Distant Invisible Galaxy Could be Made Up Entirely of Dark Matter

The gravitational lens B1938+666 as seen in the infrared when observed with the 10-meter Keck II telescope. Credit: D. Lagattuta / W. M. Keck Observatory

[/caption]

Astronomers can’t see it but they know it’s out there from the distortions caused by its gravity. That statement describes dark matter, the elusive substance which scientists have estimated makes up about 25% of our universe and doesn’t emit or absorb light. But it also describes a distant, tiny galaxy located about 10 billion light years from Earth. This galaxy can’t be seen in telescopes, but astronomers were able to detect its presence through the small distortions made in light that passes by it. This dark galaxy is the most distant and lowest-mass object ever detected, and astronomers say it could help them find similar objects and confirm or reject current cosmological theories about the structure of the Universe.

“Now we have one dark satellite [galaxy],” said Simona Vegetti, a postdoctoral researcher at the Massachusetts Institute of Technology, who led the discovery. “But suppose that we don’t find enough of them — then we will have to change the properties of dark matter. Or, we might find as many satellites as we see in the simulations, and that will tell us that dark matter has the properties we think it has.”

This dwarf galaxy is a satellite of a distant elliptical galaxy, called JVAS B1938 + 666. The team was looking for faint or dark satellites of distant galaxies using gravitational lensing, and made their observations with the Keck II telescope on Mauna Kea in Hawaii, along with the telescope’s adaptive optics to limit the distortions from our own atmosphere.

They found two galaxies aligned with each other, as viewed from Earth, and the nearer object’s gravitational field deflected the light from the more distant object (JVAS B1938 + 666) as the light passed through the dark galaxy’s gravitational field, creating a distorted image called an “Einstein Ring.”

Using data from this effect, the mass of the dark galaxy was found to be 200 million times the mass of the Sun, which is similar to the masses of the satellite galaxies found around our own Milky Way. The size, shape and brightness of the Einstein ring depends on the distribution of mass throughout the foreground lensing galaxy.

Current models suggest that the Milky Way should have about 10,000 satellite galaxies, but only 30 have been observed. “It could be that many of the satellite galaxies are made of dark matter, making them elusive to detect, or there may be a problem with the way we think galaxies form,” Vegetti said.

The dwarf galaxy is a satellite, meaning that it clings to the edges of a larger galaxy. Because it is small and most of the mass of galaxies is not made up of stars but of dark matter, distant objects such as this galaxy may be very faint or even completely dark.

“For several reasons, it didn’t manage to form many or any stars, and therefore it stayed dark,” said Vegetti.

Vegetti and her team plan to use the same method to look for more satellite galaxies in other regions of the Universe, which they hope will help them discover more information on how dark matter behaves.

Their research was published in this week’s edition of Nature.

The team’s paper can be found here.

Sources: Keck Observatory, UC Davis, MIT

Journal Club: Dark Matter – The Early Years

Today's Journal Club is about a new addition to the Standard Model of fundamental particles.

[/caption]

According to Wikipedia, a journal club is a group of individuals who meet regularly to critically evaluate recent articles in scientific literature. Being Universe Today if we occasionally stray into critically evaluating each other’s critical evaluations, that’s OK too. And of course, the first rule of Journal Club is… don’t talk about Journal Club.

So, without further ado – today’s journal article on the dissection table is about using our limited understanding of dark matter to attempt visualise the cosmic web of the very early universe.

Today’s article:
Visbal et al The Grand Cosmic Web of the First Stars.

So… dark matter, pretty strange stuff huh? You can’t see it – which presumably means it’s transparent. Indeed it seems to be incapable of absorbing or otherwise interacting with light of any wavelength. So dark matter’s presence in the early universe should make it readily distinguishable from conventional matter – which does interact with light and so would have been heated, ionised and pushed around by the radiation pressure of the first stars.

This fundemental difference may lead to a way to visualise the early universe. To recap those early years, first there was the Big Bang, then three minutes later the first hydrogen nuclei formed, then 380,000 years later the first stable atoms formed. What follows from there is the so-called dark ages – until the first stars began to form from the clumping of cooled hydrogen. And according to the current standard model of Lambda Cold Dark Matter – this clumping primarily took place within gravity wells created by cold (i.e. static) dark matter.

This period is what is known as the reionization era, since the radiation of these first stars reheated the interstellar hydrogen medium and hence re-ionized it (back into a collection of H+ ions and unbound electrons).

While this is all well established cosmological lore – it is also the case that the radiation of the first stars would have applied a substantial radiation pressure on that early dense interstellar medium.

So, the early interstellar medium would not only be expanding due to the expansion of the universe, but also it would be being pushed outwards by the radiation of the first stars – meaning that there should be a relative velocity difference between the interstellar medium and the dark matter of the early universe – since the dark matter would be immune to any radiation pressure effects.

To visualize this relative velocity difference, we can look for hydrogen emissions, which are 21 cm wavelength light – unless further red-shifted, but in any case these signals are well into the radio spectrum. Radio astronomy observations at these wavelengths offer a window to enable observation of the distribution of the very first stars and galaxies – since these are the source of the first ionising radiation that differentiates the dark matter scaffolding (i.e. the gravity wells that support star and galaxy formation) from the remaining reionized interstellar medium. And so you get the first signs of the cosmic web when the universe was only 200 million years old.

Higher resolution views of this early cosmic web of primeval stars, galaxies and galactic clusters are becoming visible through high resolution radio astronomy instruments such as LOFAR – and hopefully one day in the not-too-distant future, the Square Kilometre Array – which will enable visualisation of the early universe in unprecedented detail.

So – comments? Does this fascinating observation of 21cm line absorption lines somehow lack the punch of a pretty Hubble Space Telescope image? Is radio astronomy just not sexy? Want to suggest an article for the next edition of Journal Club?

Tracing Dark Matter with Ripples in the Whirlpool Galaxy

M51
The distribution of HI hydrogen in the Whirlpool Galaxy (M51) as determined by the THINGS VLA survey extends far beyond the visible stars in the galaxy and its satellite NGC 5195 (marked by cross), which is situated in the short arm of the spiral. Analysis of perturbations in the hydrogen distribution can be used to predict the location of such satellites, in particular, those satellites that are composed primarily of dark matter and are thus too faint to be detected easily. (Click image for hi-res version.) (Sukanya Chakrabarti/UC Berkeley)

[/caption]A new paper presented at this week’s American Astronomical Society conference promises to shine some light, so to speak, on the pursuit of dark matter in individual galaxies. The current model of cold dark matter in the Universe is extremely successful when it comes to mapping the mysterious substance on large scales, but not on galactic and sub-galactic scales. Earlier today, Dr. Sukanya Chakrabarti of Florida Atlantic University described a new way to map dark matter by observing ripples in the hydrogen disks of large galaxies. Her work may finally allow astronomers to use their observations of ordinary matter to probe the distribution of dark matter on smaller scales.

Spiral galaxies are typically composed of a disk, which is made of normal (baryonic) matter and contains the central bulge and spiral arms, and a halo, which surrounds the disk and contains dark matter. In recent years, surveys such as THINGS (conducted by the NRAO Very Large Array) have been undertaken to analyze the distribution of hydrogen in nearby galactic disks. Last year, Dr. Chakrabarti used such surveys to investigate the way that small satellite galaxies affect the disks of larger galaxies such as M51, the Whirlpool Galaxy. But the real prize lies in investigating what astronomers cannot see. Chakrabarti remarked, “Since the 70s, we’ve known from observations of flat rotation curves that galaxies have massive dark matter halos, but there are very few probes that allow us to figure out how it’s distributed.” She has now broadened her research to do just that.

Astronomers believe that the density distribution of dark matter relies on a parameter called its scale radius. As it turns out, varying this parameter visibly affects the shape of the galaxy’s hydrogen disk when the influence of passing dwarf galaxies is accounted for.

“Ripples in outer gas disks serve to act like a mirror of the underlying dark matter distribution,” said Chakrabarti. By varying the scale radius of M51’s dark matter halo, Chakrabarti was able to see how it would affect the shape and distribution of atomic hydrogen in its disk. She found that large scale radii give rise to galaxies with a dark matter halo that becomes gradually more diffuse as it extends along the length of the disk. This causes the hydrogen in the disk to be very loosely wrapped around the central bulge of the galaxy. Conversely, small scale radii have density profiles that fall off much more steeply.

“Steeper density profiles are more effective at holding onto their ‘stuff’,” explained Chakrabarti, “and therefore they have a much more tightly wrapped spiral planform.”

Chakrabarti’s map of the distribution of dark matter in the halo of M51 is consistent with existing theoretical models, leading her to believe that this method may be extremely useful for astronomers trying to probe the elusive, invisible substance that makes up almost a quarter of our Universe. A preprint of her paper is available on the ArXiv.

Astronomers Witness a Web of Dark Matter

Dark matter in the Universe is distributed as a network of gigantic dense (white) and empty (dark) regions, where the largest white regions are about the size of several Earth moons on the sky. Credit: Van Waerbeke, Heymans, and CFHTLens collaboration.

[/caption]

We can’t see it, we can’t feel it, we can’t even interact with it… but dark matter may very well be one of the most fundamental physical components of our Universe. The sheer quantity of the stuff – whatever it is – is what physicists have suspected helps gives galaxies their mass, structure, and motion, and provides the “glue” that connects clusters of galaxies together in vast networks of cosmic webs.

Now, for the first time, this dark matter web has been directly observed.

An international team of astronomers, led by Dr. Catherine Heymans of the University of Edinburgh, Scotland, and Associate Professor Ludovic Van Waerbeke of the University of British Columbia, Vancouver, Canada, used data from the Canada-France-Hawaii Telescope Legacy Survey to map images of about 10 million galaxies and study how their light was bent by gravitational lensing caused by intervening dark matter.

Inside the dome of the Canada-France-Hawaii Telescope. (CFHT)

The images were gathered over a period of five years using CFHT’s 1×1-degree-field, 340-megapixel MegaCam. The galaxies observed in the survey are up to 6 billion light-years away… meaning their observed light was emitted when the Universe was only a little over half its present age.

The amount of distortion of the galaxies’ light provided the team with a visual map of a dark matter “web” spanning a billion light-years across.

“It is fascinating to be able to ‘see’ the dark matter using space-time distortion,” said Van Waerbeke. “It gives us privileged access to this mysterious mass in the Universe which cannot be observed otherwise. Knowing how dark matter is distributed is the very first step towards understanding its nature and how it fits within our current knowledge of physics.”

This is one giant leap toward unraveling the mystery of this massive-yet-invisible substance that pervades the Universe.

The densest regions of the dark matter cosmic web host massive clusters of galaxies. Credit: Van Waerbeke, Heymans, and CFHTLens collaboration.

“We hope that by mapping more dark matter than has been studied before, we are a step closer to understanding this material and its relationship with the galaxies in our Universe,” Dr. Heymans said.

The results were presented today at the American Astronomical Society meeting in Austin, Texas. Read the release here.

Little Galaxies Are Big on Dark Matter

The stellar stream in the halo of the nearby dwarf starburst galaxy NGC 4449 is resolved into its individual starry constituents in this exquisite image taken with the 8.2-meter Subaru Telescope and Suprime-Cam. Image credit: R. Jay GaBany and Aaron J. Romanowsky (UCSC) in collaboration with David Martinez-Delgado (MPIA) and NAOJ. Image processed by R. Jay GaBany

[/caption]

Dark matter… It came into existence at the moment of the Big Bang. Within its confines, galaxies formed and evolved. If you add up all the parts contained within any given galaxy you derive its mass, yet its gravitational effects can only be explained by the presence of this mysterious subatomic particle. It would be easy to believe that the larger the galaxy, the larger the amount of dark matter should be present, but new research shows that isn’t so. Dwarf galaxies have even higher proportions of dark matter than their larger counterparts. Although the dwarfs are the most common of all, we know very little about them – even when they consume each other. Enter the star stream…

“Several of my previous images feature the fossil remnants of these ancient mergers as faint stellar rivers called tidal streams. These stellar streams are the table crumbs from small dwarf galaxies that were gravitationally dismembered as they were devoured by the larger galaxy they orbited.” says astrophotographer, R. Jay Gabany. “The theory implies dwarf galaxies also merged and are still merging with each other. But, there has never been clear photographic evidence or a close investigation of dwarf galactic mergers until now.”

The target is NGC 4449, a small, irregular dwarf galaxy much like the Milky Way’s Large Magellanic Cloud. What makes it interesting to astronomers is the presence of thousands of hot blue stars and massive red regions interspaced with thick dust clouds. It isn’t just forming new stars… it’s experiencing an explosion of star birth! According to current theory, dwarf galaxies such as this one could be undergoing a merger event, but there hasn’t been photographic proof until now.

“The picture I am sharing is of a small, dwarf galaxy known as NGC 4449 that’s located about 12.5 million light years from Earth towards the northern constellation of Canes Venatici, the Hunting Dogs. This galaxy is about the size of our Milky Way’s largest satellite galaxy, the Magellanic Cloud. But, NGC 4449 is much farther away and it is experiencing a major star burst event- an episode characterized by the production of new stars at a furious rate.” says Gabany. “This image is unique because it captures the first dwarf galaxy known to have its own tidal stream of stars. Therefore, it represents the first closely studied example of a dwarf galaxy merging with an even smaller dwarf star system! The professional astronomers with whom I work also suspect the merger may have contributed to the ferocious production rate of new stars inside NGC 4449.”

The research done by the team led by Dr. David Martinez-Delgado has some very interesting ramifications and their paper has been accepted for publication in the Astrophysical Journal Letters.. As so well put in Jay’s photographic explanation in his webpage; “Although the cold dark matter theory predicts mergers and interactions between dwarf galaxies, there is scant observational evidence that these types of mergers are still happening in the nearby local Universe. Interactions between dwarf galaxies invoke the possibility of exploring a very different merger regime. For example, research has shown that multiple dwarf galaxies with different stellar masses may exist in similar sized dark matter halos, hence what appears as a minor merger of stars could be a major dark matter merger. Studying interactions on a small scale, such as NGC 4449, provides unique insights on the role of stars versus dark matter in galactic merger events.”

Where once amateur astrophotographers painted beautiful portraits of what lay just beyond human perception in deep space, they are now crafting images capable of true science. The eyes of their telescopes are being combined with professional instruments and producing amazing results.

“We live in an age where science has become unfettered from examining the Universe with only our physical six senses.” concludes Gabany. “This has unlocked a profound new level of understanding, resolved ancient mysteries and unlatched a Pandora’s chest filled with new questions begging for answers. We still have much to learn.”

For Further Reading: Dwarfs Gobbling Dwarfs: A Stellar Tidal Stream Around NGC 4449 and Hierarchical Galaxy Formation On Small Scales and The Big Deal About Dwarf Galaxies.

New Submillimetre Camera Sheds Light on the Dark Regions of the Universe

A composite image of the Whirlpool Galaxy (also known as M51). The green image is from the Hubble Space Telescope and shows the optical wavelength. The submillimetre light detected by SCUBA-2 is shown in red (850 microns) and blue (450 microns). The Whirlpool Galaxy lies at an estimated distance of 31 million light years from Earth in the constellation Canes Venatici Credit: JAC / UBC / Nasa

[/caption]

The stars and faint galaxies you see when you look up at the night sky are all emitting light within the visible light spectrum — the portion of the electromagnetic spectrum we can see with our unaided eyes or through optical telescopes. But our galaxy, and many others, contain huge amounts of cold dust that absorbs visible light. This accounts for the dark regions.

A new camera recently unveiled at the James Clerk Maxwell Telescope (JCMT) in Hawaii promises to figuratively shed light on this dark part of the universe. The SCUBA-2 submillimetre camera (SCUBA in this case is an acronym for Submillimetre Common-User Bolometer Array) can detect light at lower energy levels, allowing astronomers to gather data on these dark areas and ultimately learn more about our universe and its formation. 

Light is measurable; its intensity or brightness is measured by photons while colour is measured by the energy of the photons. Red photons have the least energy and violet photons have the most energy. This can also be thought of in terms of wavelengths. Light at longer wavelengths have less energy and light at shorter wavelengths have more energy. This continues beyond the visible light spectrum. As electromagnetic waves get shorter, we get ultraviolet light, x-rays, and gamma rays. As wavelengths get longer, we get infrared light, submillimetre light, and finally radio waves.

Panoramic view of the entire near-infrared sky reveals the distribution of galaxies beyond the Milky Way. Image credit: Thomas Jarrett, IPAC/Caltech.

On the longer end of the electromagnetic spectrum, infrared and radio telescopes have been around for decades helping astronomers understand more about the universe. But this is only part of the picture. The cold dust that absorbs the visible light to create the dark regions seen through optical telescopes is actually absorbing the light’s energy and reemitting it at longer wavelengths in the submillimetre region.

The first submillimetre camera, SCUBA, was designed and constructed at the Royal Observatory in Edinburgh in collaboration with the University of London. In 1997, it was up and running at the JCMT. Observations of submillimetre wavelengths are typically harder to gather — it takes a long time to image a small portion of the sky in this region. Nevertheless, submillimetre observations have already revealed a previously unknown population of distant, dusty galaxies as well as images of cold debris discs around nearby stars. This latter finding could be an indication of the presence of planetary systems.

A team of astronomers has recently developed the camera SCUBA-2 that can probe the submillimetre region with increased speed and much greater detail. But it’s a touchy instrument. Director of the JCMT Professor Gary Davis explains that for SCUBA-2 to detect extremely low energy radiation in the submillimetre region, “the instrument itself needs to be [extremely cold]. The detectors… have to be cooled to only 0.1 degree above absolute zero [–273.05°C], making the interior of SCUBA-2 colder than anything in the Universe that we know of!”

The infant Universe as imaged in the radio wavelength spectrum. Image Credit: NASA/WMAP Science Team.

The camera is a huge step in observational astronomy. Director of the United Kingdom Astronomy Teaching Centre Professor Ian Robson likened the technological leap between early sub-millimetre cameras and SCUBA-2 to the difference between wind-on film cameras and modern digital technology. “It is thanks to the ingenuity and abilities of our scientists and engineers that this immense leap in progress has been achieved,” he said.

Dr Antonio Chrysostomou, Associate Director of the JCMT, explains that SCUBA-2’s first task will be to carry out a series of surveys throughout the sky, mapping sites of star formation within our Galaxy, as well as planet formation around nearby stars. It will also survey our galactic neighbours and look into deep space to sample the youngest galaxies in the Universe. This latter task will be critical in helping astronomers understand how galaxies have evolved since the Big Bang.

The SCUBA-2 camera is housed on the 15 metre (about 50 foot) diameter JCMT situated close to the summit of Mauna Kea, Hawaii, at an altitude of 4092 metres (about 13,425 feet). It is typically used to study our Solar System, interstellar dust and gas, and distant galaxies.

Source: Revolutionary New Camera Reveals Dark Side of the Universe

 

The James Clerk Maxwell Telescope. Image credit: www.jach.hawaii.edu

 

 

Astronomy Without A Telescope – Could Dark Matter Not Matter?

The rotation curve of the Andromeda Galaxy - actual (white line) and rotational velocities of outer stars that would be expected based on the estimated mass of visible matter in the galaxy. From this we conclude up to 90% of the mass must be in the form of dark matter.

[/caption]

You probably want to put on your skeptical goggles and set them to maximum for this one. An Italian mathematician has come up with some complex formulae that can, with remarkable similarity, mimic the rotation curves of spiral galaxies without the need for dark matter.

Currently, these galactic rotation curves represent key evidence for the existence of dark matter – since the outer stars of spinning galaxies often move around a galactic disk so fast that they should fly off into intergalactic space – unless there is an additional ‘invisible’ mass present in the galaxy to gravitationally hold them in their orbits.

The issue can be appreciated by considering the Keplerian motion of the planets in our Solar System. Mercury orbits the Sun at an orbital velocity of 48 kilometers a second – while Neptune orbits the Sun at an orbital velocity of 5 kilometers a second. In the Solar System, a planet’s proximity to the substantial mass of the Sun is a function of its orbital velocity. So, hypothetically, if the Sun’s mass was reduced somehow, Neptune’s existing orbital velocity would move it outwards from its current orbit – potentially flinging it off into interstellar space if the change was significant enough.

The physics of the Milky Way Galaxy is different from the Solar System, since its mass is distributed more evenly across the galactic disk, rather than 99% of its mass being concentrated centrally – the way it is in the Solar System.

Nonetheless, as this past Universe Today article explains, if we assume a similar relationship between the cumulative mass of the Milky Way and the orbital velocity of its outer stars, we must acknowledge that the visible objects within the Milky Way only have 10-20% of the mass that is required to contain the orbital velocity of stars in its outer disk. So we conclude that the rest of that galactic mass must be dark (invisible) matter.

This is the contemporary consensus view of how galaxies work – and a key component of the current standard model of the cosmology of the universe. But Carati has come along with a seemingly implausible idea that the rotational curves of spiral galaxies could be explained by the gravitational influence of faraway matter, without needing to appeal to dark matter at all.

Left image: the rotation curve of spiral galaxy NGC 3198 showing the actual velocities of its outer stars (plotted points), then the velocities that would be expected given the mass of visible matter in its disk - overlaid by the assumed contribution of the mass of a dark matter halo. Right image: Carati's theoretical curve calculated from the effect of faraway matter and its remarkable fit to observed values from NGC 3198.

Conceptually the idea makes little sense. Positioning gravitationally significant mass outside of the orbit of stars might draw them out into wider orbits, but it’s difficult to see why this would add to their orbital velocity. Drawing an object into a wider orbit should result in it taking longer to orbit the galaxy since it will have more circumference to cover. What we generally see in spiral galaxies is that the outer stars orbit the galaxy within much the same time period as more inward stars.

But although the proposed mechanism seems a little implausible, what is remarkable about Carati’s claim is that the math apparently deliver galactic rotation curves that closely fit the observed values of at least four known galaxies. Indeed, the math delivers an extraordinarily close fit.

With skeptical goggles firmly in place, the following conclusions might be drawn from this finding:
• There are so many galaxies out there that it’s not hard to find four galaxies that fit the math;
• The math has been retro-fitted to match already observed data;
• The math just doesn’t work; or
• While the author’s interpretation of the data may be up for discussion, the math really does work.

The math draws on principles established in the Einstein field equations, which is problematic as the field equations are based on the cosmological principle, which assumes that the effect of faraway matter is negligible – or at least that it evens out at a large scale.

Perplexingly, Carati’s paper also notes two further examples where the math can also fit galaxies with declining rotational velocities in their outer stars. This is achieved by switching the sign of one of the formulae components (which can be + or -). Thus, on the one hand the effect of faraway matter is to induce a positive pressure that contains the rapid rotation of stars, preventing them from flying off – and on the other hand, it can induce a negative pressure to encourage an atypical decay in a galaxy’s rotation curve.

As the saying goes, if something seems too good to be true – it probably isn’t true. All comments welcome.

Further reading:
Carati Gravitational effects of the faraway matter on the rotation curves of spiral galaxies.

Positron Signaling For Dark Matter Inconclusive

The Fermi Gamma-ray Space Telescope (formerly called GLAST). Credit: NASA

[/caption]

A couple of years ago, the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics, PAMELA, sent us back some curious information… an overload of anti-matter in the Milky Way. Why does this member of the cosmic ray spectrum have interesting implications to the scientific community? It could mean the proof needed to confirm the existence of dark matter.

By employing the Fermi Large Area Telescope, researchers with the Kavli Institute for Particle Astrophysics and Cosmology (KIPAC) at Stanford University were able to verify the results of PAMELA’s findings. What’s more, by being in the high energy end of the spectrum, these abundances seem to verify current thinking on dark matter behavior and how it might produce positrons.

“There are various theories, but the basic idea is that if a dark matter particle were to meet its anti-particle, both would be annihilated. And that process of annihilation would generate new particles, including positrons.” says Stephan Funk, an assistant professor at Stanford and member of KIPAC. “When the PAMELA experiment looked at the spectrum of positrons, which means sampling positrons across a range of energy levels, it found more than would be expected from already understood astrophysics processes. The reason PAMELA generated such excitement is that it’s at least possible the excess positrons are coming from annihilation of dark matter particles.”

But there has been a glitch in what might have been a smooth solution. Current thinking has the positron signal dropping off when it reaches a specific level – a finding which wasn’t verified and led the researchers to feel the results were inconclusive. But the research just didn’t end there. The team consisting of Funk, Justin Vandenbroucke, a postdoc and Kavli Fellow and avli-supported graduate student Warit Mitthumsiri, came up with some creative solutions. While the Fermi Gamma-ray Space Telescope can’t distinguish between negatively charged electrons and positively charged positrons without a magnet – the group came up with their needs just a few hundred miles away.

Earth’s own magnetic field…

This illustration shows how the electron-positron sky appears to the Large Area Telescope. The purple region contains positrons while electrons are blocked by the Earth's bulk, the orange region contains electrons but is inaccessible to positrons, and the green region is completely out of the Earth's shadow for both positrons and electrons. Image courtesy Justin Vandenbroucke, Fermi-LAT collaboration.
That’s right. Our very own planet is capable of bending the paths of these highly charged particles. Now it was time for the research team to start a study on geophysics maps and figure out precisely how the Earth was sifting out the previously detected particles. It was a new way of filtering findings, but could it work?

“The thing that was most fun about this analysis for me is its interdisciplinary nature. We absolutely could not have made the measurement without this detailed map of the Earth’s magnetic field, which was provided by an international team of geophysicists. So to make this measurement, we had to understand the Earth’s magnetic field, which meant poring over work published for entirely different reasons by scientists in another discipline altogether.” said Vandenbroucke. “The big takeaway here is how valuable it is to measure and understand the world around us in as many ways as possible. Once you have this basic scientific knowledge, it’s often surprising how that knowledge can be useful.”

Oddly enough, they still came up with more than the expected amount of antimatter positrons as previously reported in Nature. But again, the findings didn’t show the theoretical drop-off that was to be expected if dark matter were involved. Despite these inconclusive results, it’s still a unique way of looking at difficult studies and making the most of what’s at hand.

“I find it to be fascinating to try to get the most out of an astrophysical instrument and I think we did that with this measurement. It was very satisfying that our approach, novel as it was, seemed to work so well. Also, you really have to go where the science takes you.” says Funk. “Our motivation was to confirm the PAMELA results because they are so exciting and unexpected. And as far as understanding what the Universe is actually trying to tell us here, I think it was important that PAMELA results were confirmed by a completely different instrument and technique.”

Original Story Source: Kavli Foundation News Release. For Further Reading: Measurement of separate cosmic-ray electron and positron spectra with the Fermi Large Area Telescope.

Deep Blue Astrophotography – Imaging Galactic Shells

NGC7600 is an elliptical galaxy and is around 50 Mpc in distance. This image shows an interleaved system of shells that are described in this Astronomical Journal Letters here. These types of structures around elliptical galaxies were first revealed by Malin & Carter in 1980. This deep image of NGC7600 shows faint features not previously seen. Credit: Ken Crawford

[/caption]

As a professional astronomy journalist, I read a lot of science papers. It hasn’t been all that long ago that I remember studying about galaxy groups – with the topic of dark matter and dwarf galaxies in particular. Imagine my surprise when I learn that two of my friends, who are highly noted astrophotographers, have been hard at work doing some deep blue science. If you aren’t familiar with the achievements of Ken Crawford and R. Jay Gabany, you soon will be. Step inside here and let us tell you why “it matters”…

According to Ken’s reports, Cold Dark Matter (or CDM) is a theory that most of the material in the Universe cannot be seen (dark) and that it moves very slowly (cold). It is the leading theory that helps explain the formation of galaxies, galaxy groups and even the current known structure of the universe. One of the problems with the theory is that it predicts large amounts of small satellite galaxies called dwarf galaxies. These small galaxies are about 1000th the mass of our Milky Way but the problem is, these are not observed. If this theory is correct, then where are all of the huge amounts of dwarf galaxies that should be there?

Enter professional star stream hunter, Dr. David Martinez-Delgado. David is the principal investigator of the Stellar Tidal Stream Survey at the Max-Planck Institute in Heidelberg, Germany. He believes the reason we do not see large amounts of dwarf galaxies is because they are absorbed (eaten) by larger galaxies as part of the galaxy formation. If this is correct, then we should find remnants of these mergers in observations. These remnants would show up as trails of dwarf galaxy debris made up mostly of stars. These debris trails are called star streams.

“The main aim of our project is to check if the frequency of streams around Milky Way-like galaxies in the local universe is consistent with CDM models similar to that of the movie.” clarifies Dr. Martinez-Delgado. “However, the tidal destruction of galaxies is not enough to solve the missing satellite problem of the CDM cosmology. So far, the best given explanation is that some dark matter halos are not able to form stars inside, that is, our Galaxy would surround by a few hundreds of pure dark matter satellites.”

Enter the star stream hunters professional team. The international team of professional astronomers led by Dr. David Martinez-Delgado has identified enormous star streams on the periphery of nearby spiral galaxies. With deep images he showed the process of galactic cannibalism believed to be occurring between the Milky Way and the Sagittarius dwarf galaxy. This is in our own back yard! Part of the work is using computer modeling to show how larger galaxies merge and absorb the smaller ones.

This image has been inverted and contrast enhanced to help display the faint shell features and debris fragments. The farthest fragment is 140 kpc in projection from the center of the galaxy. Credit: Ken Crawford
“Our observational approach is based on deep color-magnitude diagrams that provide accurate distances, surface brightness, and the properties of stellar population of the studied region of this tidal stream.” says Dr. Martinez-Delgado (et al). “These detections are also strong observational evidence that the tidal stream discovered by the Sloan Digitized Sky Survey is tidally stripped material from the Sagittarius dwarf and support the idea that the tidal stream completely enwraps the Milky Way in an almost polar orbit. We also confirm these detections by running numerical simulations of the Sagittarius dwarf plus the Milky Way. This model reproduces the present position and velocity of the Sagittarius main body and presents a long tidal stream formed by tidal interaction with the Milky Way potential.”

Enter the team of amateurs led by R. Jay Gabany. David recruited a small group of amateur astrophotographers to help search for and detect these stellar fossils and their cosmic dance around nearby galaxies, thus showing why there are so few dwarf galaxies to be found.

“Our observations have led to the discovery of six previously undetected, gigantic, stellar structures in the halos of several galaxies that are likely associated with debris from satellites that were tidally disrupted far in the distant past. In addition, we also confirmed several enormous stellar structures previously reported in the literature, but never before interpreted as being tidal streams.” says the team. “Our collection of galaxies presents an assortment of tidal phenomena exhibiting strikingly diverse morphological characteristics. In addition to identifying great circular features that resemble the Sagittarius stream surrounding the Milky Way, our observations have uncovered enormous structures that extend tens of kiloparsecs into the halos of their host’s central spiral. We have also found remote shells, giant clouds of debris within galactic halos, jet-like features emerging from galactic disks and large-scale, diffuse structures that are almost certainly related to the remnants of ancient, already thoroughly disrupted satellites. Together with these remains of possibly long defunct companions, our survey also captured surviving satellites caught in the act of tidal disruption. Some of these display long tails extending away from the progenitor satellite very similar to the predictions forecasted by cosmological simulations.”

The .5 meter Ritchey-Chretien Telescope of the Blackbird Observatory is situated at 7300 ft.(2225 meters) elevation under spectacularly clear and dark skies in the south central Sacramento Mountains of New Mexico, near Mayhill. Photo credit: R. Wodaski

Can you imagine how exciting it is to be part of deep blue science? It is one thing to be a good astrophotographer – even to be an exceptional astrophotographer – but to have your images and processing to be of such high quality as to be contributory to true astronomical research would be an incredible honor. Just ask Ken Crawford…

“Several years ago I was asked to become part of this team and have made several contributions to the survey. I am excited to announce that my latest contribution has resulted in a professional letter that has been recently accepted by the Astronomical Journal.” comments Ken. “There are a few things that make this very special. One, is that Carlos Frenk the director of the Institute for Computational Cosmology at Durham University (UK) and his team found that my image of galaxy NGC7600 was similar enough to help validate their computer model (simulation) of how larger galaxies form by absorbing satellite dwarf galaxies and why we do not see large number of dwarf galaxies today.”

Dr. Carlos Frenk has been featured on several television shows on the Science and Discovery channels, to name a few, to explain and show some of these amazing simulations. He is the director of the Institute for Computational Cosmology at Durham University (UK), was one of the winners of the 2011 Cosmology Prize of The Peter and Patricia Gruber Foundation.

“The cold dark matter model has become the leading theoretical picture for the formation of structure in the Universe. This model, together with the theory of cosmic inflation, makes a clear prediction for the initial conditions for structure formation and predicts that structures grow hierarchically through gravitational instability.” says Frenk (et al). “Testing this model requires that the precise measurements delivered by galaxy surveys can be compared to robust and equally precise theoretical calculations.”

The Rancho Del Sol Observatory is located in the foothills of the northern California's Sierra Mountains approximately one hour north of Sacramento. It houses a .5 meter Ritchey-Chretien Telescope. Credit: Ken Crawford
And it requires very accurate depictions of studies. According to the team, this pilot survey was conducted with three privately owned observatories equipped with modest sized telescopes located in the USA and Australia. Each observing site features very dark, clear skies with seeing that is routinely at and often below 1.5 arcseconds. These telescopes are manufactured by RC Optical Systems and follow a classic Ritchey-Chretien design. The observatories are commanded with on-site computers that allow remote operation and control from any global location with highband web accesses. Each observatory uses proven, widely available remote desktop control software. Robotic orchestration of all observatory and instrument functions, including multiple target acquisition and data runs, is performed using available scripting software. Additional use of a wide field instrument was employed for those galaxies with an extended angular size. For this purpose, they selected the Astro Physics Starfire 160EDF6, a short focal length (f/7) 16 cm aperture refractor that provides a FOV of 73.7 × 110.6 arcmin. But, it’s more than just taking a photograph. The astrophotographer needs to completely understand what needs to be drawn out of the exposure. It’s more than just taking a “pretty picture”… it’s what matters.

The formation of shell galaxies in the cold dark matter universe from Kenneth Crawford on Vimeo.

“The galaxy I want to show you has some special features called ‘shells’. I had to image very deep to detect these structures and carefully process them so you can see the delicate structures within.” explains Crawford. “The galaxy name is NGC7600 and these shell structures have not been captured as well in this galaxy before. The movie above shows my image of NGC7600 blending into the simulation at about the point when the shells start to form. The movie below shows the complete simulation.”

“What is ground breaking is that the simulation uses the cold dark matter theory modeling the dark matter halos of the galaxies and as you can see, it is pretty convincing.” concludes Crawford. “So now you all know why we do not observe lots of dwarf galaxies in the Universe.”

But, we can observe some very incredible science done by some very incredible friends. It’s what matters…

For Further Reading: Tracing Out the Northern Tidal Stream of the Sagittarius Dwarf Spheroidal Galaxy, Stellar Tidal Streams in Spiral Galaxies of the Local Volume, Carlos Frenk, Simulations of the formation, evolution and clustering of galaxies and quasars, The formation of shell galaxies similar to NGC 7600 in the cold dark matter cosmogony, Star Stream Survey Images By Ken Crawford and be sure to check out the zoomable Full Size Image of NGC 7600 done by Ken Crawford. We thank you all so much for sharing your work with us!

Antique Stars Could Help Solve Mysteries Of Early Milky Way

The Milky Way is like NGC 4594 (pictured), a disc shaped spiral galaxy with around 200 billion stars. The three main features are the central bulge, the disk, and the halo. Credit: ESO
The Milky Way is like NGC 4594 (pictured), a disc shaped spiral galaxy with around 200 billion stars. The three main features are the central bulge, the disk, and the halo. Credit: ESO

[/caption]

Utilizing ESO’s giant telescopes located in Chile, researchers at the Niels Bohr Institute have been examining “antique” stars. Located at the outer reaches of the Milky Way, these superannuated stellar specimens are unusual in the fact that they contain an over-abundance of gold, platinum and uranium. How they became heavy metal stars has always been a puzzle, but now astronomers are tracing their origins back to our galaxy’s beginning.

It is theorized that soon after the Big Bang event, the Universe was filled with hydrogen, helium and… dark matter. When the trio began compressing upon themselves, the very first stars were born. At the core of these neophyte suns, heavy elements such as carbon, nitrogen and oxygen were then created. A few hundred million years later? Hey! All of the elements are now accounted for. It’s a tidy solution, but there’s just one problem. It would appear the very first stars only had about 1/1000th of the heavy-elements found in sun-like stars of the present.

How does it happen? Each time a massive star reaches the end of its lifetime, it will either create a planetary nebula – where layers of elements gradually peel away from the core – or it will go supernova – and blast the freshly created elements out in a violent explosion. In this scenario, the clouds of material once again coalesce… collapse again and form more new stars. It’s just this pattern which gives birth to stars that become more and more “elementally” concentrated. It’s an accepted conjecture – and that’s what makes discovering heavy metal stars in the early Universe a surprise. And even more surprising…

Right here in the Milky Way.

“In the outer parts of the Milky Way there are old ‘stellar fossils’ from our own galaxy’s childhood. These old stars lie in a halo above and below the galaxy’s flat disc. In a small percentage – approximately one to two percent of these primitive stars, you find abnormal quantities of the heaviest elements relative to iron and other ‘normal’ heavy elements”, explains Terese Hansen, who is an astrophysicist in the research group Astrophysics and Planetary Science at the Niels Bohr Institute at the University of Copenhagen.

The 17 observed stars are all located in the northern sky and could therefore be observed with the Nordic Optical Telescope, NOT on La Palma. NOT is 2.5 meter telescope that is well suited for just this kind of observations, where continuous precise observations of stellar motions over several years can reveal what stars belong to binary star systems.
But the study of these antique stars just didn’t happen overnight. By employing ESO’s large telescopes based in Chile, the team took several years to come to their conclusions. It was based on the findings of 17 “abnormal” stars which appeared to have elemental concentrations – and then another four years of study using the Nordic Optical Telescope on La Palma. Terese Hansen used her master’s thesis to analyse the observations.

“After slaving away on these very difficult observations for a few years I suddenly realised that three of the stars had clear orbital motions that we could define, while the rest didn’t budge out of place and this was an important clue to explaining what kind of mechanism must have created the elements in the stars”, explains Terese Hansen, who calculated the velocities along with researchers from the Niels Bohr Institute and Michigan State University, USA.

What exactly accounts for these types of concentrations? Hansen explains their are two popular theories. The first places the origin as a close binary star system where one goes supernova, inundating its companion with layers of heavier elements. The second is a massive star also goes supernova, but spews the elements out in dispersing streams, impregnating gas clouds which then formed into the halo stars.

The research group has analysed 17 stellar fossils from the Milky Way’s childhood. The stars are small light stars and they live longer than large massive stars. They do not burn hydrogen longer, but swell up into red giants that will later cool and become white dwarves. The image shows the most famous of the stars CS31082-001, which was the first star that uranium was found in.
“My observations of the motions of the stars showed that the great majority of the 17 heavy-element rich stars are in fact single. Only three (20 percent) belong to binary star systems – this is completely normal, 20 percent of all stars belong to binary star systems. So the theory of the gold-plated neighbouring star cannot be the general explanation. The reason why some of the old stars became abnormally rich in heavy elements must therefore be that exploding supernovae sent jets out into space. In the supernova explosion the heavy elements like gold, platinum and uranium are formed and when the jets hit the surrounding gas clouds, they will be enriched with the elements and form stars that are incredibly rich in heavy elements”, says Terese Hansen, who immediately after her groundbreaking results was offered a PhD grant by one of the leading European research groups in astrophysics at the University of Heidelberg.

May all heavy metal stars go gold!

Original Story Source: Niels Bohr Institute News Release. For Further Reading: The Binary Frequency of r-Process-element-enhanced Metal-poor Stars and Its Implications: Chemical Tagging in the Primitive Halo of the Milky Way.