ESA, Roscosmos Move Ahead with Plans for ExoMars Mission

Artist concept of an ExoMars rover. Credit: ESA

After NASA was forced to back out of the joint ExoMars mission with the European Space Agency due to budget constraints, it looked like the exciting rover-orbiter mission might not happen. However, ESA went elsewhere looking for help, and has now announced a tentative cooperative arrangement with Russia’s space agency where Roscosmos will provide the two launch vehicles for multi-vehicle European-Russian ExoMars missions in 2016 and 2018.

Plans are for the mission to have an orbiter for launch in 2016, plus an ESA-built rover mission in 2018. Roscosmos will provide Proton rockets for the launches of the two missions, as well as providing an instrument for both the orbiter and the rover as well as overseeing the landing of the rover. The orbiter would study Mars’ atmosphere and surface and the six-wheeled vehicle would look for signs of past or present life.

The orbiter would also provide telecommunications for the rover.

Frederic Nordland, ESA’s director of international relations, said the agreement would be finalized before the end of the year and that its principal characteristics are already known and accepted by both sides. The announcement was made at a meeting in Naples, Italy this week of ESA’s space leaders from the 10 different nations that comprise the organization. The leaders are discussing future objectives and priorities for Europe in space, with the aim of shaping the development of Europe’s space capability.

During the meeting, Poland officially joined ESA, becoming the 20th member of the European space organization. It joins the other member states of Austria, Belgium, Britain, the Czech Republic, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, The Netherlands, Norway, Portugal, Romania, Spain, Sweden and Switzerland.

ExoMars is now expected to cost ESA about 1.2 billion euros. So far, 850 million euros has been committed by the participating members, but officials remain confident the remaining funds can be raised.

ESA officials also said Russia’s Proton rocket might be used to launch Europe’s Juice mission to Jupiter in 2022, saving ESA’s science program some 170 million euros.

Sources: BBC, Space News

Hot Gas Bridge Discovered Connecting Galaxy Clusters

An “bridge” of hot gas stretches between galaxy clusters Abell 401 and Abell 399

It may not be good practice to burn bridges but this is one super-heated bridge that astronomers were happy to find: an enormous swath of hot gas connecting two galaxy clusters 10 million light-years apart, and nearly a billion light-years away.

Using ESA’s Planck space telescope, astronomers have identified leftover light from the Big Bang interacting with a filament of hot gas stretching between Abell 401 and Abell 399, two galactic clusters each containing hundreds of individual galaxies.

Launched in May 2009, Planck is designed to study the Cosmic Microwave Background (CMB) — the leftover light from the Big Bang. When this radiation interacts with large-scale cosmic structures, like the hot gas bridging clusters of galaxies, its energy is modified in a specific way. This is referred to as the Sunyaev–Zel’dovich Effect (SZE), and Planck is specifically attuned to finding it.

This, however, is Planck’s first discovery of inter-cluster gas found using the SZ technique.

The temperature of the gas is estimated to be around 80 million degrees C, similar to the temperature of the gas found within the clusters themselves. It’s thought that the gas may be a combination of cosmic web filaments left over from the early Universe mixed with gas from the clusters.

The image above shows the clusters Abell 401 and Abell 399 as seen at optical wavelengths with ground-based telescopes overlaid with the SZE from Planck. The entire bridge spans a distance about the size of two full Moons in the sky.

Read more on ESA’s news page here.

Top image: Sunyaev–Zel’dovich effect: ESA Planck Collaboration; optical image: STScI Digitized Sky Survey. Inset image: Artist’s impression of Planck against the CMB. (ESA and the HFI Consortium, IRAS)

GOCE – How Low Can It Go?

Caption: GOCE over ice. Credits: ESA – AOES Medialab

Since March 2009, the European Space Agency (ESA) mission, Gravity field and steady-state Ocean Circulation Explorer (GOCE) has been orbiting Earth. It carries highly sensitive instrumentation able to detect tiny variations in the pull of gravity across the surface of the planet, allowing it to map our planet’s gravity with unrivaled precision, producing the most accurate gravity map of Earth. With the planned mission completed, the fuel consumption has been much lower than anticipated, enabling ESA to extend GOCE’s life and put it into an even lower orbit, improving the quality of the gravity model.

The GOCE spacecraft was designed to fly low and has spent most of its mission roughly 500km below most other Earth-observing missions, at an altitude of 255km. ESA’s Earth Scientific Advisory Committee recommended lowering the orbit by 20km at a rate of about 300m per day, starting in August. After coming down by 8.6 km, the satellite’s performance and orbit were assessed. Now, GOCE is again being lowered while continuing its gravity mapping. It is expected to reach 235 km by February.

Decreasing the altitude increases the spatial resolution and the precision of the data. The expected increase in data quality is so high (possibly 35%) that scientists are calling it GOCE’s ‘second mission. Volker Liebig, ESA’s Director of Earth Observation Programmes has said “What the team of ESA engineers is now doing has not been done before and it poses a challenge. But it will also trigger new research in the field of gravity based on the high-resolution data we are expecting.”

Caption: The image on the left shows GOCE’s gravity measurements over northern Europe, acquired from its previous altitude. The image on the right depicts the expected measurements over the same area after the satellite has been lowered. Credits: ESA / GOCE+ Theme 2

The first ‘geoid’ based on GOCE’s gravity measurements was unveiled in June 2010. It is a crucial reference for conducting precise measurements of ocean circulation, sea-level change and ice dynamics. The mission has also been studying air density and wind in space, and its data was recently used to produce the first global high-resolution map of the boundary between Earth’s crust and mantle, called the Mohorovicic, or “Moho” discontinuity.

As the orbit drops, atmospheric drag increasingly pulls the satellite towards Earth, so GOCE has to use the tiny thrust of its ion engine to continuously compensate for any drag to stay aloft and maintain the stability it needs to measure Earth’s gravity. GOCE has enough xenon fuel for another 50 weeks of operations. When the fuel runs out the satellite will be pulled into the deep atmosphere where it will burn up

Find out more about the GOCE mission here

Spaceflight: Taking it Lying Down

Caption: Bedrest volunteer in bed during a study conducted in 2005. Credit: ESA

As you get older, do feel you could do with more rest? Our bodies lose bone density and muscle strength as we age. Astronauts in space suffer similar changes but at a much faster rate. Finding ways to understand and combat this process is important to space agencies, hospital patients and all of us as we grow older. A new study is about to commence at the French Institute for Space Medicine and Physiology, in the clinical research facility in Toulouse, France, that hopes to understand and address changes in astronauts’ bodies in space as well as in bedridden people on Earth. 12 volunteers will spend 21 days in bed. Sound relaxing? Think again.

The volunteers taking part in the study, will lie for 24 hours a day with their heads tilted 6° below the horizontal. They will not be allowed to get up, for any reason. Not for a breath of fresh air, a change of scenery, a shower or to use the toilet, until the 21 days are over. This will cause their bodies to react in similar ways to being weightless, without the expense or  risks involved in sending them into space.

In microgravity, bone loss occurs at a rate of 1 to 1.5% a month. This bone demineralization increases the risks of kidney stones and bone fractures as well as altering the ability of bones to heal after fractures. Loss of muscle mass, strength and endurance, increases risk of fatigue and injury. The heart may experience diminished cardiac function and possible disturbances in heart rhythm.

Microgravity also causes body fluids to be redistributed away from the extremities, which results in puffiness in the face during flight. The body’s neurovestibular system that controls balance, stabilizes vision and body orientation in terms of location and direction may also become impaired, leading to disorientation and lack of coordination. The body can also suffer loss of blood volume, low red blood cell levels and immunodeficiency

Although many of the effects are reversible upon return to Earth, astronauts may have problems standing up, stabilizing their gaze, walking and turning, immediately after landing. Some astronauts find their blood pressure drops abnormally low when they move from lying down to a sitting or standing position.

The participants in this latest study will be scientifically scrutinised to see how they adapt to staying in bed for long periods, but they will also be divided into three groups to test a set of measures designed to counteract muscle and bone loss. The control group will be given no countermeasures, while a second group will use resistive and vibrating exercise machines. The last group will use the exercise machines and eat nutritional supplements of whey protein – a common supplement used by bodybuilders to train their muscles.

Each group of volunteers will participate in all the regimes, one after the other, over the course of the entire experiment of more than a year. They will be given four months between each bedrest session to recuperate. After the first 21-day session, they will return to the at the MEDES Space Clinic in Toulouse, for another session and once more in 2013 for a final session. After all that I bet they will need a rest.

Read more about this study here
And read diaries from participants in a similar study that ran for 60 days in 2005 here

Space for the Cost of a Movie Ticket

The European Space Agency (ESA) was founded by 10 European states back in 1975 with the idea that “We can do more, together.” Today Europe’s gateway to space is a cooperative, intergovernmental organisation, with 20 European member nations representing 500 million citizens, coming together in their national interest and common good. On 20-21 November ESA’s space ministers are meeting in Naples to decide the Agency’s future course. Continue reading “Space for the Cost of a Movie Ticket”

Huge New ESA Tracking Station is Ready for Duty

Caption: ESA’s giant Malargüe tracking station Credits: ESA/S. Marti

To keep in contact with an ever growing armada of spacecraft ESA has developed a tracking station network called ESTRACK. This is a worldwide system of ground stations providing links between satellites in orbit and ESA’s Operations Control Centre (ESOC) located in Darmstadt, Germany. The core ESTRACK network comprises 10 stations in seven countries. Major construction has now been completed on the final piece of this cosmic jigsaw, one of the world’s most sophisticated satellite tracking stations at Malargüe, Argentina, 1000 km west of Buenos Aires.

ESA’s Core Network comprises 10 ESTRACK stations: Kourou (French Guiana), Maspalomas, Villafranca (Spain), Redu (Belgium), Santa Maria (Portugal), Kiruna (Sweden), Perth (Australia) which host 5.5-, 13-, 13.5- or 15-metre antennas. The new tracking station (DSA3) at Malargüe in Argentina, joins two other 35-metre deep-space antennas at New Norcia (DSA1) in Australia (completed in 2002) and Cebreros (DSA2) in Spain, (completed in 2005) to form the European Deep Space Network.

The essential task of ESTRACK stations is to communicate with missions, up-linking commands and down-linking scientific data and spacecraft status information. The tracking stations also gather radiometric data to tell mission controllers the location, trajectory and velocity of their spacecraft, to search for and acquire newly launched spacecraft, in addition to auto-tracking, frequency and timing control using atomic clocks and gathering atmospheric and weather data.

Deep-space missions can be over 2 million kilometres away from the Earth. Communicating at such distances requires highly accurate mechanical pointing and calibration systems. The 35m stations provide the improved range, radio technology and data rates required to send commands, receive data and perform radiometric measurements for current and next-generation exploratory missions such as Mars Express, Venus Express, Rosetta, Herschel, Planck, Gaia, BepiColombo, ExoMars, Solar Orbiter and Juice.

DSA3 is located at 1500m altitude in the clear Argentinian desert air, this and ultra-low-temperature amplifiers installed at the station, have meant that performance has exceeded expectations. The first test signals were received in June 2012 from Mars Express, over a distance of about 193 million km, proving that the station’s technology is ready for duty.

“Initial in-service testing with the Malargüe station shows excellent results.” “Our initial in-service testing with the Malargüe station shows excellent results,” says Roberto Maddè, ESA’s project manager for DSA 3 construction. “We have been able to quickly and accurately acquire signals from ESA and NASA spacecraft, and our station is performing better than specified.”

All three tracking stations are also equipped for radio science, which studies how matter, such as planetary atmospheres, affects the radio waves as they pass through. This can provide important information on the atmospheric composition of Mars, Venus or the Sun.

The tracking capability of all three ESA deep space stations also work in cooperation with partner agencies such as NASA and Japan’s JAXA, helping to boost science data return for all. The three Deep Space Antenna can be linked to the 7 stations comprising the Core Network as well as five other stations making up the larger Augmented Network and eleven additional stations that make up a global Cooperative Network with other space agencies from around the world.

Now that major construction is complete, teams are preparing DSA 3 for hand-over to operations, formal inauguration late this year and entry in routine service early in 2013.

Find out more about Malargüe and the Deep Space Antenna here and the other ESTRACK tracking stations here

Cheops – A Little Satellite with Big Ideas

Caption: Artist impression of Cheops. Credit: University of Bern

Big isn’t always better. This is certainly true at ESA’s new Science Programme. They are looking to low cost, small scale missions that can be rapidly developed, in order to offer greater flexibility in response to new ideas from the scientific community, to complement the broader Medium- and Large-class missions. Back in March ESA called for ideas for dedicated, quick-turnaround missions focusing on key issues in space science. From 26 proposals submitted, ESA has now approved a new mission to be launched in 2017. Though small in scale this mission is big on ambition: to search for nearby habitable planets.

Cheops stands for CHaracterising ExOPlanets Satellite. It has a planned mission lifetime of 3.5 years during which it will operate in a Sun-synchronous low-Earth orbit at an altitude of 800 km, free from distortion by Earth’s atmosphere. It will target nearby, bright stars already known to have planets orbiting around them.

By high-precision monitoring of the star’s brightness, Cheops will search for signs of a ‘transit’ as a planet passes across the star’s face, it will also be able to look for smaller planets, impossible to see using ground based telescopes, around those stars.

While NASA’s Kepler mission has confirmed 77 planets so far, with another 2,321 candidate planets, not one is close enough to Earth to be analysed in detail. Cheops on the other hand, will be able to take accurate measurements of the radius of the planet. For those planets with a known mass, this will reveal the planet’s density and provide an indication of the internal structure. It will help scientists understand the formation of planets from ‘super-Earths’, a few times the mass of the Earth, up to Neptune-sized worlds. It will also identify planets with significant atmospheres which can then be analysed for signs of life by ground-based telescopes, and the next generation of space telescopes now being built, such as the ground-based European Extremely Large Telescope and the NASA/ESA/CSA James Webb Space Telescope.

“By concentrating on specific known exoplanet host stars, Cheops will enable scientists to conduct comparative studies of planets down to the mass of Earth with a precision that simply cannot be achieved from the ground,” said Professor Alvaro Giménez-Cañete, ESA Director of Science and Robotic Exploration.

The plan is for Cheops to be the first of a series of similar small missions, that can be rapidly developed at low cost to investigate new scientific ideas quickly. Cheops will be developed as a partnership between ESA and Switzerland, with a number of other ESA Member States delivering substantial contributions.

Find out more about Cheops here

Valles Marineris: The Grandest Canyon of All

A digital terrain model of a portion of Mars’ Valles Marineris, the largest canyon in the Solar System. Credit: ESA/DLR/FU Berlin (G. Neukum)

Anyone who’s visited the Grand Canyon in Arizona can attest to its beauty, magnificence and sheer sense of awe that comes upon approaching its rim, whether for the first time or hundred-and-first. “Grand” almost seems too inferior a title for such an enormous geological feature — yet there’s a canyon much, much bigger stretching across the surface of Mars, one that could easily swallow all of our Grand Canyon within one of its side gullies.

The image above, released online for the first time today by ESA, is a digital terrain model of a portion of Mars’ Valles Marineris: our Solar System’s grandest canyon.
It’s easy to fall into hyperbole when describing Valles Marineris. Named for NASA’s Mariner 9 spacecraft, which became the first spacecraft to orbit Mars on November 14, 1971, the canyon is over 4000 km long, 200 km wide, and 10 km deep (2,480 x 125 x 6 miles) — that’s five times deeper than the Grand Canyon and long enough to stretch across the entire contiguous United States! It’s a rift unparalleled on any other world in the Solar System.

Valles Marineris is thought to be the result of the formation of the nearby Tharsis volcanic region, home to Olympus Mons, the Solar System’s largest volcano. As the region swelled with magma billions of years ago the planet’s crust stretched and split, collapsing into a vast, deep canyon.

Much later, landslides and flowing water would help erode the canyon’s steep walls and carve out meandering side channels.

The 45-degree view above was was made from data acquired during 20 individual orbits of ESA’s Mars Express. It is presented in near-true color with four times vertical exaggeration (to increase relief contrast.) Download a high-res JPEG version here.

The largest portion of the canyon seen crossing left to right is known as Melas Chasma. Candor Chasma is the connecting trough to the north, and Hebes Chasma is in the far top left.

Below is a video released by JPL in 2006 showing a virtual fly-through of Valles Marineris, shown as if you were on a Grand Canyon-style helicopter sightseeing tour (that is, if helicopters could even work in the thin Martian air!)

Hopefully someday we’ll be seeing actual videos taken above Valles Marineris and photos captured from its rim… perhaps even by human explorers! (Please exit through the gift shop.)

Image source: ESA. Video by Eric M. De Jong and Phil Christiansen et. al, Arizona State University.

Integral: Ten Years Tracking Extreme Radiation Across the Universe

Caption: Artist’s impression of ESA’s orbiting gamma-ray observatory Integral. Image credit: ESA

Integral, ESA’s International Gamma-Ray Astrophysics Laboratory launched ten years ago this week. This is a good time to look back at some of the highlights of the mission’s first decade and forward to its future, to study at the details of the most sensitive, accurate, and advanced gamma-ray observatory ever launched. But the mission has also had some recent exciting research of a supernova remnant.

Integral is a truly international mission with the participation of all member states of ESA and United States, Russia, the Czech Republic, and Poland. It launched from Baikonur, Kazakhstan on October 17th 2002. It was the first space observatory to simultaneously observe objects in gamma rays, X-rays, and visible light. Gamma rays from space can only be detected above Earth’s atmosphere so Integral circles the Earth in a highly elliptical orbit once every three days, spending most of its time at an altitude over 60 000 kilometres – well outside the Earth’s radiation belts, to avoid interference from background radiation effects. It can detect radiation from events far away and from the processes that shape the Universe. Its principal targets are gamma-ray bursts, supernova explosions, and regions in the Universe thought to contain black holes.

5 metres high and more than 4 tonnes in weight Integral has two main parts. The service module is the lower part of the satellite which contains all spacecraft subsystems, required to support the mission: the satellite systems, including solar power generation, power conditioning and control, data handling, telecommunications and thermal, attitude and orbit control. The payload module is mounted on the service module and carries the scientific instruments. It weighs 2 tonnes, making it the heaviest ever placed in orbit by ESA, due to detectors’ large area needed to capture sparse and penetrating gamma rays and to shield the detectors from background radiation in order to make them sensitive. There are two main instruments detecting gamma rays. An imager producing some of the sharpest gamma-ray images and a spectrometer that gauges gamma-ray energies very precisely. Two other instruments, an X-ray monitor and an optical camera, help to identify the gamma-ray sources.

During its extended ten year mission Integral has has charted in extensive detail the central region of our Milky Way, the Galactic Bulge, rich in variable high-energy X-ray and gamma-ray sources. The spacecraft has mapped, for the first time, the entire sky at the specific energy produced by the annihilation of electrons with their positron anti-particles. According to the gamma-ray emission seen by Integral, some 15 million trillion trillion trillion pairs of electrons and positrons are being annihilated every second near the Galactic Centre, that is over six thousand times the luminosity of our Sun.

A black-hole binary, Cygnus X-1, is currently in the process of ripping a companion star to pieces and gorging on its gas. Studying this extremely hot matter just a millisecond before it plunges into the jaws of the black hole, Integral has discovered that some of it might be escaping along structured magnetic field lines. By studying the alignment of the waves of high-energy radiation originating from the Crab Nebula, Integral found that the radiation is strongly aligned with the rotation axis of the pulsar. This implies that a significant fraction of the particles generating the intense radiation must originate from an extremely organised structure very close to the pulsar, perhaps even directly from the powerful jets beaming out from the spinning stellar core.

Just today ESA reported that Integral has made the first direct detection of radioactive titanium associated with supernova remnant 1987A. Supernova 1987A, located in the Large Magellanic Cloud, was close enough to be seen by the naked eye in February 1987, when its light first reached Earth. Supernovae can shine as brightly as entire galaxies for a brief time due to the enormous amount of energy released in the explosion, but after the initial flash has faded, the total luminosity comes from the natural decay of radioactive elements produced in the explosion. The radioactive decay might have been powering the glowing remnant around Supernova 1987A for the last 20 years.

During the peak of the explosion elements from oxygen to calcium were detected, which represent the outer layers of the ejecta. Soon after, signatures of the material from the inner layers could be seen in the radioactive decay of nickel-56 to cobalt-56, and its subsequent decay to iron-56. Now, after more than 1000 hours of observation by Integral, high-energy X-rays from radioactive titanium-44 in supernova remnant 1987A have been detected for the first time. It is estimated that the total mass of titanium-44 produced just after the core collapse of SN1987A’s progenitor star amounted to 0.03% of the mass of our own Sun. This is close to the upper limit of theoretical predictions and nearly twice the amount seen in supernova remnant Cas A, the only other remnant where titanium-44 has been detected. It is thought both Cas A and SN1987A may be exceptional cases

Christoph Winkler, ESA’s Integral Project Scientist says “Future science with Integral might include the characterisation of high-energy radiation from a supernova explosion within our Milky Way, an event that is long overdue.”

Find out more about Integral here
and about Integral’s study of Supernova 1987A here

BepiColombo – Mission to Mercury

Caption: BepiColombo’s components separating at Mercury. Image Credit: Astrium

BepiColombo, due to launch in 2015, will be only the third spacecraft to visit Mercury and the first to be sent by the European Space Agency (ESA) and the Japan Aerospace Exploration Agency (JAXA). Currently undergoing tests at ESA’s European Space Research and Technology Centre (ESTEC) in the Netherlands. Here are the details and objectives of this joint mission to our innermost planet which hopes to give us the best understanding of Mercury to date

As the innermost of the terrestrial planets Mercury has an important role in showing us how planets form, yet it is the least explored planet in the inner Solar System. NASA sent Mariner 10 in 1974–5 and MESSENGER flew passed the planet 3 times in 2008 and 2009, before going into orbit around it last year. Being in close proximity, the Sun’s enormous gravity makes placing a spacecraft into a stable orbit, a challenge.

Professor Giuseppe (Bepi) Colombo (1920–1984) was the Italian mathematician and scientist who developed the gravity-assist maneuver and helped NASA to devise the trajectory of Mariner 10. The spacecraft that bears his name comprises three components: the Mercury Transfer Module (MTM) and the two probes: Mercury Planetary Orbiter (MPO) and the Mercury Magnetospheric Orbiter (MMO) It will take 6 years to make the journey from Earth to Mercury using solar-electric propulsion and gravity assists from the Earth and Venus, before eventual gravity capture at Mercury.

The transfer module will then separate and the orbiters will use rocket engines and a technique called ‘weak stability boundary capture’ to enter polar orbits around Mercury. MPO will enter a 2.3 hour period polar orbit and MMO a 9.3 hour period polar orbit. MPO is a 357 kg spacecraft in the shape of a flat prism will carry an imaging system consisting of a wide-angle and narrow angle camera, an infrared spectrometer, an ultraviolet spectrometer, gamma, X-ray, and neutron spectrometers, a laser altimeter, an ion and neutral spectrometer, a near-Earth object telescope and detection system, and radio science experiments. During the 1 year nominal mission it will map the entire surface in different wavelengths, and hopes to find water ice in polar craters permanently in shadow from the Sun’s rays.MMO is a flat cylinder with a mass of about 250 kg and will carry fluxgate magnetometers, charged particle detectors, a wave receiver, a positive ion emitter, and an imaging system.

The main mission objectives are: to investigate the origin and evolution of a planet close to the parent star; study Mercury’s form, interior structure, geology, composition and craters; examine the composition and dynamics of Mercury’s vestigial atmosphere (exosphere); probe the structure and dynamics of Mercury’s magnetized envelope (magnetosphere); determine the origin of Mercury’s magnetic field; investigate the composition and origin of polar deposits and perform a test of Einstein’s theory of general relativity.

In 1845, Urbain-Jean-Joseph Le Verrier, noticed that at perihelion Mercury was moving around the Sun faster than predicted by Newton’s theory of gravity. It was not understood until 1915 when Albert Einstein overhauled the theory of gravity. BepiColombo will measure Mercury’s motion more accurately than ever before and so provide one of the most rigorous tests ever of Einstein’s theory.

Find out more about the mission at ESA