Unexpected Find: ‘Rainforest’ of Phytoplankton Growth in the Arctic Ocean

Don Perovich, part of the ICESCAPE mission used a spectroradiometer to measure the amount of sunlight reflected from the surface of ice and melt ponds in the Chukchi Sea. Credit: NASA/Kathryn Hansen

[/caption]

Imagine finding a rainforest in the middle of a desert. That is how NASA scientists are equating a new biological discovery in Arctic Ocean. Microscopic plants called phytoplankton are actively growing under the thinning Arctic ice. In fact, the scientists say the phytoplankton growth in the Arctic may now be richer than any other ocean region on Earth. The finding reveals a new consequence of the Arctic’s warming climate, and gives researchers an important clue to understanding the impacts of a changing climate and environment on the Arctic Ocean and its ecology.

“If someone had asked me before the expedition whether we would see under-ice blooms, I would have told them it was impossible,” said Kevin Arrigo of Stanford University, leader of the ICESCAPE mission and lead author of the new study. “This discovery was a complete surprise.”

ICESCAPE, stand for Impacts of Climate on EcoSystems and Chemistry of the Arctic Pacific Environment and in 2010 and 2011, scientists explored Arctic waters in the Beaufort and Chukchi seas along Alaska’s western and northern coasts onboard a U.S. Coast Guard icebreaker. The researchers drilled down through three-foot thick sea ice to study impacts of environmental variability and change in the Arctic on the ocean biology, ecology and biogeochemistry.

The researchers found the phytoplankton were extremely active, doubling in number more than once a day. Conversely, blooms in open waters grow at a much slower rate, doubling in two to three days. These growth rates are among the highest ever measured for polar waters.

Phytoplankton were thought to grow in the Arctic Ocean only after sea ice had retreated for the summer.

In July of 2011 the researchers observed blooms beneath the ice that extended from the sea-ice edge to 72 miles into the ice pack. Ocean current data revealed that these blooms developed under the ice and had not drifted there from open water, where phytoplankton concentrations can be high.

Previously, it was thought that sea ice blocked most sunlight needed for phytoplankton growth. Scientists now think that the thinning Arctic ice is allowing sunlight to reach the waters under the sea ice, spurring plant blooms where they had never been observed. The findings were published today in the journal Science.

Phytoplankton is the base of the marine food chain and they consume large amounts of carbon dioxide. Scientists will have to reassess the amount of carbon dioxide entering the Arctic Ocean through biological activity if the under-ice blooms turn out to be common.

“At this point we don’t know whether these rich phytoplankton blooms have been happening in the Arctic for a long time and we just haven’t observed them before,” Arrigo said. “These blooms could become more widespread in the future, however, if the Arctic sea ice cover continues to thin.”

The discovery of these previously unknown under-ice blooms also has implications for the broader Arctic ecosystem, including migratory species such as whales and birds. Phytoplankton are eaten by small ocean animals, which are eaten by larger fish and ocean animals. A change in the timeline of the blooms can cause disruptions for larger animals that feed either on phytoplankton or on the creatures that eat these microorganisms.

“It could make it harder and harder for migratory species to time their life cycles to be in the Arctic when the bloom is at its peak,” Arrigo said. “If their food supply is coming earlier, they might be missing the boat.”

The scientists said the discovery also may have major implications for the global carbon cycle and the ocean’s energy balance, and they may need to revise their understanding of the ecology of the Arctic and the region’s role in the Earth system.

You can see more images from the ICESCAPE expedition on NASA Goddard’s Flickr page.

The team’s paper: K.R. Arrigo et al. Massive phytoplankton blooms under Arctic sea ice. Science. doi:10.1126/science.1215065.

Source: NASA

Enter the Universe Today “Wonders of the Universe” Contest!

The iPad app features seven apps in one, all of which are linked 3D environments to explore: Subatomic, Atomic, Local Stars, Solar System, Milky Way, Galaxy and the Universe.

If you’ve seen the excellent BBC/Science Channel series “Wonders of the Universe,” you know that host Brian Cox’s natural enthusiasm for astronomy is nothing short of infectious. His explanations of far-out concepts bring the mysteries of our Universe down to Earth for everyone to understand… and now he and HarperCollins UK have brought them even closer — right to your iPad.

Now, here on Universe Today you can win a free copy of the app as well as a signed copy of his Wonders of the Universe or Wonders of the Solar System hardcover book!

[/caption]

Brian Cox’s Wonders of the Universe is designed for people with any level of understanding of astronomy, from casual explorers interested in the aesthetics to those looking for a deeper educational experience. Users can travel with Professor Brian Cox on his personal tours through the Universe, or jet off on a solo voyage of discovery through the planets of the Solar System to local stars and onwards through the galaxy.

Additionally, the app takes full advantage of the extensive capabilities of the new iPad, using a powerful 3D engine capable of handling high-resolution textures and complex animations created exclusively for iOS5.

Watch a personal tour of the app given by Prof. Brian Cox above.

Brian Cox’s Wonders of the Universe is available on the iTunes store now for an introductory price of $6.99 USD… or you can enter for a chance to win a free download along with a signed copy of a Wonders of the Universe or Wonders of the Solar System hardcover book (four of each are available!) by emailing [email protected] with subject line “Wonders App”.

Be sure to put your mailing address in the body of the email, and we will randomly select 8 winners to receive a signed book (our discretion) and a download code for the app.

The contest is open to all U.S. residents. One winner per mailing address. Please allow 2-3 weeks for delivery of the books. Winners will be chosen by June 10, 2012.

These are beautiful books that are chock full of information about our Universe as well as signed by Brian Cox himself… don’t miss out on a chance to get one!

Wonders of the Universe and Wonders of the Solar System books (HarperCollins UK)

Also, be sure to check out the latest app from HarperCollins UK, Fragile Earth. It uses amazing satellite imagery from all across the planet to put a century of climate change at your fingertips. It’s currently available from the iTunes store for $2.99 USD.

(App downloads and books provided courtesy of HarperCollins UK and Walker Sands Communications.)

When Everything On Earth Died

Based on fossil records, 250 million years ago over 90% of all species on Earth died out, effectively resetting evolution. (Image: Lunar and Planetary Institute)

[/caption]

Hey, remember that one time when 90% of all life on Earth got wiped out?

I don’t either. But it’s a good thing it happened because otherwise none of us would be here to… not remember it. Still, the end-Permian Extinction — a.k.a. the Great Dying — was very much a real crisis for life on Earth 252 million years ago. It makes the K-T extinction event of the dinosaurs look like a rather nice day by comparison, and is literally the most catastrophic event known to have ever befallen Earthly life. Luckily for us (and pretty much all of the species that have arisen since) the situation eventually sorted itself out. But how long did that take?

An alien Earth: what our planet looked like during the time of the Permian Extinction. (Via The Planetary Habitability Laboratory @ UPR Arecibo, NASA, Ron Blakey and Colorado Plateau Geosystems, Inc., and The PaleoMap Project)

The Permian Extinction was a perfect storm of geological events that resulted in the disappearance of over 90% of life on Earth — both on land and in the oceans. (Or ocean, as I should say, since at that time the land mass of Earth had gathered into one enormous continent — called Pangaea — and thus there was one ocean, referred to as Panthalassa.) A combination of increased volcanism, global warming, acid rain, ocean acidification and anoxia, and the loss of shallow sea habitats (due to the single large continent) set up a series of extinctions that nearly wiped our planet’s biological slate clean.

Exactly why the event occurred and how Earth returned to a state in which live could once again thrive is still debated by scientists, but it’s now been estimated that the recovery process took about 10 million years.

(Read: Recovering From a Mass Extinction is Slow Going)

Research by Dr. Zhong-Qiang Chen from the China University of Geosciences in Wuhan, and Professor Michael Benton from the University of Bristol, UK, show that repeated setbacks in conditions on Earth continued for 5 to 6 million years after the initial wave of extinctions. It appears that every time life would begin to recover within an ecological niche, another wave of environmental calamities would break.

“Life seemed to be getting back to normal when another crisis hit and set it back again,” said Prof. Benton. “The carbon crises were repeated many times, and then finally conditions became normal again after five million years or so.”

“The causes of the killing – global warming, acid rain, ocean acidification – sound eerily familiar to us today. Perhaps we can learn something from these ancient events.”

– Michael Benton, Professor of Vertebrate Palaeontology at the University of Bristol

It wasn’t until the severity of the crises abated that life could gradually begin reclaiming and rebuilding Earth’s ecosystems. New forms of life appeared, taking advantage of open niches to grab a foothold in a new world. It was then that many of the ecosystems we see today made their start, and opened the door for the rise of Earth’s most famous prehistoric critters: the dinosaurs.

“The event had re-set evolution,” said Benton. “However, the causes of the killing – global warming, acid rain, ocean acidification – sound eerily familiar to us today. Perhaps we can learn something from these ancient events.”

The team’s research was published in the May 27 issue of Nature Geoscience. Read more on the University of Bristol’s website here.

Stunning Visualization of 56 Years of Tornadoes in the US

The tracks of tornadoes in the US during the past 56 years, categorized by F-Scale. Credit: John Nelson

[/caption]

It’s a wonder of nature, baby. Using information from data.gov, tech blogger John Nelson has created this spectacular image of tornado paths in the US over a 56 year period. The graphic categorizes the storms by F-scale with the brighter neon lines representing more violent storms.

Makes you want to hang on to something solid.

Nelson also provided some stats on all the storms in the different categories:

The numbers represent total deaths, total injuries, average miles the storms traveled
F0: 7, 267, 2
F1: 111, 3270, 6.58
F2: 363, 10373, 11.4
F3: 958, 18160, 17.80
F4: 1912, 28427, 28.62
F5: 1013, 11038, 38.87

This provides a new appreciation for the term “suck zone” used in the movie “Twister.

While tornadoes don’t travel in straight lines, Nelson explains that based on the data, the vectors were created using touchdown points and liftoff points.

Nelson said he got the data from this Data.gov page doing a “tornado tracks” search.

See Nelson’s original post.

Incredible Dragon Approach and Berthing – Image Gallery from Andre Kuipers aboard ISS

Dragon approaching International Space Station (ISS) over Namibia Hours on end monitoring Dragon's approach is no punishment. Here over Namibia. Credit: Andre Kuipers/ESA/NASA

[/caption]

On Friday, May 25, astronauts aboard the International Space Station (ISS) made space history when they deftly reached out with the stations robotic arm and grabbed the approaching SpaceX Dragon resupply carrier and then parked the first ever commercial cargo craft at an open port on the massive lab complex while orbiting some 407 kilometers (253 miles) above Earth – check out the gallery here !

Working in tandem, NASA astronaut Don Pettit and ESA astronaut Andre Kuipers snared the Dragon craft as it was drifting in free space about 10 m (32 ft) away with the 18 m (58 ft) long Canadian robot arm at 9:56 a.m. EDT and connected the first privately built capsule to a parking spot on the Earth-facing side of the Harmony Node 2 module on the ISS at 12:02 p.m. EDT on May 25.

Dragon over the Rocky Mountains. Credit: Andre Kuipers/ESA/NASA

Here’s a gallery of images from Andre Kuipers showing the Dragon’s rendezvous, grappling and docking at the million pound Earth orbiting space station currently inhabited by a crew of 6 astronauts and cosmonauts working as a united team from the US, Russia and the Netherlands and representing humanities tenuous foothold at the High Frontier.

All these photos were taken on May 25, 2012 using a Nikon D2Xs.

The crew ‘Entered the Dragon’ for the first time on Saturday, May 26.

Over the next few days, the crew will unload the living provisions, supplies and equipment loaded aboard the Dragon capsule and then refill it with science samples and trash for the return trip to Earth.

Dragon will undock from the ISS on May 31 and splash down hours later off the coast of California in the Pacific Ocean.

And through May 31, you can spot and photograph the Dragon/ISS combo orbiting overhead – read my article here for further details.

Approach to 10 metres. Credit: Andre Kuipers/ESA/NASA
Manoeuvring Dragon to the docking port. Credit: Andre Kuipers/ESA/NASA
Like this it looks a bit like a model from a 70's sci-fi film. Credit: Andre Kuipers/ESA/NASA
Dragon and Earth. Credit: Andre Kuipers/ESA/NASA
Teamwork in the Cupola during Dragon approach - Don Pettit and Andre Kuipers. Credit: ESA/NASA

Dragon is the world’s first commercial resupply vehicle. It was launched flawlessly atop a SpaceX built Falcon 9 booster on May 22 from Pad 40 at Cape Canaveral Air Force Station, Florida.

Ken Kremer

SpaceX Dragon Spies Earth

The Earth from SpaceX Dragon cargo vehicle after May 22, 2012 balastoff. Credit: SpaceX

[/caption]

All systems are functioning nominally aboard the Earth orbiting Dragon cargo carrier launched yesterday, May 22, atop the SpaceX Falcon 9 rocket from Cape Canaveral, Florida.

SpaceX has released the picture above of the Earth as seen by a thermal imager that Dragon will use in its upcoming approach to the International Space Station.

The Falcon 9/Dragon duo thundered to space at 3:44 a.m. on May 22 from Space Launch Complex-40 at Cape Canaveral Air Force Station on a historic mission to be the first private spacecraft to dock at the International Space Station (ISS).

Docking is expected on Friday morning May 25 after an intricate series of maneuvering tests are conducted to prove that the Dragon spacecraft can safely approach and dock at the ISS.

Dragon is loaded with about 1200 pounds of supplies on a test flight aimed at showing it can partially replace the cargo carrying duties of the now retired NASA space shuttles.

Watch NASA TV for live docking coverage

Read my launch article here

Ken Kremer

On The Hunt For High-Altitude Microorganisms

Design of an XCOR Lynx spacecraft (XCOR Aerospace)

[/caption]

The United States Rocket Academy has announced an open call for entries in its High Altitude Astrobiology Challenge, a citizen science project that will attempt to collect samples of microbes that may be lurking in Earth’s atmosphere at the edge of space.

Earth’s biosphere has been discovered to extend much higher than once thought — up to 100,000 feet (30,480 meters) above the planet’s surface. Any microorganisms present at these high altitudes could be subject to the mutating effects of increased radiation and transported around the globe in a sort of pathogenic jet-stream.

What sort of microbes may exist at the upper reaches of the atmosphere?

Citizens in Space, a project run by the U.S. Rocket Academy, is offering a $10,000 prize for the development of an open-source and replicable  collection device that could successfully retrieve samples of high-altitude microorganisms, and could fly as a payload aboard an XCOR Lynx spacecraft.

XCOR Aerospace is a private California-based company that has developed the Lynx, a reusable launch vehicle that has suborbital flight capabilities. Low-speed test flights are expected to commence later this year, with incremental testing to take place over the following months.

Any proposed microbe collection devices would have to fit within the parameters of the Lynx’s 2kg Aft Cowling Port payload capabilities — preferably a 10 x 10 x 20 cm CubeSat volume — and provide solutions for either its retraction (in the case of extended components) or retrieval (in the case of ejected hardware.)

The contest is open to any US resident or non-government team or organization, and submissions are due by February 13, 2013. The chosen design will fly on 10 contracted Lynx flights in late 2013 or early 2014, and possibly even future missions.

Find out more about the challenge on the Citizens in Space site here, and check out an animation of the XCOR Lynx spacecraft below:

Watch How Life Recovers from Devastation

If a portion of Earth underwent a major cataclysm, how long would it take for life to recover? The 1980 eruption of Mount St. Helens is giving scientists an unprecedented opportunity to witness a recovery from devastation, as the eruption leveled the surrounding forest, blasted away hundreds of meters of the mountain’s summit, and claimed 57 human lives. Landsat satellites have tracked the what has happened on the mountain, and how the forest was reclaimed — all on its own. This video shows a timelapse of the recovery, with annual images from 1979-2011 from the Landsat satellites, which acquired the images seen here between 1979 and 2011.
Continue reading “Watch How Life Recovers from Devastation”

Stunning Timelapse of Planet Earth from Elektro-L

We’ve shared the images and a previous timelapse of Earth’s northern hemisphere, but now here’s a breath-taking timelapse of the entire blue (and green!) marble as seen from Russia’s Elektro-L weather-forecasting satellite, orbiting at a geostationary height of about 36,000 km (22,300 miles). This new video was created by James Drake using some of the largest whole disk images of our planet, as each image is 121 megapixels, and the resolution is 1 kilometer per pixel. The satellite’s wide-angle Multichannel Scanning Unit (MSU) takes images every 15-30 minutes, showing the same viewpoint of Earth across progressive times of the day and the images are in four different wavelengths of light — three visible, and one infrared.

It’s a beautiful view of home.
Continue reading “Stunning Timelapse of Planet Earth from Elektro-L”

Is Earth Alive? Scientists Seek Sulfur For An Answer

Image of Earth taken by ESA's Rosetta spacecraft in 2009

[/caption]

Researchers at the University of Maryland have discovered a way to identify and track sulfuric compounds in Earth’s marine environment, opening a path to either refute or support a decades-old hypothesis that our planet can be compared to a singular, self-regulating, living organism — a.k.a. the Gaia theory.

Proposed by scientists James Lovelock and Lynn Margulis in the 70s, the Gaia theory likens Earth to a self-supporting singular life form, similar to a cell. The theory claims that, rather than being merely a stage upon which life exists, life — in all forms — works to actively construct an Earthly environment in which it can thrive.

Although named after the Greek goddess of Earth, the Gaia theory is not so much about mythology or New Age mysticism as it is about biology, chemistry and geology — and how they all interact to make our world suitable for living things.

Once called the Gaia hypothesis, enough scientific cross-disciplinary support has since been discovered that it’s now commonly referred to as a theory.

Marine phytoplankton -- like these diatoms -- may produce sulfur compounds that can be transmitted into the air, affecting climate. (NOAA image)

One facet of the Gaia theory is that sulfur compounds would be created by microscopic marine organisms — such as phytoplankton and algae — and these compounds could be transmitted into the air, and eventually (in some form) to the land, thus helping to support a sulfur cycle.

Sulfur is a key element in both organic and inorganic compounds. The tenth most abundant element in the Universe, sulfur is crucial to climate regulation — as well as life as we know it.

In particular, two sulfur compounds — dimethylsulfoniopropionate and its atmospherically-oxidized version, dimethylsulfide — are considered to be likely candidates for the products created by marine life. It’s these two compounds that UMD researcher Harry Oduro, along with geochemist and professor James Farquhar and marine biologist Kathryn Van Alstyne (of Western Washington University) have discovered a way to track across multiple environments, from sea to air to land, allowing scientists to trace which isotopes are coming from what sources.

“What Harry did in this research was to devise a way to isolate and measure the sulfur isotopic composition of these two sulfur compounds,” said Farquhar. “This was a very difficult measurement to do right, and his measurements revealed an unexpected variability in an isotopic signal that appears to be related to the way the sulfur is metabolized.”

The team’s research can be used to measure how the organisms are producing the compounds, under which circumstances and how they are ultimately affecting their — and our — environment in the process.

“The ability to do this could help us answer important climate questions, and ultimately better predict climate changes,” said Farquhar. “And it may even help us to better trace connections between dimethylsulfide emissions and sulfate aerosols, ultimately testing a coupling in the Gaia hypothesis.”

Whether or not Earth can be called a singular — or possibly even sentient — living organism of which all organisms are contributing members thereof may still be up for debate, but it is fairly well-accepted that life can shape and alter its own environment (and in the case of humans, often for the worse.) Research like this can help science determine just how far-reaching those alterations may be.

The study appears in this week’s Online Early Edition of the Proceedings of the National Academy of Sciences (PNAS).

Read more on the University of Maryland’s news page here.

Image credit: ESA ©2009 MPS for OSIRIS Team MPS/UPD/LAM/IAA/RSSD/INTA/UPM/DASP/IDA. Edited by J. Major.