn’t mean that ESA isn’t trying. Even by cutting the budget to a single-launch isn’t totally the answer. By making such drastic changes in the middle of an already planned scenario means changing tactics when design teams are already on a tight schedule. Cutting the budget also means cutting jobs – and that’s a problem in its own right. At this point, ESA is even willing to release nations from their commitments to keep the program, with modifications, intact.

Dordain said his approach to Roscosmos is not simply a request for an in-kind contribution of a Proton rocket for the 2016 launch. He said he would like Russia involved in ExoMars as a full third participant with NASA and ESA, and that the Russian role could include provision of experiments. “This could end up being an even grander mission than it would have with a full Russian participation,” Dordain said. “It’s not simply a matter of asking the Russians, ‘Please provide us a launcher.’”

Dordain briefed ESA’s ruling council on the ExoMars situation October 13 and will give an update at the council’s mid-December meeting. The current ExoMars contract for the 2016 mission, which had already been extended while ESA waited for a NASA commitment that never came, runs through December and can be extended to January, Dordain said.

It will be a waiting game from here. With luck, the Russians will answer by January 2012 and NASA will have a clearer picture of its own financial responsibilities by February 2012. Let’s hope the ExoMars Mission doesn’t have to pay the price.

Original Story Source: Space News Release.

Book Review: The Space Shuttle: Celebrating Thirty Years of NASA’s First Space Plane

The Space Shuttle: Celebating Thirty Years Of NASA's First Space Plane is chocked full of great imagery and works to cover each of the shuttle's 135 missions. Photo Credit: Zenith Press

[/caption]

The space shuttle program is over. The orbiters are being decommissioned, stripped of the components that allowed them to travel in space. For those that followed the program, those that wished they did and those with only a passing interest in what the program accomplished a new book has been produced covering the entirety of the thirty years that comprised NASA’s longest human space flight program. The Space Shuttle: Celebrating Thirty Years of NASA’s First Space Plane is written by aerospace author Piers Bizony and weighs in at 300 pages in length.

Bizony is a prolific author who has focused a lot of his work on space flight. Some of the books that he has written include (but definitely are not limited to) include: One Giant Leap: Apollo 11 Remembered, Space 50, The Man Who Ran the Moon: James E. Webb, NASA, and the Secret History of Project Apollo and Island in the Sky: The International Space Station.

Bizony pulls out all the stops in detailing the shuttle era. From thunder and light - to tragedy, the full spectrum of the shuttle program is highlighted here. Photo Credit: NASA

The book contains 900 color images, detailing the entire history of NASA’s fleet of orbiters. From the first launches and the hope that those initial flights were rich in, to the Challenger tragedy and the subsequent realization that the space shuttles would never be what they were intended to be.

The next phase of the book deals with the post-Challenger period and how NASA worked to find a balance with its fleet of orbiters, while at the same time worked to regain the trust of the America public. The path was both hindered and helped by a single payload – the Hubble Space Telescope.

The Space Shuttle: Celebrating Thirty Years of NASA’s First Space Plane - has stunning imagery on every page, allowing the reader to once again view the majesty that the shuttle program provided. Photo Credit: NASA

When the images the orbiting telescope beamed back turned out fuzzy, NASA was a laughing stock. Hubble would become a sensation and NASA redeemed its name after the first servicing mission to Hubble corrected the problem with the telescope’s mirror.

Hubble was not the only telescope or probe that the shuttle placed in the heavens. It would however, be the only one that NASA’s fleet of orbiters would visit during several servicing missions. Besides Hubble the shuttle also sent the Chandra X-Ray telescope, Galileo probe to Jupiter and the Magellan probe to Venus during the course of the program’s history.

It is currently unknown when the U.S. will launch crews into orbit again. Some aerospace experts have even suggested that the shuttles be pulled out of retirement to help fill this gap - but this is highly unlikely to happen. Photo Credit: NASA

NASA was now on course to begin construction of the most ambitious engineering feat in human history – the International Space Station. The Space Shuttle: Celebrating Thirty Years of NASA’s First Space Plane details this period, as well as the tragic loss of the shuttle Columbia in 2003 with great care and attention to detail. Many never-before-seen images are contained within and Bizony uses them to punctuate the history that the space shuttle accomplished with every flight.

With a chance of catastrophic failure estimated by some as being as high as one chance in 53 - the shuttle was a risky endeavor. However, given all of the program's accomplishments - it is not a stretch to say that the shuttle made fact out of last century's science fiction. Photo Credit: NASA

The book also contains a detailed diagram of the orbiter (it is long and therefore was produced as a pull-out section. This element is included near the end and acts as a nice punctuation mark to the stream of imagery contained within.

While it required the combined effort of 16 different nations to make the International Space Station work - the space shuttle made the orbiting laboratory a reality. Photo Credit: NASA

The book is not perfect (but what book is). If one did not know better, upon reading this book one would assume that the Delta Clipper (both DC-X and DC-XA) flew once and upon landing caught fire. DC-X flew eight times – not once. Bizony also describes the lunar element of the Vision for Space Exploration (VSE) as being a repeat of Apollo. Apollo 17 was the longest duration that astronauts roamed the Moon’s surface – they were there for about three days. The VSE called for a permanent crewed presence on the moon.

For those out there that consider themselves “shuttle huggers” this book is simply a must-have. It is perfect to take to autograph shows to be signed by astronauts (as every mission is detailed, it is a simple matter to have crew members sign on the pages that contain their missions). It is also a perfect gift for space aficionados this holiday season. Published by Zenith Press and retailing for $40.00, The Space Shuttle: Celebrating Thirty Years of NASA’s First Space Plane is a welcome addition to your home library.

How will the shuttle be remebered? According to Bizony, given the technological restraints and the numerous accomplishments that the orbiter accomplished - it will be remembered in a positive light. Photo Credit: NASA