The Rosy Remains of a Star’s Final Days

Hubble image of SNR 0519, the remains of a Type Ia supernova in the Large Magellanic Cloud

Stars like our Sun can last for a very long time (in human terms, anyway!) somewhere in the neighborhood of 10-12 billion years. Already over 4.6 billion years old, the Sun is entering middle age and will keep on happily fusing hydrogen into helium for quite some time. But eventually even stars come to the end of their lives, and their deaths are some of the most powerful — and beautiful — events in the Universe.

The wispy, glowing red structures above are the remains of a white dwarf in the neighboring Large Magellanic Cloud 150,000 light-years away. Supernova remnant SNR 0519 was created about 600 years ago (by our time) when a star like the Sun, in the final stages of its life, gathered enough material from a companion to reach a critical mass and then explode, casting its outer layers far out into space to create the cosmic rose we see today.

As the hydrogen material from the star plows outwards through interstellar space it becomes ionized, glowing bright red.

SNR 0519 is the result of a Type Ia supernova, which are the result of one white dwarf within a binary pair drawing material onto itself from the other until it undergoes a core-collapse and blows apart violently. The binary pair can be two white dwarfs or a white dwarf and another type of star, such as a red giant, but at least one white dwarf is thought to always be the progenitor.

Read more: A New Species of Type Ia Supernova?

A recent search into the heart of the remnant found no surviving post-main sequence stars, suggesting that SNR 0519 was created by two white dwarfs rather than a mismatched pair. Both stars were likely destroyed in the explosion, as any non-degenerate partner would have remained.

Read more here.

This image was chosen as ESA/Hubble’s Picture of the Week. See the full-sized version here.

Credit: ESA/Hubble & NASA. Acknowledgement: Claude Cornen

Mars Armada Resumes Contact with NASA – Ready to Rock ‘n Roll n’ Drill

Curiosity accomplished historic 1st drilling into Martian rock at John Klein outcrop on Feb 8, 2013 (Sol 182), shown in this context mosaic view of the Yellowknife Bay basin taken on Jan. 26 (Sol 169) - back dropped with Mount Sharp - where the robot is currently working. Curiosity will bore a 2nd drill hole soon following the resumption of contact with the end of the solar conjunction period. Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo

Curiosity accomplished historic 1st drilling into Martian rock at John Klein outcrop on Feb 8, 2013 (Sol 182), shown in this context mosaic view of the Yellowknife Bay basin taken on Jan. 26 (Sol 169) – back dropped with Mount Sharp – where the robot is currently working. Curiosity will bore a 2nd drill hole soon following the resumption of contact with the end of the solar conjunction period. Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo
See drill hole and conjunction videos below[/caption]

After taking a well deserved and unavoidable break during April’s solar conjunction with Mars that blocked two way communication with Earth, NASA’s powerful Martian fleet of orbiters and rovers have reestablished contact and are alive and well and ready to Rock ‘n Roll ‘n Drill.

“Both orbiters and both rovers are in good health after conjunction,” said NASA JPL spokesman Guy Webster exclusively to Universe Today.

Curiosity’s Chief Scientist John Grotzinger confirmed to me today (May 1) that further drilling around the site of the initial John Klein outcrop bore hole is a top near term priority.

The goal is to search for the chemical ingredients of life.

“We’ll drill a second sample,” Grotzinger told Universe Today exclusively. Grotzinger, of the California Institute of Technology in Pasadena, Calif., leads NASA’s Curiosity Mars Science Laboratory mission.

“We’ll move a small bit, either with the arm or the wheels, and then drill another hole to confirm what we found in the John Klein hole.”

Earth, Mars and the Sun have been lined up in nearly a straight line for the past several weeks, which effectively blocked virtually all contact with NASA’s four pronged investigative Armada at the Red Planet.

NASA’s Red Planet fleet consists of the Curiosity (MSL) and Opportunity (MER) surface rovers as well as the long lived Mars Odyssey (MO) and Mars Reconnaissance Orbiter (MRO) robotic orbiters circling overhead. ESA’s Mars Express orbiter is also exploring the Red Planet.

“All have been in communications,” Webster told me today, May 1.

The NASA spacecraft are functioning normally and beginning to transmit the science data collected and stored in on board memory during the conjunction period when a commanding moratorium was in effect.

“Lots of data that had been stored on MRO during conjunction has been downlinked,” Webster confirmed to Universe Today.

Curiosity and Mount Sharp: Curiosity's elevated robotic arm and drill are staring back at you - back dropped by Mount Sharp, her ultimate destination.  The rover team anticipates new science discoveries following the resumption of contact with NASA after the end of solar conjunction.  This panoramic vista of Yellowknife Bay basin was snapped on March 23, Sol 223 prior to conjunction and assembled from several dozen raw images snapped by the rover's navigation camera system.  These images were snapped after the robot recovered from a computer glitch in late Feb and indicated she was back alive and functioning working normally. Credit: NASA/JPL-Caltech/Marco Di Lorenzo/KenKremer (kenkremer.com).
Curiosity and Mount Sharp: Curiosity’s elevated robotic arm and drill stare back at you at the John Klein drill site – back dropped by mysterious Mount Sharp. The rover has resumed contact with NASA following the end of solar conjunction. This panoramic vista was snapped on March 23, 2013, Sol 223. Credit: NASA/JPL-Caltech/Marco Di Lorenzo/KenKremer (kenkremer.com)

And NASA is already transmitting and issuing new marching orders to the Martian Armada to resume their investigations into unveiling the mysteries of the Red Planet and determine whether life ever existed eons ago or today.

“New commanding, post-conjunction has been sent to both orbiters and Opportunity.”

“And the sequence is being developed today for sending to Curiosity tonight (May 1), as scheduled more than a month ago,” Webster explained.

“We’ll spend the next few sols transitioning over to new flight software that gives the rover additional capabilities,” said Grotzinger.

“After that we’ll spend some time testing out the science instruments on the B-side rover compute element – that we booted to before conjunction.”

Curiosity is at work inside the Yellowknife Bay basin just south of the Martian equator. Opportunity is exploring the rim of Endeavour crater at the Cape York rim segment.

Opportunity Celebrates 9 Years and 3200 Sols on Mars snapping this panoramic view from her current location on ‘Matijevic Hill’ at Endeavour Crater. The rover discovered phyllosilicate clay minerals and calcium sulfate veins at the bright outcrops of ‘Whitewater Lake’, at right, imaged by the Navcam camera on Sol 3197 (Jan. 20, 2013). “Copper Cliff” is the dark outcrop, at top center. Darker “Kirkwood” outcrop, at left, is site of mysterious “newberries” concretions. Credit: NASA/JPL-Caltech/Cornell/Marco Di Lorenzo/Ken Kremer
Opportunity Celebrates 9 Years and 3200 Sols on Mars snapping this panoramic view from her current location on ‘Matijevic Hill’ at Endeavour Crater. The rover discovered phyllosilicate clay minerals and calcium sulfate veins at the bright outcrops of ‘Whitewater Lake’, at right, imaged by the Navcam camera on Sol 3197 (Jan. 20, 2013). “Copper Cliff” is the dark outcrop, at top center. Darker “Kirkwood” outcrop, at left, is site of mysterious “newberries” concretions. Credit: NASA/JPL-Caltech/Cornell/Marco Di Lorenzo/Ken Kremer

Mars Solar Conjunction is a normal celestial event that occurs naturally about every 26 months. The science and engineering teams take painstaking preparatory efforts to insure no harm comes to the spacecraft during the conjunction period when they have no chance to assess or intervene in case problems arise.

So it’s great news and a huge relief to the large science and operations teams handling NASA’s Martian assets to learn that all is well.

Since the sun can disrupt and garble communications, mission controllers suspended transmissions and commands so as not to inadvertently create serious problems that could damage the fleet in a worst case scenario.

So what’s on tap for Curiosity and Opportunity in the near term ?

“For the first few days for Curiosity we will be installing a software upgrade.”

“For both rovers, the science teams will be making decisions about how much more to do at current locations before moving on,” Webster told me.

The Opportunity science team has said that the long lived robot has pretty much finished investigating the Cape York area at Endeavour crater where she made the fantastic discovery of phyllosilicates clay minerals that form in neutral water.

Signals from Opportunity received a few days ago on April 27 indicated that the robot had briefly entered a standby auto mode while collecting imagery of the sun.

NASA reported today that all operations with Opportunity was “back under ground control, executing a sequence of commands sent by the rover team”, had returned to normal and the robot exited the precautionary status.

Opportunity Celebrates 9 Years on Mars snapping this panoramic view of the vast expanse of 14 mile (22 km) wide Endeavour Crater from atop ‘Matijevic Hill’ on Sol 3182 (Jan. 5, 2013). The rover then drove 43 feet to arrive at ‘Whitewater Lake’ and investigate clay minerals. Photo mosaic was stitched from Navcam images and colorized. Credit: NASA/JPL-Caltech/Cornell/Ken Kremer/Marco Di Lorenzo
Opportunity Celebrates 9 Years on Mars snapping this panoramic view of the vast expanse of 14 mile (22 km) wide Endeavour Crater from atop ‘Matijevic Hill’ on Sol 3182 (Jan. 5, 2013). The rover then drove 43 feet to arrive at ‘Whitewater Lake’ and investigate clay minerals. Photo mosaic was stitched from Navcam images and colorized. Credit: NASA/JPL-Caltech/Cornell/Ken Kremer/Marco Di Lorenzo

“The Curiosity team has said they want to do at least one more drilling in Yellowknife Bay area,” according to Webster.

Curiosity has already accomplished her primary task and discovered a habitable zone that possesses the key ingredients needed for potential alien microbes to once have thrived in the distant past on the Red Planet when it was warmer and wetter.

The robot found widespread evidence for repeated episodes of flowing liquid water, hydrated mineral veins and phyllosilicates clay minerals on the floor of her Gale Crater landing site after analyzing the first powder ever drilled from a Martian rock.

Video Caption: Historic 1st bore hole drilled by NASA’s Curiosity Mars rover on Sol 182 of the mission (8 Feb 2013). Credit: NASA/JPL-Caltech/MSSS/Marco Di Lorenzo/Ken Kremer (http://www.kenkremer.com/)

During conjunction Curiosity collected weather, radiation and water measurements but no imagery.

Check out this wonderful new story at Space.com featuring Curiosity mosaics by me and my imaging partner Marco Di Lorenzo and an interview with me.

Ken Kremer

Curiosity Rover snapped this self portrait mosaic with the MAHLI camera while sitting on flat sedimentary rocks at the “John Klein” outcrop where the robot conducted historic first sample drilling inside the Yellowknife Bay basin, on Feb. 8 (Sol 182) at lower left in front of rover. The photo mosaic was stitched from raw images snapped on Sol 177, or Feb 3, 2013, by the robotic arm camera - accounting for foreground camera distortion. Credit: NASA/JPL-Caltech/MSSS/Marco Di Lorenzo/KenKremer (kenkremer.com).
Curiosity Rover snapped this self portrait mosaic with the MAHLI camera while sitting on flat sedimentary rocks at the “John Klein” outcrop where the robot conducted historic first sample drilling inside the Yellowknife Bay basin, on Feb. 8 (Sol 182) at lower left in front of rover. The photo mosaic was stitched from raw images snapped on Sol 177, or Feb 3, 2013, by the robotic arm camera – accounting for foreground camera distortion. Credit: NASA/JPL-Caltech/MSSS/Marco Di Lorenzo/KenKremer (kenkremer.com).

Watch this brief NASA JPL video for an explanation of Mars Solar Conjunction.

Experts Urge Removal of Space Debris From Orbit

Space debris has been identified as a growing risk for satellites and other space infrastructure. Credit: NASA

Action is needed soon to remove the largest pieces of space debris from orbit before the amount of junk destroys massive amounts of critical space infrastructure, according to a panel at the Sixth European Conference on Space Debris.

“Whatever we are going to do, whatever we have to do, is an expensive solution,” said Heiner Klinkrad, head of the European Space Agency space debris office, in a panel this week that was broadcast on ESA’s website.

“We have to compare the costs to solving the problem in an early stage as opposed to losing the infrastructure in orbit in the not-too-distant future.”

The panel estimated that there is $1.3 billion (1 billion Euros) worth of space satellite infrastructure that must be protected. The 200 most crucial satellites identified by the space community have an insured value of $169.5 million (130 million Euros), Klinkrad added.

Critical infrastructure, though not specified exactly by the panel, can include communication satellites and military eyes in the sky. Also at risk is that largest of human outposts in space — the International Space Station.

A view of the International Space Station as seen by the last departing space shuttle crew, STS-135. Credit: NASA
A view of the International Space Station as seen by the last departing space shuttle crew, STS-135. Credit: NASA

The conference concluded that without further action — even without launching any new rockets — it’s quite possible there could be a runaway effect of collisions producing debris within a few decades. Even a tiny object could act like a hand grenade in orbit if it smashes into a satellite, Klinkrad said.

A recent example of the problem: a piece of Chinese space debris smashed into a Russian satellite in March. It didn’t destroy the satellite, but altered its orbit.

To mitigate the situation, representatives suggested removing 5 to 10 large pieces of debris every year. They added they are uncertain about how soon a large problem would occur, but noted that the number of small objects is definitively increasing annually according to measurements done by the Walter Baade 6.5-meter Magellan Telescope.

“[It’s] something we haven’t know until now. We have been suspecting it is the case … this is a new result which is very important.”

While highlighting the risk, the European representatives of the panel added they are not standing idly by. Already, there are regulatory changes that could slow the problem for future launches — although there still will be cleanup to do from five past decades of space exploration.

Artist's conception of DEOS (German orbital servicing mission). Credit: Astrium
Artist’s conception of DEOS (German orbital servicing mission). Credit: Astrium

A few of the points brought up:

– German officials are working on an in-orbit satellite servicing solution called DEOS. “The DEOS project will for the first time demonstrate technologies for the controlled in-orbit disposal of a defective satellite,” Astrium, the prime contractor for the definition phase, wrote in a press release in 2012. “In addition, DEOS will practice how to complete maintenance tasks – refuelling in particular – that extend the service life of satellites.”

– France’s Parliament passed the Space Operations Act in December 2010. “Its chief objective is to ensure that the technical risks associated with space activities are properly mitigated, without compromising private contractors’ competitiveness,” French space agency CNES wrote on its website. “The government provides a financial guarantee to compensate damages to people, property or the environment.”

– A United Nations subcommittee of the Committee on the Peaceful Uses of Outer Space is working on space sustainability guidelines that will include space debris and space operations practices. More details should be released in June, although Claudio Portelli (a representative from Italy’s space agency) warned he did not expect any debris removal proposals to emerge from this work.

For more technical details on the space debris problem, check out the webcast of the ESA space debris conference.

ATV-4 Albert Einstein Says ‘Fill ‘er Up!’

Europe's ATV 4 Albert Einstein prepares for its cargo-carrying mission to the International Space Station. Credit: ESA

The next European cargo mission to the International Space Station is preparing for launch, and in this new image, a fuelling operator at Europe’s Spaceport in French Guiana inspects the ATV-4 Albert Einstein as it is filled with propellant. Launch is currently scheduled for June 5, 2013 on an Ariane 5ES rocket to bring about 7 tons of cargo the ISS, including fuel to give the space station an orbital re-boost.


These Automated Transfer Vehicles (ATVs) bring other supplies such as equipment, experiments, water, air, nitrogen, oxygen and fuel.

As the ISS circles Earth, it slowly loses altitude, and occasionally needs a boost to keep it in the proper orbit. ATVs, Progress resupply ships and the thrusters on the Zvezda service module are used to re-boost the station; Soyuz spacecraft are also used “in a pinch” said Johnson Space Center News Chief Kelly Humphries, but they mainly want to save the Soyuz fuel for the departing crew heading back to Earth.

Watch this video as astronaut Jeff Williams demonstrates the acceleration experienced inside the cabin during a reboost on January 24, 2010 (the acceleration starts about 3:50 in the video):

Lighting Up Andromeda’s Coldest Rings

Cold rings of dust are illuminated in this image taken by Herschel’s Spectral and Photometric Imaging Receiver (SPIRE) instrument. Credit: ESA/NASA/JPL-Caltech/B. Schulz (NHSC)

Looking wispy and delicate from 2.5 million light-years away, cold rings of dust are seen swirling around the Andromeda galaxy in this new image from the Herschel Space Observatory, giving us yet another fascinating view of our galaxy’s largest neighbor.

The colors in the image correspond to increasingly warmer temperatures and concentrations of dust — blue rings are warmer, while pinks and reds are colder lanes of dust only slightly above absolute zero. Dark at shorter wavelengths, these dust rings are revealed by Herschel’s amazing sensitivity to the coldest regions of the Universe.

The image above shows data only from Herschel’s SPIRE (Spectral and Photometric Imaging Receiver) instrument; below is a mosaic made from SPIRE as well as the Photodetecting Array Camera and Spectrometer (PACS) instrument:

In this new view of the Andromeda galaxy from the Herschel space observatory, cool lanes of forming stars are revealed in the finest detail yet.

 “Cool Andromeda” Credit: ESA/Herschel/PACS & SPIRE Consortium, O. Krause, HSC, H. Linz

Estimated to be 200,000 light-years across — almost double the width of the Milky Way — Andromeda (M31) is home to nearly a trillion stars, compared to the 200–400 billion that are in our galaxy. And within these cold, dark rings of dust even more stars are being born… Andromeda’s star-making days are far from over.

Read more: Star Birth and Death in the Andromeda Galaxy

Herschel’s mission will soon be coming to an end as the telescope runs out of the liquid helium coolant required to keep its temperatures low enough to detect such distant heat signatures. This is expected to occur sometime in February or March.

Herschel is a European Space Agency cornerstone mission with science instruments provided by consortia of European institutes, and with important participation by NASA. Launched May 14, 2009, the telescope orbits the second Lagrange point of the Earth-Sun system (L2), located 1.5 million km (932,000 miles) from Earth. Read more from the Herschel mission here.

Take a Rollercoaster Ride Around Venus

If you’ve ever wanted to see what it’s like to buzz Venus like only a spacecraft can, here’s your chance: this is a video animation of images taken by ESA’s Venus Express as it makes a pole-to-pole orbit of our neighboring world.

Captured in ultraviolet wavelengths, the images were acquired by the spacecraft’s Venus Monitoring Camera last January over a period of 18 hours. It’s truly a “day in the life” of Venus Express!

From ESA’s description of the video:

We join the spacecraft from a staggering 66,000 km above the south pole, staring down into the swirling south polar vortex. From this bird’s-eye view, half of the planet is in darkness, the ‘terminator’ marking the dividing line between the day and night sides of the planet.

Intricate features on smaller and smaller scales are revealed as Venus Express dives to just 250 km above the north pole and clouds flood the field of view, before regaining a global perspective as it climbs away from the north pole.

The observed pattern of bright and dark markings is caused by variations in an unknown absorbing chemical at the Venus cloud tops.

Read more: Are Venus’ Volcanoes Still Active?

False-color image of cloud features on Venus. Captured by Venus Express from a distance of 30,000 km (18,640 miles) on December 8, 2011. (ESA/MPS/DLR/IDA)

Source: European Space Agency

The Most Remote Workplace on Earth

ESA’s Proba-1 satellite imaged the French-Italian Concordia base on November 21, 2012 (ESA)

Located in one of the loneliest locations on Earth, the French-Italian Concordia station was captured on high-resolution camera by ESA’s Proba-1 microsatellite last month, showing the snow-covered base and 25 square kilometers of the virtually featureless expanse of Antarctic ice surrounding it.

A cluster of scientific research buildings situated 3233 meters above sea level in the Antarctic interior, Concordia is one of the only permanently-crewed stations on the southern continent. Around 12–15 researchers and engineers spend months — sometimes over a year —  in isolation at Concordia, where during the winter months there are no deliveries, no chance of evacuation, temperatures below -80 ºC (-112 ºF) and the next closest station is 600 km (370 miles) away. It’s like working on another planet.

And that’s precisely why they’re there.

The researchers who live and work at Concordia are there because of the station’s incredible remoteness and harsh conditions. This allows them to study not only the pristine Antarctic ice beneath their feet but also how humans behave in such an environment, where a small team must learn to work together and merely venturing outside can be a hazardous task.

It’s the next closest thing to an actual outpost on Mars, or the Moon. Even the astronauts on the ISS aren’t as far removed from the rest of the world.

(Although the night sky views from Concordia can be comparably stunning.)

Concordia Base boasts some of the clearest, darkest — and coldest — skies on Earth (ESA/IPEV/PNRA – A. Salam)

Read more: Milky Way to Concordia Base… Come In, Concordia Base…

“Boredom and monotony are the enemy,” wrote ESA-sponsored medical researcher Dr. Alex Salam, regarding his 2009 13-month stay. “The darkness has a habit of sucking the motivation out of even the hardiest. But despite the effects the darkness can have on sleep, mood and cognitive performance, there is something inherently special about the Antarctic night. The heavens present a view that many stargazers can only ever dream of. You just have to try and catch a glimpse of the stars before your eyelashes freeze together!

“Seeing the station from a distance with the Milky Way towering far above it never failed to make me feel both awe inspired and simultaneously insignificant.”

And another recent long-term resident of Concordia, Dr. Alexander Kumar, who departed the base on November 15, shared this reflection as his year-long term was approaching its end:

“Concordia has, in removing me from civilisation where sometimes it is harder to step back, enabled me to see the bigger picture, provide a unique experience and reminded me of somethings, setting a course and direction for the future… I think once you come to Antarctica, drawn to it under a spell like a seaman to a mermaid, you never can break the link you form with this raw, rugged and ruthlessly beautiful and enticing continent.”

 The Sun returns to the Antarctic plateau (ESA/IPEV/PNRA – A. Salam)

“It’s the closest thing I’ll ever have to living on another planet.”

– Dr. Alex Salam

Read more about Concordia on the newly-redesigned ESA site here.

In orbit for over 11 years, Proba-1’s unique images are used by hundreds of scientific teams worldwide. To date its main Compact High Resolution Imaging Spectrometer (CHRIS) has acquired over 20,000 environmental science images used by a total of 446 research groups in 60 countries.

Are Venus’ Volcanoes Still Active?

Artist’s impression of an active volcano on Venus (ESA/AOES)

Incredibly dense, visually opaque and loaded with caustic sulfuric acid, Venus’ atmosphere oppresses a scorched, rocky surface baking in planet-wide 425 ºC (800 ºF) temperatures. Although volcanoes have been mapped on our neighboring planet’s surface, some scientists believe the majority of them have remained inactive — at least since the last few hundreds of thousands of years. Now, thanks to NASA’s Pioneer Venus and ESA’s Venus Express orbiters, scientists have nearly 40 years of data on Venus’ atmosphere — and therein lies evidence of much more recent large-scale volcanic activity.

The last six years of observations by Venus Express have shown a marked rise and fall of the levels of sulfur dioxide (SO2) in Venus’ atmosphere, similar to what was seen by NASA’s Pioneer Venus mission from 1978 to 1992.

These spikes in SO2 concentrations could be the result of volcanoes on the planet’s surface, proving that the planet is indeed volcanically active — but then again, they could also be due to variations in Venus’ complex circulation patterns which are governed by its rapid “super-rotating” atmosphere.

“If you see a sulphur dioxide increase in the upper atmosphere, you know that something has brought it up recently, because individual molecules are destroyed there by sunlight after just a couple of days,” said Dr. Emmanuel Marcq of Laboratoire Atmosphères in France, lead author of the paper, “Evidence for Secular Variations of SO2 above Venus’ Clouds Top,” published in the Dec. 2 edition of Nature Geoscience.

“A volcanic eruption could act like a piston to blast sulphur dioxide up to these levels, but peculiarities in the circulation of the planet that we don’t yet fully understand could also mix the gas to reproduce the same result,” added co-author Dr Jean-Loup Bertaux, Principal Investigator for the instrument on Venus Express.

The rise and fall of sulphur dioxide in the upper atmosphere of Venus over the last 40 years, expressed in units of parts per billion by volume. Credits: Data: E. Marcq et al. (Venus Express); L. Esposito et al. (earlier data); background image: ESA/AOES

Because Venus’ dense atmosphere whips around the planet at speeds of 355 km/hour (220 mph), pinpointing an exact source for the SO2 emissions is extremely difficult. Volcanoes could be the culprit, but the SO2 could also be getting churned up from lower layers by variations in long-term circulation patterns.

Read: Venus Has a Surprisingly Chilly Layer

Venus has over a million times the concentration of sulfur dioxide than Earth, where nearly all SO2 is the result of volcanic activity. But on Venus it’s been able to build up, kept stable at lower altitudes where it’s well shielded from solar radiation.

Regardless of its source any SO2 detected in Venus’ upper atmosphere must be freshly delivered, as sunlight quickly breaks it apart. The puzzle now is to discover if it’s coming from currently-active volcanoes… or something else entirely.

“By following clues left by trace gases in the atmosphere, we are uncovering the way Venus works, which could point us to the smoking gun of active volcanism,” said Håkan Svedhem, ESA’s Project Scientist for Venus Express.

Read more on the ESA release here.

International Space Station Making New Solar Observations

The International Space Station. Credit: NASA

This weekend the International Space Station will turn itself to face the Sun, enabling ESA’s SOLAR instrument to capture an entire rotation of the solar surface. This is the first time the Station has changed attitude for scientific reasons alone.

This instrument has been on the ISS since 2008, and for the first time will record a full rotation of the Sun. It began this effort on November 19, 2012, and on December 1, the Station will spend two hours turning about 7 degrees so that observations can continue. It will hold this angle for ten days before returning to its original attitude.

“We want to record a complete rotation of the Sun and that takes around 25 days,” said Nadia This, operations engineer at the Belgian User Support and Operations Centre that controls SOLAR.

SOLAR needs to be in direct view of the Sun to take measurements but the Space Station’s normal orbit obscures the view for two weeks every month.

All the international partners had to agree on changing the ISS’s orientation.

However, moving a 450-ton orbital outpost the size of a city block isn’t a simple undertaking. Aside from calculating the correct orbit to keep SOLAR in view of the Sun, other factors need to be taken into account such as ensuring the solar panels that power the Station also face the Sun. Additionally, communication antennas need to be reoriented to stay in contact with Earth and other scientific experiments must be adjusted.

The SOLAR instrument located on the exterior of the Columbus module on the ISS. Credit: ESA

The SOLAR instrument was originally designed to last about 18 months, but has been going strong for 5 years. It is installed on the outside of the ESA’s Columbus module.

The SOLAR payload consists of three instruments to the solar spectral irradiance throughout virtually the whole electromagnetic spectrum.

The three complementary solar science instruments are:

SOVIM (SOlar Variable and Irradiance Monitor), which covers near-UV, visible and thermal regions of the spectrum.
SOLSPEC (SOLar SPECctral Irradiance measurements) covers the 180 nm – 3 000 nm range.
SOL-ACES (SOLar Auto-Calibrating Extreme UV/UV Spectrophotometers) measures the EUV/UV spectral regime.

Scientists say SOLAR’s observations are improving our understanding of the Sun and allowing scientists to create accurate computer models and predict its behavior.

Source: ESA