Bigelow Inflatable Module Will be Added to Space Station

NASA Deputy Administrator Lori Garver is given a tour of the Bigelow Aerospace facilities in 2011 by the company’s President Robert Bigelow. Photo: NASA/Bill Ingalls

The next addition to the International Space Station will likely be an inflatable module from Bigelow Aerospace. NASA announced today they have awarded a $17.8 million contract to Bigelow to provide a new module for the ISS. “The Bigelow Expandable Activity Module will demonstrate the benefits of this space habitat technology for future exploration and commercial space endeavors,” NASA said in a press release. This would be the first privately built module to be added to the space station.

“The International Space Station is a unique laboratory that enables important discoveries that benefit humanity and vastly increase understanding of how humans can live and work in space for long periods,” NASA Deputy Administrator Lori Garver said. “This partnership agreement for the use of expandable habitats represents a step forward in cutting-edge technology that can allow humans to thrive in space safely and affordably, and heralds important progress in U.S. commercial space innovation.”

NASA will release more information about the agreement and the module next week, but previous reports have indicated the inflatable module would be used for adding additional storage and workspace, and the module would be certified to remain on-orbit for two years.
NASA has been in discussions with Bigelow for several years about using their inflatable technology.

In 2006 Bigelow launched their Genesis I inflatable test module into orbit and according to their website, it is still functioning and “continuing to produce invaluable images, videos and data for Bigelow Aerospace. It is now demonstrating the long-term viability of expandable habitat technology in an actual orbital environment.”

A second Genesis module was launched in 2007 and it, too, is still functioning in orbit.
Bigelow has said that even though the outer shell of their module is soft, as opposed to the rigid outer shell of current modules at the ISS, Bigelow’s inflatable modules are more resistant to micrometeoroid or orbital debris strikes. Bigelow uses multiple layers of Vectran, a material which is twice as strong as Kevlar. In ground tests, according to NASASpacefight.com, objects that would penetrate ISS modules only penetrated half-way through the skin of Bigelow’s modules.

SpaceX Grasshopper Takes Off and Lands Vertically in New 12-Story Hop

SpaceX recently released video of the latest test of their Grasshopper Vertical Take Off and Landing Vehicle, where it rose 40 meters (131 feet), hovered and landed safely on the pad using closed loop thrust vector and throttle control.

The test flight took place on December 17, 2012 at SpaceX’s rocket development facility in McGregor, Texas. The goal of Grasshopper is to eventually create a reusable first stage for SpaceX’s Falcon 9 rocket, which would be able to land safely instead of falling back into the ocean and not being usable again.

SpaceX CEO Elon Musk Tweeted that they strapped a 6-ft (2 meter) cowboy dummy to the side of the rocket “to provide a little perspective on the size of Grasshopper.”

See the pictures below:

SpaceX said the total test duration was 29 seconds. Grasshopper stands 10 stories tall and consists of a Falcon 9 rocket first stage, Merlin 1D engine, four steel landing legs with hydraulic dampers, and a steel support structure.

Cowboy dummy riding on the SpaceX Grasshopper. Via Elon Musk

“Cowboy riding the rocket no problemo,” Tweeted Elon Musk

Artist’s rendering of the SpaceX Grasshopper’s vertical landing. Credit: SpaceX

Golden Spike to Offer Commercial Human Missions to the Moon

A proposed Golden Spike lunar lander on the Moon. Credit: Golden Spike Company

A proposed Golden Spike lunar lander on the Moon. Credit: Golden Spike Company

A group of space experts, media figures and even politicians announced today a new commercial company to bring paying passengers to the Moon. The Golden Spike Company is looking to “implement and operate a human space transportation system at commercially successful price points,” the company says on their website, focusing “on generating a sustainable human lunar exploration business that generates profits through multiple high value revenue streams.”

Initial estimates for a ticket to the Moon and back with Golden Spike are a cool $1.5 billion. But they aren’t only focusing on individuals as paying customers, but also other space companies and even governmental entities.

The people behind Golden Spike include their CEO Alan Stern, Principal Investigator for the New Horizons mission to Pluto who is also involved with several other space-related ventures such as Uwingu, former Apollo flight director Gerry Griffin, former shuttle flight director Wayne Hale and politician Newt Gingrich, who touted the idea of building colonies on the Moon while he was a US presidential candidate.

Golden Spike’s video preview:

During an announcement at the National Press Club today — made on the eve of the 40th anniversary of the launch of Apollo 17, the last human exploration of the Moon — Griffin said that a group of like-minded individuals got together and concluded that time is ripe for such exploration that could be afforded by corporations, nations and individuals. Golden Spike looks to provide turn-key services such as vehicles, mission planning, mission ops, and crew training to create a reliable and affordable lunar exploration system that will be U.S. based

Stern said they will not build new hardware but adapt crew capsules already in development and use existing infrastructure and launchers. However, they are looking to developing their own lunar spacesuits and lunar landers.

Their tentative plan is to use a series of launches where the first launch sends a lunar lander to orbit the Moon and a second launch brings the crew, which will then dock with the lander and head to the Moon.

Stern said their costs per flight are not much higher than some recent robotic lunar missions that have been flown and they will offset their costs with spaceship naming rights, media rights, and other enticements, plus they hope to have several investors as backers.

They also want to bring public along as an integral part of the mission.

“We realize this is science fiction. We intend to make it science fact,” Stern was quoted as saying.

Reportedly, Golden Spike has conferred with NASA on their plans.

While there are already a number of skeptics about this new endeavor, others see it as a step forward.

“Conquering the space frontier requires leadership at NASA and a partnership between commercial companies and governments,” stated Commercial Space Fight President Michael Lopez-Alegria. “I’m thrilled to see the Golden Spike announcement, which harnesses space leaders with years of experience to launch an exciting new private space venture. In the last few years we’ve learned that commercial space, by speaking to the dreams and aspirations of people around the world, can create new excitement for space travel, bringing us ever closer to our shared goal of sustainably extending human activity beyond Earth.”

Other board members include new-space entrepreneur Esther Dyson and Taber McCallum, co-founder and CEO of Paragon Space Development Corporation. The list of advisers for the company former NASA engineer and author Homer Hickam, Bill Richardson, who has served as U.N. ambassador, energy secretary and the governor of New Mexico, space historian and author Andrew Chaikin, former NASA flight surgeon Jonathan Clark, Nancy Conrad who is founder of The Conrad Foundation and is the widow of Apollo 12 moonwalker Pete Conrad.

Golden Spike also lists United Launch Alliance, Armadillo Aerospace, Masten Space Systems and several other space-industry companies as being involved with this new endeavor.

Golden Spike was the name given to the ceremonial spike that joined the rails of the first transcontinental railroad across the United States in 1869, which opened up the Western frontier to new opportunities.

“We’re not just about America going back to the moon; we’re about American industry and American entrepreneurial spirit leading the rest of the world to an exciting era of human lunar exploration,” said Stern in a press release. “It’s the 21st century, we’re here to help countries, companies, and individuals extend their reach in space, and we think we’ll see an enthusiastic customer manifest developing.”

See the Golden Spike website

Sources: Thanks to Jeff Foust (@jeff_foust) for live-Tweeting the press conference and to Doug Messier from Parabolic Arc for live blogging the event.

SpaceX’s 10-Story Re-useable Grasshopper Rocket Takes a Bigger Hop

SpaceX is developing the “Grasshopper” reusable vertical takeoff, vertical landing rocket. Back in September, the 32-meter- (106-ft-) tall Grasshopper made a tiny hop – barely lifting off the pad just to test-fire its engines. But now the Grasshopper has made a second, bigger hop. Over the weekend, Elon Musk quietly tweeted a link to a video, saying, “First flight of 10 story tall Grasshopper rocket using closed loop thrust vector & throttle control.” Update: SpaceX later confirmed that the Grasshopper rose “17.7 feet (5.4 meters), hovered, and touched back down safely on the pad at SpaceX’s rocket development facility in McGregor, Texas.”

SpaceX hasn’t talked much about this rocket, but reportedly the goal with Grasshopper is to eventually create a reusable first stage for its Falcon 9 rocket, which would be able to land safely instead of falling back into the ocean and not being usable again.

Artist’s rendering of SpaceX Falcon 9 rocket landing itself. Credit: SpaceX

Here’s some info about the Grasshopper from a draft environmental impact assessment put out by the FAA in 2011:

The Grasshopper RLV consists of a Falcon 9 Stage 1 tank, a Merlin-1D engine, four steel landing legs, and a steel support structure. Carbon overwrapped pressure vessels (COPVs), which are filled with either nitrogen or helium, are attached to the support structure. The Merlin-1D engine has a maximum thrust of 122,000 pounds. The overall height of the Grasshopper RLV is 106 feet, and the tank height is 85 feet.

The propellants used in the Grasshopper RLV include a highly refined kerosene fuel, called RP-1, and liquid oxygen (LOX) as the oxidizer.

The reports goes on to say that the Grasshopper test program is to have three phases of test launches, at SpaceX’s facility in McGregor, Texas. Phases 1 and 2 would consist of very low test fires with the rocket rising to not more than 73 meters (240 feet) during Phase 1 and 204 meters (670 feet), which is below controlled-airspace. Both Phase 1 and 2 flights would last up to 45 seconds.

Phase 3 tests have the goal of increasingly higher altitudes with higher ascent speeds and descent speeds. The altitude test sequence likely would be 366 meters (1,200 feet); 762 meters (2,500 feet); 1,524 meters (5,000 feet); 2,286 meters (7,500 feet); and 3,505 meters (11,500) feet. The maximum test duration would be approximately 160 seconds. If all goes well, the Grasshopper would land back on the launch pad.

Here’s Grasshopper’s first little test hop in September, which SpaceX said went 2 meters (6 feet):

Look for more details on this exciting reusable rocket as SpaceX continues its tests of the Grasshopper.

Sources: Twitter, Parabolic Arc

SpaceX’s Dragon Splashes Down Safely

The Dragon capsule after splashing down successfully on October 28, 2012. Credit: SpaceX

After leaving the International Space Station earlier on Sunday, SpaceX’s Dragon capsule returned to Earth from the International Space Station, safely splashing down in the Pacific Ocean about 400 kilometers (250 miles) off the coast of southern California. Inside the capsule are 758 kg (1,673 pounds) of return cargo including hardware, supplies, and a GLACIER freezer packed with scientific samples, including blood and urine samples of the astronauts on the space station, being returned for medical analysis. Currently, Dragon is the only craft capable of returning a significant amount of supplies to Earth, and this mission marks the first time since the retirement of the space shuttle that NASA has been able to return research samples for analysis.

Both NASA and SpaceX were thrilled with the success of the mission.

“This historic mission signifies the restoration of America’s ability to deliver and return critical space station cargo,” said SpaceX CEO and Chief Technical Officer Elon Musk. “The reliability of SpaceX’s technology and the strength of our partnership with NASA provide a strong foundation for future missions and achievements to come.”

NASA Administrator Charles Bolden added his congratulations to SpaceX: “Just a little over one year after we retired the Space Shuttle, we have completed the first cargo resupply mission to the International Space Station. Not with a government owned and operated system, but rather with one built by a private firm — an American company that is creating jobs and helping keep the U.S. the world leader in space as we transition to the next exciting chapter in exploration. Congratulations to SpaceX and the NASA team that supported them and made this historic mission possible.”

Raw video footage of the Dragon splashing down:

The SpaceX recovery team is now transporting Dragon by boat to a port near Los Angeles, where early cargo will be delivered to NASA. Dragon then will be transported to SpaceX’s facility in McGregor, Texas for processing. There, the remaining cargo will be delivered to NASA.

After a successful test flight in May of this year, this was the first “official” resupply mission for SpaceX to the ISS. The Dragon was launched on October 7 and reached the ISS three days later.

“It was nice while she was on board,” station commander Suni Williams radioed to back to Mission Control after the spacecraft was unberthed Sunday. “Literally and figuratively, there is a piece of us on that spacecraft going home to Earth.”

NASA Video of the Dragon capsule leaving the ISS:

The flight didn’t go with a hitch, however. An anomaly occurred with one of Falcon 9’s first-stage engines during the launch, and while it didn’t affect the mission to the ISS, a satellite that tagged along on the flight, the ORBCOMM OG2 prototype communications satellite, was delivered to the wrong orbit and ultimately fell back to Earth.

SpaceX and NASA are investigating the anomaly and analysis to date supports initial findings: the engine experienced a rapid loss of pressure and Falcon 9’s flight computer immediately commanded shutdown, as it is designed to do in such cases. SpaceX said they will continue to analyze all data in an effort to determine root cause and will apply those findings to future flights.

The next resupply mission for Dragon is tentatively scheduled for January 2013. Additionally, Orbital Sciences Corp, NASA’s second cargo hauler, plans to launch the first Cygnus capsule in February or March 2013.

Dragon floating down on parachutes. Credit: SpaceX

Here’s Your Chance to Scream in Space

The STRaND-1 Smartphone Nanosatellite. Credit: Surry Satellite Technology

The first “Alien” movie was promoted with the celebrated tagline, “In space, no one can hear you scream.” But a group of students want to find out if this is really true, and they’re asking the public for help. Students from the University of Cambridge in the UK will be loading human screams onto a smartphone that will be launched into space in December 2012 on a nanosatellite. The screams will be played at maximum volume while the smartphone is in low Earth orbit, and at the same time as the phone will record the playback to test if it’s possible to capture the sound of screaming in space. They want the best screams possible, and so are inviting the public to submit their screams via video. There will also be public voting on the screams to determine which screams will go to space.

You know you’ve always wanted to do this…..

“Obviously, we’re not expecting to get much back, there may be some buzzing, but this is more about getting young people interested in satellites and acoustics, perhaps encouraging them to consider future study in science or engineering” said Edward Cunningham, a physics undergraduate at Churchill College and one of the members of the Cambridge University Space Flight group (CUSF).

What is actually being tested is verifying the capabilities of a smartphone to control a satellite in space. UK space company Surrey Satellite Technology and their STRaND (Surrey Training Research and Nanosatellite Demonstration) team ran a Facebook competition to find apps to go into orbit – and CUSF’s screaming app was one of the winners. STRaND-1 project is touted as the “World’s first SmartPhone Nanosatellite.”

Here’s a video showing the satellite:

The phone will run on Android’s open-source operating system, and a computer, built at the Surrey Space Centre, will test the vital statistics of the phone once in space. When all the tests are complete, the plan is to switch off the micro-computer and the smartphone will be used to operate parts of the satellite. At its lowest, the phone will orbit 400km above the Earth, roughly the same as the International Space Station.

“Modern smartphones are pretty amazing,” said Shaun Kenyon, the project manager at Surrey Satellite Technology. “We want to see if the phone works up there, and if it does, we want to see if the phone can control a satellite.”

To submit your scream, create a YouTube video and send it in at www.screaminspace.com.

Each video must be at most ten seconds long, and there will be ten winning screams which can be voted for by the public on the project’s website. Screams must be entered before midnight (UTC) on Sunday November 4, 2012. The winning videos will be announced later and loaded onto the phone for launch, which is scheduled before the end of this year.

Other winners in the STRaND-1 project were iTesa, which will record the magnitude of the magnetic field around the phone during orbit, a STRAND Data app will show satellite telemetry on the smartphone’s display which can be imaged by an additional camera on-board, and Postcards from Space and 360, a joint effort with an app that will take images using the smartphone’s camera and use the technology onboard the spacecraft to establish STRaND-1’s position.

Source: University of Cambridge
, Surrey Satellite

Go Inside the Dragon Capsule with New Interactive Panorama

Wish you could be on the International Space Station right now, helping to unload the SpaceX Dragon capsule that is berthed to the Harmony Node? A new interactive panorama from SpaceX allows the closest experience of being inside Dragon. Inside, you can see all the storage compartments, and the panorama lets you zoom around inside as if you were floating in Zero-G. If you watch out the window port, the view will change from seeing Earth, to having the protective shutters closed and then (sadly) you end up back on Earth inside the SpaceX Hanger at Cape Canaveral. The panorama is a fun Friday diversion, but make sure you share it with your favorite budding astronaut — kids will love it! Click on the image above to get to the panorama, or use this link.

Dragon Successfully Captured and Berthed at Space Station

Dragon captured by the ISS’s CanadArm2. Via NASA TV.

Running ahead of time, the International Space Station Expedition 33 crew successfully captured and installed the SpaceX Dragon capsule onto the Earth-facing port of the ISS’s Harmony module. Commander Suni Williams and astronaut Akihiko Hoshide captured the commercial spacecraft with the station’s CanadArm2 robotic arm at 6:56 a.m. EDT, and Dragon was officially berthed at 9:03 am EDT.

“Looks like we’ve tamed the Dragon,” radioed Williams. “We’re happy she’s on board with us. Thanks to everybody at SpaceX and NASA for bringing her here to us. And the ice cream.”

“This is a big moment in the course of this mission and for commercial spaceflight,” said SpaceX CEO and Chief Technical Officer Elon Musk. “We are pleased that Dragon is now ready to deliver its cargo to the International Space Station.”

The hatch will be opened tomorrow was opened earlier than expected, today at 1:40 pm EDT and Dragon will be unloaded over the next several days. Later, they will be re-packing it full of items that will be coming back to Earth, as this spacecraft has the ability to return intact, instead of burning up in the atmosphere like the other resupply ships that come to the station. Dragon will spend 18 days attached to the ISS.

More images below.

The Dragon capsule berthed to the ISS’s Harmony node. Credit: NASA/SpaceX

Dragon approaches the ISS. Via NASA TV.

Dragon is carrying nearly 400 kg (882 pounds) of supplies to the orbiting laboratory, including 117 kg (260 pounds) of crew supplies, 176 kg (390 pounds) of scientific research, 102 kg (225 pounds) of hardware and several kg/pounds of other supplies, such as food, water and Space Station parts. There are also 23 student experiments from the Student Spaceflight Experiments Program (SSEP) involving 7,420 pre-college students engaged in formal microgravity experiment design, according to SSEP director Dr. Jeff Goldstein.

The special treat that Williams mentioned is on board a new freezer called GLACIER (General Laboratory Active Cryogenic ISS Experiment Refrigerator): Blue Bell ice cream, a brand that is a favorite of astronauts training at the Johnson Space Center. The freezer will hold experiments that need to be returned to Earth for further examination.

Dragon will return a total of 758 kg (1,673 pounds), including 74 kg (163 pounds) of crew supplies, 392 kg (866 pounds) of scientific research, and 235 kg (518 pounds) of vehicle hardware and other hardware.

The Dragon capsule hovers near the International Space Station. Via NASA TV

A close-up view of the CanadArm2’s end effector grabbing the Dragon capsule. Via NASA TV

Dragon in the “Ready To Latch” (RTL) position. Via NASA TV.

A NASA graphic showing the position of the Dragon capsule on the ISS. Via NASA TV.

Falcon 9 Experienced Engine Anomaly But Kept Going to Orbit

During last night’s launch of the Dragon capsule by SpaceX’s Falcon 9 rocket, there was an anomaly on one of the rocket’s nine engines and it was shut down. But Dragon still made it to orbit – just a little bit later than originally expected. At about 1:20 into the flight, there was a bright flash and a shower of debris. SpaceX’s CEO Elon Musk issued a statement about the anomaly saying:

“Falcon 9 detected an anomaly on one of the nine engines and shut it down. As designed, the flight computer then recomputed a new ascent profile in realtime to reach the target orbit, which is why the burn times were a bit longer. Like Saturn V, which experienced engine loss on two flights, the Falcon 9 is designed to handle an engine flameout and still complete its mission. I believe F9 is the only rocket flying today that, like a modern airliner, is capable of completing a flight successfully even after losing an engine. There was no effect on Dragon or the Space Station resupply mission.”

UPDATE (2 pm EDT 8/10): SpaceX has now provided an update and more information: the engine didn’t explode, but (now updated from a previous update), “panels designed to relieve pressure within the engine bay were ejected to protect the stage and other engines.” Here’s their statement:

Approximately one minute and 19 seconds into last night’s launch, the Falcon 9 rocket detected an anomaly on one first stage engine. Initial data suggests that one of the rocket’s nine Merlin engines, Engine 1, lost pressure suddenly and an engine shutdown command was issued. We know the engine did not explode, because we continued to receive data from it. Panels designed to relieve pressure within the engine bay were ejected to protect the stage and other engines. Our review of flight data indicates that neither the rocket stage nor any of the other eight engines were negatively affected by this event.

As designed, the flight computer then recomputed a new ascent profile in real time to ensure Dragon’s entry into orbit for subsequent rendezvous and berthing with the ISS. This was achieved, and there was no effect on Dragon or the cargo resupply mission.

Falcon 9 did exactly what it was designed to do. Like the Saturn V (which experienced engine loss on two flights) and modern airliners, Falcon 9 is designed to handle an engine out situation and still complete its mission. No other rocket currently flying has this ability.

It is worth noting that Falcon 9 shuts down two of its engines to limit acceleration to 5 g’s even on a fully nominal flight. The rocket could therefore have lost another engine and still completed its mission.

We will continue to review all flight data in order to understand the cause of the anomaly, and will devote the resources necessary to identify the problem and apply those lessons to future flights. We will provide additional information as it becomes available.

In their initial press release following the launch SpaceX had originally described the performance of Falcon 9 as nominal “during every phase of its approach to orbit.”

During the press briefing following the launch SpaceX President Gwynne Shotwell replied to a question about the flash and said “I do know we had an anomaly on Engine 1, but I have no data on it. But Falcon 9 was designed to lose engines and still make mission, so it did what it was supposed to do. If you do end up with issues, you burn longer to end up where you need to go.”

SpaceX’s website also mentions this capability, saying, “”This vehicle will be capable of sustaining an engine failure at any point in flight and still successfully completing its mission. This actually results in an even higher level of reliability than a single engine stage.”

Dragon made it to orbit about 30 seconds later than originally planned, but Shotwell said it made it into the correct orbit, “within two or three kilometers in both apogee and perigee and Dragon is now on its way to Station.” The anomaly happened right at the time of Max-Q, just as the vehicle went supersonic.

The Space Shuttle was also designed to make it into orbit even if one of its three engines failed – after a certain point in the flight – and did so at least once to this reporter’s knowledge, on STS-51-F which resulted in an Abort To Orbit trajectory, where the shuttle achieved a lower-than-planned orbital altitude.

This was the first time SpaceX made lift-off at their originally planned “T-0” launch time, Shotwell noted. And they also deployed a tag-along, secondary payload in addition to the Dragon capsule, a prototype commercial communications satellite for New Jersey-based Orbcomm Inc. However, A report by Jonathan McDowell indicates the Orbcomm satellite is being tracked in low orbit instead of its elliptical target orbit because the Falcon 9 upper stage failed its second burn. (More info here from Jonathan’s Space Report).

SpaceX will undoubtedly review the anomaly, and we’ll provide more information about it when available.

SpaceX Launches to the International Space Station. Credit: NASA