Want To Fly In Space? NASA Looking For More of the “Right Stuff”

NASA announced that it ws accepting applications for new astronauts. Photo Credit: Jeff Soulliere

[/caption]
NASA is looking for folks with the “right stuff.” The space agency is seeking qualified individuals for when the space agency once again travels into space – and beyond low-Earth-orbit. The announcement of NASA’s process for selecting its next class of astronauts was made at an event held at the Webb auditorium at NASA Headquarters located in Washington D.C. on Tuesday, Nov. 15.

At this event was NASA Administrator Charlie Bolden, Assistant Administrator for Human Capital Jeri Buchholz, Flight Crew Operations Director Janet Kavandi as well as five members of the 2009 astronaut class. They were Serena Aunon, Kjell Lindgren, Kathleen Rubins, Scott Tingle and Mark Vande Hei.

NASA is currently attempting to hand off providing access to low-Earth-orbit or LEO as it attempts to send astronauts beyond LEO for the first time in four decades. Photo Credit: jeff Soulliere

“For 50 years, American astronauts have led the exploration of our solar system,” Bolden said. “Today we are getting a glimpse of why that will remain true for the next half-century. Make no mistake about it, human space flight is alive and well at NASA.”
Bolden is a former shuttle astronaut himself, having flown into space four times.

The 2009 class of astronauts – was the first to graduate in a new era of space flight – one which would eventually see the retirement of NASA’s fleet of space shuttle orbiters. NASA is currently working to develop not only a new spacecraft – but a new launch vehicle as well. The Orion Multi-Purpose Crew Vehicle or Orion MPCV may one day ferry astronauts to points beyond LEO.

With NASA's fleet of shuttle orbiters on their separate ways to various museums across the country, NASA is currently lacking the capacity to launch astronauts on its own and is dependent on Russia's Soyuz spacecraft. Photo Credit: Jeff Soulliere

To get the Orion MPCV to orbit the space agency is developing the Space Launch System or SLS. This launch vehicle, resembling a cross between the space transportation system (STS) that comprised the shuttle – and the Saturn V moon rocket was recently unveiled by the space agency.

As far as access to LEO is concerned, NASA is working to hand those responsibilities over to commercial space firms such as SpaceX, Sierra Nevada Corporation and Boeing. These companies will also work to deliver crew and cargo to the orbiting International Space Station (ISS). If it all works out these new astronauts could well be among the first to return the U.S. to the Moon or be the first person to visit an asteroid or even Mars.

The astronaut's selected in this process could very well be the first astronauts to land on an asteroid - or even the planet Mars. Photo Credit: Jeff Soulliere

The Astronaut Candidate Program is open to any person that meets the agency’s qualifications. They can submit their applications online through the USAJobs.gov website. For those considering a career in the astronaut corps, here are some of the requirements:

• Bachelor’s Degree in either science, engineering or math
• Three years of relevant professional experience
• Experience in flying high-performance jet aircraft is considered a plus
• Educators that have taught grades kindergarten through the 12 are highly encouraged to apply

NASA will be accepting applications through January 27, 2012. The agency will bring in applicants to be interviewed and evaluated. NASA plans to make their final decision in 2013 – with training of these new astronauts starting that summer.

NASA has been working to see that the Orion Multi-Purpose Crew Vehicle or Orion MPCV is ready in time for deep space missions. Photo Credit: NASA.gov

Star Lab: Space Science on the Wings of Starfighters

4Frontiers Corporation is testing an experimental launcher that will be launched into space via the F-1-4 Starfighter jet aircraft. Photo Credit: Alan Walters/awaltersphoto.com

[/caption]

CAPE CANAVERAL, Fla – A NewSpace company based out of New Port Richey in Florida is working to provide suborbital access to space for firms with scientific payloads. The Star Lab project is an experimental suborbital launcher, designed to provide frequent, less expensive access to sub-orbit. This could allow educational and scientific institutions across the nation to conduct experiments that would normally be impractical.

“If Star Lab proves itself viable, as we feel it will, this could open the door to a great many scientific institutions conducting their research by using the Star Lab vehicle,” said Mark Homnick the CEO of 4Frontiers Corporation.

On Oct. 27th, the Star Lab launcher was tested out while attached to the F-104 carrier aircraft via a series of fast-taxis up and down NASA's Shuttle Landing Facility located in Florida. Photo Credit: NASA.gov

4Frontiers is working to launch their Star Lab sounding rocket vehicle into sub-orbital space via an F-104 Starfighter that is part of the Starfighters demo team based out of Kennedy Space Center. 4Frontiers hopes to launch a prototype early next year with commercial flights to follow about six months later.

On Thursday Oct. 27, Star Lab began the first of its tests as it was mounted to a F-104 Starfighter and the aircraft then conducted several fast-taxi runs up and down NASA’s Shuttle Landing Facility (SLF) with the Star Lab vehicle affixed to one of its pylons. On the last of these fast taxis, the jet aircraft deployed its drogue chute. These maneuvers were conducted to collect data to test the Star Lab vehicle’s response.

In terms of providing access to space, compared to more conventional means, the Star Lab project is considered to be an innovative and cost-effective means for scientific firms to test their experiments in the micro-gravity environment. Photo Credit: Alan Walters/awaltersphoto.com

The Star Lab suborbital vehicle is an air-launched sounding rocket, which is designed to be reusable and can reach a maximum altitude of about 120km.

The Star Lab vehicle carrying scientific payloads is launched from the venerable F-104 Starfighter jet. After the Star Lab payload stage reaches its predetermined altitude, it will descend by parachute into the Atlantic Ocean off the coast of Florida. Star Lab is capable of carrying up to 13 payloads per flight.

Members of the Starfighters Demo Team along with technicians working on the Star Lab program work to attach the vehicle to the F-104 Starfighter. Photo Credit: Star Lab

All of these payloads will have access to the outside, sub-orbital space environment. One payload on each mission will be deployable by way of an ejectable nosecone on the Star Lab vehicle. 4Frontiers Corporation will handle integrating the payloads into the vehicle. After the craft splashes down, private recovery teams will collect and return it to 4Frontiers. It in turn will have the payloads off-loaded and the Star Lab vehicle will then be reprocessed for its next mission.

“Today, 4Frontiers and Starfighters, with the assistance of the Florida Space Grant Consortium, unveiled to the public for the first time the Star Lab suborbital project. Star Lab is an air-launched reusable sounding vehicle, built using COTS (Commercial Off The Shelf) technology and able to reach altitudes of up to 120km,” said 4Frontiers’ Business Development Manager Panayot Slavov. “With its very reasonable price structure, frequent flight schedule and numerous educational and research opportunities, the vehicle and the project will turn into the suborbital research platform of choice for all those who are interested in experimenting and learning about suborbital space.”

The project was created through a cooperative agreement between the 4Frontiers Corporation, Starfighters Aerospace, Embry-Riddle Aeronautical University and the University of Central Florida with funding provided by the NASA Florida Space Grant Consortium.

If all goes according to plan firms wanting to send their payloads into suborbit could achieve this goal via the Star Lab project. Photo Credit: Starfighters Aerospace

Boeing To Use Shuttle Hangar for CST-100 Space Taxi

Boeing has selected Florida to be the base for its commercial crew program office. Image Credit: Boeing

[/caption]
CAPE CANAVERAL, Fla – NASA hosted an event on Monday, Oct. 31, at 10 a.m. EDT at Kennedy Space Center’s Orbiter Processing Facility-3 (OPF-3) to announce a new partnership between NASA, Space Florida and Boeing. Space Florida in turn will lease OPF-3 to Boeing. Under the terms of this arrangement, Boeing will use OPF-3 to manufacture and test Boeing’s “space taxi” the CST-100.

Boeing will use OPF-3 as the firm’s commercial crew program office. The OPF, essentially a hangar, will be converted to construct Boeing’s CST-100 space capsule, which is currently being developed to deliver astronauts to low-Earth-orbit (LEO).

In the past Boeing has issued imagery that displayed its CST-100 launching from a variety of different launch vehicles which call Florida's Space Coast their home. Photo Credit: Boeing

This new partnership was developed following a Notice of Availability that the space agency issued at the beginning of this year. The notice was used to identify interest from industry for space processing and support facilities at Kennedy. With NASA’s fleet of orbiters being decommissioned, NASA was seeking ways to effectively use its existing facilities.

It is hoped that this, and similar partnerships will help create jobs in the region as well as to help the U.S. regain leadership in the global space economy.

Boeing's CST-100 is called a "space-taxi" and is being designed to carry both crew and cargo to both the International Space Station as well and other low-Earth-orbit destnations. Image Credit: Boeing

The CST-100 is currently proposed as a reusable spacecraft that is comprised of two parts – a crew module and service module. It is designed to house up to seven astronauts, but it can also be used to ferry both people and cargo to orbit.

With the space shuttle fleet retired, NASA is completely reliant on Russia for access to the International Space Station. Russia charges the space agency about $63 million a seat on its Soyuz spacecraft.

“Only Congress can determine when we will stop the investment of our nation’s tax dollars into the purchase of continued space transportation services from the Russians – and invest instead in the U.S. work force and commercial industry capabilities,” said Space Florida’s President Frank DiBello.

During the final launch of the shuttle era, Boeing had both a mock-up as well as this test article on display. Photo Credit: Jason Rhian

NASA has worked to keep the public apprised about its efforts to open its doors to private space companies. The space agency held press conferences to announce both the Space Act Agreement (SAA) that NASA had entered into with Alliant Techsystems (ATK) and EADS Astrium concerning the Liberty launch vehicle, as well as the release of the design of the Space Launch System (SLS) heavy-lift rocket (which was announced on the following day).

“Thanks so much John and John, I love what you have done with the place!” said NASA Deputy Administrator Lori Garver referring to OPF-3.

The CST-100 has been proposed as a means of transportation to other future destinations in low-Earth-orbit such as one of the inflatable space station's currently under development by Bigelow Aerospace. Image Credit: Boeing

Space Florida is the organization that works to maintain and cultivate the aerospace industry within the State of Florida. The purpose of NASA’s Commercial Crew Program is to develop U.S. commercial crew space flight capabilities. It is hoped that they will one day allow the U.S. to achieve reliable, safe and cheap access not to just the space station – but other destinations in LEO as well.

“If we’re going to find a way to fund exploration beyond the vicinity of Earth, particularly in today’s fiscally-constrained environment – we’ve got to find a way to do the job of transporting crew to the International Space Station in a more affordable manner,” said Boeing’s John Elbon. “That’s one of the primary purposes of the commercial crew program – to provide affordable access to low-Earth-orbit so that we can use the International Space Station as the great laboratory that it is.”

Through an agreement with Space Florida, NASA will lease Orbiter Processing Facility-3 (OPF-3) to Boeing for its CST-100 space taxi. It is hoped that this and efforts like this one will eventually reduce the cost of sending crews to the International Space Station. Photo Credit: NASA

NASA Issues Report On Commercial Crew as SpaceX’s CEO Testifies About SpaceX’s Progress

NASA has released its third status report concerning the progress of the Commercial Crew Development program (CCDev). Photo Credit: SpaceX

[/caption]
NASA has recently posted the latest update as to how the Commercial Crew Development 2 (CCDev2) program is doing in terms of meeting milestones laid out at the program’s inception. According to the third status report that was released by NASA, CCDev2’s partners continue to meet these objectives. The space agency has worked to provide regular updates about the program’s progress.

“There is a lot happening in NASA’s commercial crew and cargo programs and we want to make sure the public and our stakeholders are informed about the progress industry is making,” said Phil McAlister, NASA’s director of commercial spaceflight development. “It’s exciting to see these spaceflight concepts move forward.”

One of the primary objectives of the Commercial Crew Development program is to cut down the length of time that NASA is forced to rely on Russia for access to the International Space Station. Photo Credit: NASA

Reports on the progress of commercial crew are issued on a bi-monthly basis. The reports are directed toward the primary stakeholder of this program, the U.S. taxpayer. NASA has invested both financial and technical assets in an effort to accelerate the development of commercial access to orbit.

This report came out at the same time as Space Exploration Technologies’ (SpaceX) CEO, Elon Musk, testified before the U.S. House Science, Space, and Technology Committee regarding NASA’s commercial crewed program.

Elon Musk testified before the U.S. House Science, Space, and Technology Committee regarding his company's efforts to provide commercial access to the International Space Station. Photo Credit: SpaceX

SpaceX itself has been awarded $75 million under the CCDev program to develop a launch abort system, known as “DragonRider” that would enable the company’s Dragon spacecraft to transport astronauts. SpaceX was awarded $1.6 billion under the Commercial Orbital Transportation Services or COTS contract with NASA. Under the COTS contract, SpaceX must fly three demonstration flights as well as nine cargo delivery flights to the orbiting outpost. SpaceX is currently working to combine the second and third demonstration flights into one mission, currently scheduled to fly at the end of this year.

During Musk’s comments to the House, he highlighted his company’s efforts to make space travel more accessible.

“America’s endeavors in space are truly inspirational. I deeply believe that human spaceflight is one of the great achievements of humankind. Although NASA only sent a handful of people to the moon, it felt like we all went,” Musk said in a written statement. “We vicariously shared in the adventure and achievement. My goal, and the goal of SpaceX, is to help create the technology so that more can share in that great adventure.”

SpaceX's Falcon 9 launch vehicle is currently being readied for a liftoff date later this year. Photo Credit: Alan Walters/awaltersphoto.com

To date, SpaceX is the only company to have demonstrated the capacity of their launch vehicle as well as a spacecraft. The company launched the first of its Dragon spacecraft atop of its Falcon 9 rocket this past December. The Dragon completed two orbits successfully before splashing down safely off the coast of California.

NASA is relying on companies like SpaceX to develop commercial crew transportation capabilities that could one day send astronauts to and from the International Space Station (ISS). It is hoped that CCDev2 will help reduce U.S. dependence on Russia’s Soyuz spacecraft for access to the ISS. Allowing commercial companies to take over the responsibility of sending crews to the ISS might also allow the space agency focus on sending astronauts beyond low-Earth-orbit for the first time in four decades.

SpaceX's Dragon spacecraft recently arrived at the firm's hangar located at Cape Canaveral Air Force Station's Space Launch Complex-40 (SLC-40). Photo Credit: Alan Walters/awaltersphoto.com

Aerojet: Small Space Firm Has Big Space History

In this image an Orion MultiPurpose Crew Vehicle jettison motor or JM, which is produced by Aerojet is test-fired. Photo Credit: Aerojet

[/caption]
When it comes to space flight pedigrees, few companies have one that can compare to Aerojet’s. The California-based company has a resume on space operations that is as lengthy as it is impressive. Universe Today sat down with Julie Van Kleeck – the firm’s vice-president of space and launch systems business unit.

Van Kleeck spoke extensively about the company’s rich history, its legacy of accomplishments – as well as what it has planned for space missions of the future.

Universe Today: Hi Julie, thanks for taking the time to chat with us today.

Van Kleeck: “My pleasure!”

Universe Today: How long has Aerojet been in business and what exactly is it that your company produces?

Van Kleeck: “We’ve been in the space business – since there was a space program – so since at least the 50s. We’ve dealt with both launch systems as well as space maneuvering systems, those components that enable spacecraft to move while in space.”

Aerojet propulsion systems have helped many of NASA's deep-space probes explore the solar system. Image Credit: NASA.gov

Universe Today: What about in terms of human space flight, when did Aerojet get involved with that?

Van Kleeck: “We first started working on the manned side of the house back during the Gemini Program, from there we progressed to Apollo, then shuttle and we hope to be involved with SLS (Space Launch System) as well.”

Universe Today: I understand that your company also has an extensive history when it comes to unmanned missions as well, care to tell us a bit about that?

Van Kleeck: “We have been on every discovery mission that has ever been launched, we have touched every part of space that you can touch.”

It is Aerojet's solid rocket motors that provide that extra-added “punch” to the versions of the Atlas V launch vehicle that utilize them. Photo Credit: Alan Walters/awaltersphoto.com

Universe Today: Some aerospace companies only produce one product or service, why is Aerojet’s list of offerings so diversified?

Van Kleeck: “We’re quite different than our competitors in that we provide a very wide-range of products to our customers. We’ve provided the liquid engines that went on Titan and now we provide the solids that go on the Atlas V launch vehicle as well as the small chemical and electrical propulsion systems that are utilized on some satellites.”

An Aerojet AJ26 rocket engine is prepared for testing in this image. These engines, as well as a license to produce them, were purchased from Russia and were originally designated the NK-33. Picture Credit: Aerojet

Universe Today: Does this mean that Aerojet places more importance on one space flight system over others?

Van Kleeck: “We view each of the products that we produce as equally important. Having said that, the fact that Aerojet offers a diversity of products and understands each of them well – sets us apart from our competitors. Firms that only produce one type of product tend to work to sell just that one product, whereas Aerojet’s extensive catalog of services allows us to be more objective when offering those services to our customers.”

During a tour of the Vertical Integration Facility, Aerojet's Solid Rocket Motors or SRms -were on full display attached to the Atlas V rocket that is set to send the Mars Science Laboratory rover "Curiosity" to Mars. Photo Credit: Alan Walters/awaltersphoto.com

Universe Today: When you look back, what is one of the most interesting projects that Aerojet has been involved with?

Van Kleeck: “I think as I look back over the past decade, New Horizons comes to mind, it was the first Atlas to launch with five solids on it. I look at that mission in particular as a major accomplish for not just us – but the country as well.”

In this image an AJ26 liquid rocket engine is tested. These engines are utilized as part of Orbital Science's Taurus II program. Photo Credit: Aerojet

Universe Today: What does the future hold for Aerojet?

Van Kleeck: ”We’re working on the Orion crew capsule right now with both liquid propulsion for it as well as solid propulsion for the abort test motor. We’re very much looking forward to seeing Orion fly in the coming years. We are currently putting into place the basic infrastructure to support human space exploration. We are working with both commercial crewed as well as Robert Bigelow to provide propulsion systems that work with their individual system – because no one system fits everyone. We are pleased to be offer systems for a wide variety of space exploration efforts.”

Universe Today: Julie, thanks for taking the time to chat with us today!

Van Kleeck: “No problem at all – it was my pleasure!”

Aerojet’s products will be on full display Nov. 25 as, if everything goes as planned the Mars Science Laboratory (MSL) rover Curiosity is set to launch on that day. Four of the company’s solid rocket motors or SRMs will help power the Curiosity rover on its way to the red planet.

For a taste of what Aerojet’s SRMs provide – please view the NASA video below.

Virgin Galactic Taps Test Flight Veteran As Pilot

Virgin Galactic has tapped U.S. Air Force test pilot Keith Colmer as a pilot for the private space company. Photo Credit: Clay Center Observatory/Virgin Galactic

[/caption]
From a pool of 500 potential applicants, Virgin Galactic has found their man. The NewSpace firm chose from some of the greatest pilots the world has to offer to work to be a pilot for their company. U.S. Air Force test pilot Keith Colmer rose to the top of the list and was selected by Virgin Galactic to join the team that is working to allow private citizens a flight into space.

Virgin Galactic announced Colmer’s addition to the company’s space flight team on Oct. 26. He will join Virgin Galactic’s Pilot David Mackay as they work to get the company’s carrier aircraft, WhiteKnightTwo and its spacecraft SpaceShipTwo into service. They will be joined by more pilots as the company works to begin operations in 2013.

Colmer brings 12 years of operational, developmental and experimental aircraft test flight experience plus more than 10 years of combined military experience in USAF spacecraft operations and flying. Photo Credit: Virgin Galactic

“Keith brings the kind of tremendous multi-dimensional talent and skill set that we are looking for in our astronaut pilots,” said Virgin Galactic’s President and CEO George Whitesides. “But equally important to us are his impeccable character and his outstanding record of high caliber performance in highly demanding environments. He sets the bar very high for others to come.”

“This team in Mojave is second to none,” said Mackay about Scaled Composite’s test pilots. “Keith and I are indeed fortunate to have their expertise and body of work to build on as we enter the final phases of the test program and prepare to open space to all.”

Colmer is a veteran pilot, with 12 years worth of experience in testing experimental aircraft. He has over 5,000 hours logged in more than 90 different types of aircraft.

Virgin Galactic is preparing to launch private citizens into space, potentially as early as 2013. Photo Credit: Virgin Galactic/Mark Greenberg

Former NASA Space Shuttle Manager Mike Moses recently left NASA to work as Virgin Galactic’s Vice President of Operations. Virgin Galactic is working to begin powered test flights, and after that the company will try to begin commercial operations.

“I am extremely honored to have been the first astronaut pilot selected through competition to join the team,” said Colmer. “Virgin Galactic is truly revolutionizing the way we go to space and I am looking forward to being a part of that.”

Colmer has served as a combat pilot, flying an F-16 in two tours in Iraq with the Colorado Air National Guard. According to information provided in a Virgin Galactic press release he is the first Air National Guard pilot to ever be selected to attend the USAF Test Pilot School, at Edwards Air Force Base.

With the dedication of its spaceport located near Las Cruces, New Mexico; additions to its team such as former NASA Space Shuttle Program Manager Mike Moses and others, Virgin Galactic is working to have the needed infrastructure in place to begin flight operations within the next two years. Photo Credit: Virgin Galactic/Jeffrey Vock

Colmer has a Bachelor of Science in Aeronautics and Astronautics from the Massachusetts Institute of Technology. He holds a Masters degree in Aerospace Engineering and a Masters degree in Telecommunications from the University of Colorado, Boulder. He is a graduate of the USAF Undergraduate Space Training program, the Euro-NATO Joint Jet Pilot Training Program and USAF Test Pilot School, Class 02A.

Virgin Galactic recently dedicated its Space Port in Las Cruces, New Mexico. The company is part of the London-based Virgin Group which is owned by Sir Richard Branson. The company formed after Scaled Composites one the $10 million Ansari X-PRIZE back in 2004. The flights of WhiteKnightOne and SpaceShipOne paved the way for the development of the vehicles that Virgin Galactic is planning on utilizing to begin suborbital space flight operations. Tickets for flights on the commercial space plane are set to cost approximately $200,000.

Here There Be Dragons: SpaceX’s Spacecraft Arrives at Launch Complex 40

The next Dragon spacecraft, the one that is set to launch to the International Space Station has arrived at Cape Canaveral Air Force Station's Space Luanch Complex 41 (SLC-41) for processing. Photo Credit: Alan Walters/awaltersphoto.com

[/caption]
CAPE CANAVERAL, Fla – Space Exploration Technologies (SpaceX) welcomed a new guest to Space Launch Complex 40 (SLC-40) on Sunday – the next Dragon spacecraft that is set to launch later this year. Members of the media were invited to a photo opportunity to chronicle the Dragon spacecraft’s arrival which had been delayed a day due to issues with travel permits.

The Dragon that arrived on Sunday is destined to fly to the International Space Station (ISS). It will be the first time that a private firm docks with the space station. The COTS Demo 2 Dragon was shipped from SpaceX’s facilities in Hawthorne, California to Cape Canaveral in Florida.

SpaceX's next Dragon spacecraft, the one set to fly to the International Space Station, was delivered to Cape Canaveral Air Force Station's Space Launch Complex 40 on Sunday. Photo Credit: SpaceX

The Falcon 9 rocket, with its Dragon spacecraft payload, is currently scheduled to launch from Cape Canaveral Air Force Station’s SLC-40 on Dec. 19. If all goes as it is currently planned the Dragon will maneuver along side of the orbiting laboratory where the space station’s robot Canadarm 2 will grapple the unmanned spacecraft it and dock it with the station.

“When it comes to the launch day, NASA will determine that, we’re pushing to launch on Dec. 19, but the final “go” date is set by NASA and the range,” said SpaceX’s Vice-President for Communications Bobby Block. “We are currently working to conduct a wet dress rehearsal on November 21st.”

The Dragon spacecraft that is bound for the ISS will ride this Falcon 9 rocket to orbit. The launch date is tentatively set for Dec. 19. Photo Credit: Alan Walters/awaltersphoto.com

SpaceX recently passed a Preliminary Draft Review (PDR) of the Dragon’s Launch Abort System (LAS). This system, which pulls astronauts and their spacecraft to safety in case of some problem with the Falcon 9 launch vehicle, is unlike other systems of its type. Normal abort systems are essentially small rockets affixed to the top of the spacecraft (which is normally on top of the rocket). Not so with SpaceX’s design, dubbed DragonRider – it will be built into the walls of the spacecraft.

The reason for the difference in the abort system’s design is twofold. First, it will drive the costs down (Dragon is being developed as a reusable spacecraft) -whereas traditional abort systems are not capable of being reused. Secondly the system could one day be used as a potential means of landing spacecraft on other terrestrial worlds, such as the planet Mars.

SpaceX has been working with NASA to get the Dragon spacecraft ready for its historic mission. This will mark the first time that many of the systems have been used on an actual mission. Photo Credit: Alan Walters/awaltersphoto.com

This will mark the second demonstration flight that SpaceX will have flown to accomplish the objectives laid out in the Commercial Orbital Transportations Services or COTS contract. The $1.6 billion contract is an effort to ensure that needed cargo is delivered to the station safely and in a timely fashion.

SpaceX so far has launched two of its Falcon 9 rockets – both in 2010. The first flight occurred on June 4, 2010 with the second being launched on Dec. 8, 2010. It was on this second flight that SpaceX became the first private entity to launch a spacecraft into orbit and then safely recover it after it had successfully orbited the Earth twice. Before this only nations were capable of achieving this feat.

“This is very exciting, our last launch was about a year ago, so to have a fully-operational Dragon up-and-ready to make a historic docking to the International Space Station it’s terrifically exciting.” Block said.

SpaceX is working toward expanding the role of not only the Falcon 9 rocket - but the Dragon spacecraft as well. Photo Credit: Alan Walters/awaltersphoto.com

Video Duet – Soyuz Debut Blast off from the Amazon Jungle and Rockin’ Russian Rollout !

Soyuz launch through the Amazon jungle raindrops on 21 October 2011. Credit:Thilo Kranz/DLR - Special to Universe Today

Watch the video of today’s debut lift off of a Russian Soyuz rocket from the edge of the Amazon jungle at the Guiana Space Center in French Guiana as it successfully carried the first two Galileo In-Orbit Validation satellites to space after an arduous 7 year struggle to mesh Russian and European technologies and cultures – a magnificent achievement that opens a wide realm of new commercial and science exploration possibilities to exploit space for humankind. Launch photos below and here.

Now have some real fun and enjoy this absolutely cool Rockin’ Russian music video showing a headless Soyuz rollout to the pad, an erection like you’ve never imagined and capping with the Galileo satellites. Guaranteed you’ve never seen struttin’ like this but will totally get the Soyuz experience in 2 minutes – give it a whirl. They never did it like this in Russia.

[/caption]

“This historic first launch of a genuine European system like Galileo was performed by the legendary Russian launcher that was used for Sputnik and Yuri Gagarin, a launcher that will, from now on, lift off from Europe’s Spaceport,” said Jean-Jacques Dordain, Director General of ESA.

“These two historical events are also symbols of cooperation: cooperation between ESA and Russia, with a strong essential contribution of France; and cooperation between ESA and the European Union, in a joint initiative with the EU”.

First Soyuz lift from Europe’s Spaceport in French Guiana on 21 October 2011. Credits: ESA/CNES/ARIANESPACE - Optique Video du CSG, Service Optique
Soyuz inside the Mobile Launch Gantry after installation of Galileo satellites mounted inside Upper Composite. Credit: Claus Lippert/DLR

Read Ken’s continuing features about Soyuz from South America starting here:
Historic 1st Launch of Legendary Soyuz from South America
Russian Soyuz Poised for 1st Blastoff from Europe’s New South American Spaceport

Read Ken’s features about Russia’s upcoming Phobos-Grunt launch from Baikonur here:
Phobos-Grunt and Yinghou-1 Arrive at Baikonur Launch Site to tight Mars Deadline
Phobos-Grunt: The Mission Poster
Daring Russian Sample Return mission to Martian Moon Phobos aims for November Liftoff

Commercial Crew Assessments Carry On with CST-100 Wind Tunnel Tests

Front view of the Wind Tunnel Model - Credit: Boeing

[/caption]

Boeing recently began wind tunnel testing on its CST-100 (Crew Space Transport) capsule, designed to service destinations in Low Earth Orbit (LEO), locations like the ISS and Bigelow Space Stations. These tests have been on going since Sept. 17th of this year, collecting data on “20 different positions to mimic the different phases of an aborted landing”, Boeing said in a press release. These tests may lead to extensive changes and are critical to the craft’s safety.

The tests will move onto analyze ”approaches to abort before liftoff, abort after separation from the rocket, abort in orbit, etc” said Paula Korn, media contact for space exploration at Boeing, in an email to Universe Today. All these abort modes place high aerodynamic stress on the capsule and each abort mode has it own stresses. Each of the modes must be balanced for an ideal space system.

“Each of these approaches involves various aspects of problem solving and design solutions and are based on lessons learned from our 50 years of human spaceflight, starting with the early Mercury missions,” Korn said. “We are also integrating innovative, new design aspects to optimize safety, reliability and affordability objectives”.

An engineering view of the model - Credit: Boeing
Rear View of the Wind Tunnel Model - Credit: Boeing

The test platform was a 1/14th scale representation of the crew module and service module – the cone that houses the crew connected the uninhabited cylinder that houses the engines and other support systems. Jutting out of the model of the service module there are four thruster doghouses in addition to one umbilical cover for the crew and service modules. Poking out of the back of the model are four LAS (Launch Abort System) thrusters.

This extensive detail in the model combined with “hundreds of pinhole-sized sensors” give Boeing engineers precise views of the aerodynamics of the CST-100. “As engineers, we like data and numbers, and you can take all of this and make something meaningful out of it,” said Boeing engineer Dustin Choe. “We can reduce it down and provide a clearer picture of what we will experience in flight.” Based on this data there will be further changes to the spacecraft.

The CST-100's Flight Path - Credit: Boeing

There are more tests in store for Boeing’s answer to NASA’s Commercial Crew Development program. Boeing and Bigelow have already “dropped a mock capsule off a moving truck,” Boeing said in the press release, “to test the external airbags the real spacecraft would deploy to cushion a landing on Earth.”. “In the first quarter 2012,” Korn confirmed that “we are planning to perform parachute drop tests”.

Historic 1st Launch of Legendary Soyuz from South America

First Soyuz lift from Europe’s Spaceport in French Guiana on 21 October 2011. Credits:Thilo Kranz/DLR

[/caption]

Russia’s legendary Soyuz rocket soared skywards today (Oct.21) on its historic 1st ever blastoff from a new European space base in the equatorial jungles of South America. The history making liftoff of the Soyuz ST-B launcher from French Guiana occurred at exactly 6:30:26 a.m. EST (10:30:26 GMT) and lofted the first two operational satellites of Europe’s new Galileo GPS navigation system.

The flawless liftoff of the Soyuz booster from the ELS pad in French Guiana marked the first time that a Soyuz was launched from outside of the six existing pads in Russia and Kazakhstan. The joint Russian-European project was started back in 2004 and culminated with today’s launch of the Soyuz-VSO1 mission.

“This launch represents a lot for Europe: we have placed in orbit the first two satellites of Galileo, a system that will position our continent as a world-class player in the strategic domain of satellite navigation, a domain with huge economic perspectives,” said Jean-Jacques Dordain, Director General of ESA.

First Soyuz lift blastoff from Europe’s Spaceport in French Guiana on 21 October 2011. Mobile gantry at left. Credits:Thilo Kranz/DLR - Special to Universe Today

Soyuz lineage dates back to the beginning of the Space Age with the launch of Sputnik-1 in 1957 and the first man in space, Yuri Gagarin, in 1961. Soyuz had flown 1776 times to date.

First Soyuz lift from Europe’s Spaceport in French Guiana on 21 October 2011. Credits: ESA/CNES/ARIANESPACE - S. Corvaja, 2011

The launcher is based on the existing Soyuz design with a few changes to accommodate European safety standards and the construction of the ELS launch pad was modeled after the existing pads in Baikonur in Kazakhstan and Plesetsk in Russia. One significant difference is the construction of a 45 meter (170 foot) mobile gantry

A leaky valve delayed the flight by one day.

The duo of 700 kg Galileo satellites were mounted side by side on the Fregat upper stage atop the three stage Soyuz-2 rocket. These two Galileo In-orbit Validation (IOV) model satellites are experimental models that will be used to test the GPS technology.

Soyuz lifts off for the first time on 21 October 2011 from Europe’s Spaceport in French Guiana carrying the first two Galileo In-Orbit Validation satellites. Credits: ESA/CNES/ARIANESPACE - S. Corvaja, 2011

Two additional Galileo IOV satellites will be launched in 2012 as the initial segment of a 30 strong constellation of satellites in total.

The Galileo satelites will provide pinpoint accuracy to within about 1 meter (3 feet) compared to about 3 meters (10 feet) for the GPS system.

The 4 meter diameter payload fairing jettisoned as planned three minutes into the flight and the first of two firings of the Fregat upper stage was successfully completed after burnout of the lower stages. The second Fregat firing was accomplished about 4 hours after launch and injected the Galileo satellites into orbit some 23,000 km (14,000 miles) miles high.

The Fregat upper stage was designed to reignite and fire up to 20 times. It is fueled with nitrogen tetroxide and unsymmetrical dimethylhydrazine (UDMH).

First Soyuz lift from Europe’s Spaceport in French Guiana on 21 October 2011. Credits: ESA/CNES/ARIANESPACE - S. Corvaja, 2011

By launching from near the equator (5°N), the Soyuz gains about a 50% performance boost from 1.7 tons to nearly 3 tons to geostationary orbit due to the Earth’s faster spin compared to Baikonur (46°N).

Manned Soyuz missions from South America could be possible at some future date if the political and funding go ahead was approved by ESA and Russia. It is technically possible to reach the ISS from the French Guiana pad and would require the installation of additional ground support equipment.

The next Soyuz launch from South America is set for Dec. 16, 2011. 17 contracts have already been signed for future liftoffs at a rate of 2 to 3 per year.

Read Ken’s continuing features about Soyuz from South America starting here:
Russian Soyuz Poised for 1st Blastoff from Europe’s New South American Spaceport

Read Ken’s features about Russia’s upcoming Phobos-Grunt launch from Baikonur here:
Phobos-Grunt and Yinghou-1 Arrive at Baikonur Launch Site to tight Mars Deadline
Phobos-Grunt: The Mission Poster
Daring Russian Sample Return mission to Martian Moon Phobos aims for November Liftoff